第二章:基本概念-黑体辐射定律
- 格式:ppt
- 大小:2.25 MB
- 文档页数:15
黑体辐射是由德国物理学家爱因斯坦在20世纪初提出的一种热辐射的理论。
黑体辐射的规律是物体的温度越高,它所发出的辐射能量就越大。
黑体辐射的结论是:物体的温度越高,它所发出的辐射能量也就越大,而且辐射能量随着物体温度的增加而增加,并且辐射能量随着物体温度的升高而升高。
黑体辐射还有一个重要的结论,就是黑体辐射的能量分布是随着波长缩短而增加的,这个结论叫做黑体辐射定律。
黑体辐射的理论对于热学和光学领域有重要的意义,并且在宇宙学、天文学、材料科学等领域有广泛的应用。
黑体辐射是由热力学原理推导出来的,它是描述物质在高温下发射出的电磁辐射能量分布的理论。
黑体是指在黑暗中发射的辐射,它是理论上的概念,不存在真正的黑体。
黑体辐射的规律是物体的温度越高,它所发出的辐射能量就越大。
这个规律称为黑体辐射定律,也被称为爱因斯坦辐射定律。
定律表明,对于同一温度的黑体,它所发出的辐射能量是固定的,并且随着温度的升高而增加。
黑体辐射还有一个重要的结论,就是黑体辐射的能量分布是随着波长缩短而增加的,这个结论叫做黑体辐射定律。
根据这个定律,可以得出黑体辐射能量在红外波段和紫外波段较强,而在可见光波段较弱。
黑体辐射的理论对于热学和光学领域有重要的意义,并且在宇宙学、天文学、材料科学等领域有广泛的应用。
热辐射与黑体辐射定律热辐射是物体由于其内部热运动而向周围空间发出的电磁波辐射。
研究热辐射现象可以帮助我们更好地理解能量转换和传递的基本原理。
在研究热辐射过程中,黑体辐射定律是非常重要的基础。
1. 什么是黑体辐射定律?黑体辐射定律是描述黑体辐射特性的基本规律。
黑体是指能够完全吸收所有辐射射入的物体,不会反射和透射任何辐射。
根据黑体辐射定律,黑体的辐射功率与其温度的四次方成正比。
2. 定义和表述黑体辐射的功率与单位面积、单位时间内辐射出的能量有关。
设黑体表面在频率范围ν到ν+Δν内单位面积、单位时间内辐射出的能量为E(ν, T),单位频率的能量密度为u(ν, T),则黑体辐射定律可表述为:u(ν, T)dν = C_1 * ν^3 / (e^(C_2 * ν / T) - 1)dν其中,C_1和C_2为物理常数;T为黑体的温度。
3. 史蒂芬-波尔兹曼定律史蒂芬-波尔兹曼定律是黑体辐射定律在宏观上的表述。
根据史蒂芬-波尔兹曼定律,单位面积的黑体表面辐射出的总功率与温度的四次方成正比。
P = σ * A * T^4其中,P为单位面积的辐射功率,A为黑体表面的面积,T为黑体的温度,σ为斯特藩-玻尔兹曼常数。
4. 海森堡不确定关系海森堡不确定关系在量子力学中对辐射的测量带来了限制。
根据海森堡不确定关系,我们无法同时精确测量一个粒子的位置和动量。
这意味着在精确测量辐射的频率时,我们无法同时确切知道辐射源的位置。
5. 应用黑体辐射定律在热学、天体物理学等领域具有广泛的应用。
例如,我们可以利用黑体辐射定律研究宇宙中的星体辐射特性,从而推断它们的温度和组成成分。
此外,在设计太阳能电池板等热能转换设备时,我们也需要考虑黑体辐射的定律。
总结:热辐射是物体由于内部热运动而向周围空间发出的电磁波辐射。
黑体辐射定律是解释和描述热辐射特性的基本规律,揭示了辐射功率与温度之间的关系。
史蒂芬-波尔兹曼定律进一步阐述了黑体的辐射功率与其温度的四次方之间的关系。
基尔霍夫热辐射定律基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家于提出的定律,它用于描述物体的与之间的关系。
简介一般研究辐射时采用的模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。
基尔霍夫热辐射定律则给出了实际物体的与之间的关系。
M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。
而发射率ε的定义即为所以有ε=α。
所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。
而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。
不同层次的表达式对于定向的,其基尔霍夫热辐射定律表达式为对于半球空间的光谱,其基尔霍夫热辐射定律表达式为对于全波段的半球空间,其基尔霍夫热辐射定律表达式为θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。
参考文献杨世铭,陶文铨。
《传热学》。
北京:高等教育出版社,2006年:356-379。
王以铭。
《量和单位规范用法辞典》。
上海:上海辞书出版社普朗克黑体辐射定律普朗克定律描述的黑体辐射在不同温度下的频谱中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意T下,从一个中发射的的与电磁辐射的的关系公式。
这里辐射率是频率的函数:这个函数在hv=时达到峰值。
如果写成的函数,在单位内的辐射率为注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。
因而和并不等价。
它们之间存在有如下关系:通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换:电磁波和的关系为普朗克定律有时写做频谱的形式:这是指单位频率在单位内的能量,单位是焦耳/(立方米·赫兹)。
对全频域积分可得到与频率无关的能量密度。
一个黑体的辐射场可以被看作是,此时的能量密度可由气体的参数决定。
基尔霍夫热辐射定律基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。
简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。
基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。
•M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。
而发射率ε的定义即为所以有ε=α。
所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。
而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。
不同层次的表达式对于定向的光谱,其基尔霍夫热辐射定律表达式为对于半球空间的光谱,其基尔霍夫热辐射定律表达式为对于全波段的半球空间,其基尔霍夫热辐射定律表达式为•θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。
参考文献•杨世铭,陶文铨。
《传热学》。
北京:高等教育出版社,2006年:356-379。
•王以铭。
《量和单位规范用法辞典》。
上海:上海辞书出版社普朗克黑体辐射定律普朗克定律描述的黑体辐射在不同温度下的频谱物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。
这里辐射率是频率的函数[1]:这个函数在hv=2.82kT时达到峰值[2]。
如果写成波长的函数,在单位立体角内的辐射率为[3]注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。
因而和并不等价。
它们之间存在有如下关系:通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换:电磁波波长和频率的关系为[4]普朗克定律有时写做能量密度频谱的形式[5]:这是指单位频率在单位体积内的能量,单位是焦耳/(立方米·赫兹)。
摘要自然界一切温度都高于绝对零度的物体(物质)无不在每时每刻产生着红外辐射,且这种辐射都载有物体的特征信息。
本文第一部分介绍了黑体和黑体辐射,讨论了黑体的辐射规律,即基尔霍夫辐射定律、维恩位移定律、瑞利—金斯公式、普朗克定律、斯蒂藩—玻尔兹曼定律;第二部分讨论了红外传输理论,即红外辐射在大气中传输时发生衰减的物理起因和余弦定律;第三部分介绍了微光及微光探测理论,主要解释了发射率和实际物体的辐射。
关键词:黑体黑体辐射黑体辐射红外微光探测目录摘要 (I)第一章序言 (1)第二章黑体辐射理论 (2)2.1黑体和黑体辐射 (2)2.2基尔霍夫辐射定律 (3)2.3维恩位移定律 (6)2.4瑞利—金斯公式 (9)2.5普朗克公式 (9)2.6 Stefan-Boltzmann定律 (11)第三章红外传输理论 (13)3.1红外辐射在大气中的传输 (13)3.2Lambert定律 (13)第四章红外与微光探测理论 (16)4.1实际物体的辐射力 (16)4.2实际物体的定向辐射强度 (16)4.3物体发射率的一般变化规律 (18)4.4灰体的概念及其工程应用 (19)第五章结论 (20)参考文献 (21)第一章 序言自从英国天文学家赫谢耳(Herschel )在1800年发现红外线以来,随着红外辐射理论、红外探测器、红外光学以及红外探测及跟踪系统等的发展,红外技术在国民经济、国防和科学研究中得到了广泛的应用,已成为现代光电子技术的重要组成部分,受到世界各国的普遍关注。
其中研究热辐射的基本规律是红外物理的基本内容,本文首先讨论任意物体在热平衡条件下的辐射规律,即基尔霍夫定律。
接着讨论黑体的辐射规律,即基尔霍夫辐射定律、维恩位移定律、瑞利—金斯公式、普朗克定律、斯蒂藩—玻尔兹曼定律。
基尔霍夫定律是热辐射理论的基础之一。
它不仅把物体的发射与吸收联系起来,而且好指出了一个好的吸收体必然是一个好的发射体。
普朗克公式在近代物理发展中占有极其重要的地位。
黑体辐射的实验规律
黑体辐射的实验规律由黑体辐射定律、斯特藩-玻尔兹曼定律
和维恩位移定律组成。
1. 黑体辐射定律(普朗克定律):描述了黑体辐射的能量密度与频率之间的关系。
根据该定律,黑体辐射的能量密度与频率的平方成正比。
数学表达式为:B(ν, T) = (2hν^3 / c^2) * (1 / (exp(hν / kT) - 1)),其中B(ν, T)表示单位频率范围内的能量密度,ν表示频率,T表示黑体的温度,h为普朗克常数,c为光速,k为玻尔兹曼常数。
2. 斯特藩-玻尔兹曼定律:描述了黑体辐射的总辐射功率与温
度之间的关系。
根据该定律,黑体辐射的总辐射功率与温度的四次方成正比。
数学表达式为:P = σ * A * T^4,其中P表示
黑体辐射的总辐射功率,σ为斯特藩-玻尔兹曼常数,约等于
5.67 × 10^−8 W/(m^2·K^4),A表示黑体的表面积,T表示黑体的温度。
3. 维恩位移定律:描述了黑体辐射的主峰频率与温度之间的关系。
根据该定律,黑体辐射的主峰频率与温度成反比。
数学表达式为:λ_max = b / T,其中λ_max表示主峰频率对应的波长,b为维恩位移常数,约等于2.898 × 10^−3 m·K。
这些规律揭示了黑体辐射现象与温度、频率、波长之间的基本关系,对理解和研究热辐射、热力学以及量子物理学等领域有着重要的意义。
基尔霍夫热辐射定律基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。
简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。
基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。
•M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。
而发射率ε的定义即为所以有ε=α。
所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。
而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。
不同层次的表达式对于定向的光谱,其基尔霍夫热辐射定律表达式为对于半球空间的光谱,其基尔霍夫热辐射定律表达式为对于全波段的半球空间,其基尔霍夫热辐射定律表达式为•θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。
参考文献•杨世铭,陶文铨。
《传热学》。
北京:高等教育出版社,2006年:356-379。
•王以铭。
《量和单位规范用法辞典》。
上海:上海辞书出版社普朗克黑体辐射定律普朗克定律描述的黑体辐射在不同温度下的频谱物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。
这里辐射率是频率的函数[1]:这个函数在hv=2.82kT时达到峰值[2]。
如果写成波长的函数,在单位立体角内的辐射率为[3]注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。
因而和并不等价。
它们之间存在有如下关系:通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换:电磁波波长和频率的关系为[4]普朗克定律有时写做能量密度频谱的形式[5]:这是指单位频率在单位体积内的能量,单位是焦耳/(立方米·赫兹)。
黑体辐射的应用及其原理1. 引言在物理学中,黑体辐射是一个重要的概念。
它是指一个物体完全吸收所有入射辐射的能力,并以所有波长的辐射形式重新发射出来。
黑体辐射在许多领域都有广泛的应用,包括热辐射、光学传感器、太阳能电池等。
本文将介绍黑体辐射的基本原理以及其在各个领域的应用。
2. 黑体辐射的基本原理黑体辐射是由于物体的热运动而产生的电磁辐射。
根据普朗克辐射定律,黑体辐射的能谱密度与温度呈指数关系。
具体来说,黑体辐射的辐射功率密度可以用以下公式表示:B(T, λ) = (2hc²/λ⁵) * (1/(e^(hc/λkT) - 1))其中,B(T, λ)表示温度为T时,波长为λ的辐射功率密度,h为普朗克常数,c为光速,k为玻尔兹曼常数。
3. 黑体辐射的应用3.1 热辐射黑体辐射在热辐射领域有广泛的应用。
由于热辐射的能谱密度与温度呈指数关系,因此通过测量物体发出的辐射功率密度,可以准确地测量物体的温度。
这在物体表面温度测量、红外热成像等领域具有重要的应用价值。
3.2 光学传感器黑体辐射在光学传感器领域也有重要的应用。
光学传感器利用物体发出的辐射功率密度来检测物体的特征。
例如,在光电探测器中,通过测量黑体辐射的光强来判断物体的位置和形状。
这在自动化控制、机器视觉等领域具有广泛的应用。
3.3 太阳能电池太阳能电池是一种利用太阳光转化为电能的器件。
黑体辐射在太阳能电池中起着关键的作用。
太阳光照射到太阳能电池上时,被吸收并转化为电能。
黑体辐射的性质使得太阳能电池可以高效地转化太阳光的能量。
这使得太阳能电池在可再生能源领域具有巨大的潜力。
4. 结论黑体辐射是一个重要的物理现象。
它在热辐射、光学传感器和太阳能电池等领域都有广泛的应用。
通过研究黑体辐射的基本原理,可以更好地理解这些应用的工作原理。
随着科技的不断发展,黑体辐射的应用将继续拓展,并在更多领域发挥重要作用。
参考文献:1.Planck, M. (1901). On the Law of Distribution of Energy in the NormalSpectrum. Annalen der Physik, 309(3), 553-563.2.Liu, J., et al. (2018). Application of black body radiation theory intemperature measurement. Journal of Physics: Conference Series, 1103(1),012031.3.Li, Y., et al. (2020). Design of a novel energy harvester based onthermoelectric black body radiation. Journal of Microelectronics and Solid State Devices, 7(4), 247-253.。