2010年高一数学必修二模块考试题及答案(北师大版)
- 格式:doc
- 大小:1.63 MB
- 文档页数:6
高二年级必修5宝鸡铁一中 张爱丽班级: 姓名:一.选择题(本大题共12小题,每小题5分,共60分)1.已知数列{a n }地通项公式为a n =121-2n,在下列各数中,( )不是数列{a n }地项 A. 1 B. -1 C. 2 D. 32.某厂地产值若每年平均比上一年增长10%,经过x 年后,可以增长到原来地2倍,在求x 时,所列地方程正确地是( )A. (1+10%)x-1=2 B. (1+10%)x =2 C. (1+10%)x+1=2 D. x=(1+10%)23.已知数列{a n }中,a n /a n-1=2,(n ≥2),且a 1=1,则这个数列地第10项为( ) A .1024B .512 C .256D .1284.在△ABC 中,一定成立地等式是( ) A.a sinA=b sinB B.a cosA=b cosB C.a sinB=b sinA D.a cosB=b cosA5.在△ABC 中,a=1,b=3,∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°6.两个等差数列,它们地前n 项和之比为1235-+n n ,则这两个数列地第9项之比是( )A .35B .58C .38D .477.已知△ABC 地周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 地值为 ( )A .41-B .41C .32-D .328. 设a= 3-x, b=x-2,则a 与b 地大小关系为( )A . a>b B. a=b C . a<b D. 与x 有关9.若实数a 、b 满足a +b =2,是3a +3b 地最小值是( ) A .18 B .6 C .23 D .24310.等式11(-x)(x -)023>地解集为( )11. 32A x x ⎧⎫<<⎨⎬⎩⎭1. 2⎧⎫>⎨⎬⎩⎭B x x1. |3⎧⎫<⎨⎬⎩⎭C x x 11. |32⎧⎫<>⎨⎬⎩⎭或D x x x11.知点(3,1)和(-4,6)在直线3x-2y+a=0地两侧,则a 地取值范围是( )A .a<-7或a>24B .a=7或a=24C .-7<a<24D .-24<a<712.图, 不等式(x+y)(x-y)<0表示地平面区域是()二.填空题 ( 每小题4分,共16分)13.数224y =x +x +1地最小值是___14.比数列{a n }中,已知a 1=23,a 4=12,则q =_____,S4 =____.15.某高山上地温度从山脚起,每升高100米降低0.7C ︒,已知山顶处地温度是14.8C ︒,山脚温度是26C ︒,则这山地山顶相对于山脚处地高度是.16.x 、y 满足不等式组⎪⎩⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,目标函数z=3x+y 地最小值为____.三、 解答题:(共44分) 17.(6分)解不等式(x 2-3x +2) (3 -x )>018.(12分)等差数列{a n }地前n 项和记为Sn,已知 a 10=30,a 20 =50.(1)求通项a n(2)若Sn=242,求n19.12分)在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c20.(14分)假设某市2004年新建住房400万2m ,其中有250万2m 是中低价房.预计在今后地若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房地面积均比上一年增加50万2m .那么,到哪一年底,该市历年所建中低价房地累计面积(以2004年为累计地第一年)将首次不少于4750万2m ?(2) 当年建造地中低价房地面积占该年建造住房面积地比例首次大于85%?参考答案13. 3 14.2, 22.5 15.1600米 16.1min =z三. 解答题:17.{x ︱x<1或2 < x < 3}; 18.(1)a n = 2n + 10 ; (2) n = 11;19.解:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒即b <a ∴A=60︒或120︒当A=60︒时C=75︒22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒22645sin 15sin 2sin sin -===B C b c 20.(1)到2013年底,该市历年所建中低价房地累计面积将首次不少于4750(2)到2009年底,当年建造地中低房地面积占该年建造住房面积地比例将首次大于85%试题说明:本试题共20道题,时间120分钟,满分120分1.课本P6 练习:2 改变3.课本P38A组. 2 改变4.正弦定理地变形5.课本P49练习2:1改变6.专家伴读8.基本不等式地应用:课本P92练习1:1改变16.课本P19A组. 6 改变17.课本P83例11 改变20.课本P40C组. 2 改变版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX。
一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-14.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+;③设{}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,对任意*i N ∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.函数2()23||f x x x =-的单调递减区间是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知22()2x af x x -=+. (1)若0a =,证明:()f x在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =,当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减,∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i A B ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +,由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数.22.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。
一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-13.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 8.若函数()f x =的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3811.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()23=-+f x x x .(Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域;(Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =27x =. 3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b -≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】 由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x<的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.D解析:D 【分析】 令22(2)1t mx m x =+-+()0,t ∈+∞()22(2)0,1mx m x +-++∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mxm x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果.【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<.综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可.当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。
综合测试题(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·四川理,1)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .62.已知集合A ={x |0<log 4x 〈1},B ={x |x ≤2},则A ∩B =( ) A .(0,1) B .(0,2] C .(1,2)D .(1,2]3.(2015·广东高考)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +e x B .y =x +错误! C .y =2x +错误!D .y =错误!4.设f (x )=错误!,则f [f (错误!)]=( ) A 。
12B.错误! C .-错误!D 。
错误!5.log 43、log 34、错误!错误!的大小顺序是( ) A .log 34<log 43〈错误!错误! B .log 34〉log 43〉错误!错误! C .log 34〉错误!错误!>log 43D.错误!错误!>log34〉log436.函数f(x)=ax2-2ax+2+b(a≠0)在闭区间[2,3]上有最大值5,最小值2,则a,b 的值为()A.a=1,b=0B.a=1,b=0或a=-1,b=3C.a=-1,b=3D.以上答案均不正确7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.错误!B.错误!C.2 D.48.(2015·安徽高考)函数f(x)=错误!的图像如图所示,则下列结论成立的是()A.a>0,b〉0,c<0B.a〈0,b〉0,c>0C.a〈0,b〉0,c〈0D.a〈0,b<0,c〈09.(2016·山东理,9)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>错误!时,f(x+错误!)=f(x-错误!).则f(6)=()A.-2 B.-1C.0 D.210.函数f(x)=(x-1)ln|x|-1的零点的个数为()A.0 B.1C.2 D.311.设0〈a〈1,函数f(x)=log a(a2x-2a x-2),则使f(x)〈0的x的取值范围是()A.(-∞,0)B.(0,+∞)C.(-∞,log a3) D.(log a3,+∞)12.有浓度为90%的溶液100g,从中倒出10g后再倒入10g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg2=0。
第二部分阶段测试 第一章达标检测时间:120分钟 分数:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线ax +by +c =0同时经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab>0,bc<0 B .ab>0,bc>0 C .ab<0,bc>0 D .ab<0,bc<0 2.已知点M(0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1) 3.若直线l 1:x +(1+m)y +m -2=0和直线l 2:mx +2y +8=0平行,则m 的值为( )A .1B .-2C .1或-2D .-234.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=05.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.经过点(1,0)且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2 7.直线y =kx +1与圆(x -2)2+(y -1)2=4相交于P ,Q 两点.若|PQ|≥2 2 ,则k 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-34,0 B .⎣⎢⎡⎦⎥⎤-33,33 C .[-1,1] D .[- 3 , 3 ]8.设有一组圆C k :(x -1)2+(y -k)2=k 4(k∈N +),给出下列四个命题:①存在k ,使圆与x 轴相切;②存在一条直线与所有的圆均相交;③存在一条直线与所有的圆均不相交;④所有的圆均不经过原点.其中正确的命题序号是( )A.①②③ B.②③④ C.①②④ D.①③④二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,直线l 1,l 2相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到l 1,l 2的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是( )A.距离坐标为(0,0)的点有1个B.距离坐标为(0,1)的点有2个C.距离坐标为(1,2)的点有4个D.距离坐标为(x ,x )的点在一条直线上10.已知圆M 与直线x +y +2=0相切于点A (0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为1011.已知圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0交于P ,Q 两点,下列说法正确的是( )A.两圆有两条公切线B.直线PQ 的方程为3x -2y +9=0C.线段PQ 的长为61313D.所有过点P ,Q 的圆的方程可以记为x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)三、填空题:本题共3小题,每小题5分,共15分.12.过圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.13.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,则直线l 的方程为________________.14.[双空题]已知圆C :x 2+y 2+2(a -1)x -12y +2a 2=0.当圆C 的面积最大时,实数a 的值为________;若此时圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则mn3m +n 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,已知△ABC 的三个顶点的坐标分别为A (-3,2),B (4,3),C (-1,-2).(1)求△ABC 中,BC 边上的高线所在直线的方程; (2)求△ABC 的面积.16.(本小题满分15分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系; (2)若直线l 与圆C 交于不同两点A ,B ,且|AB |=32 ,求直线l 的方程.17.(本小题满分15分)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程; (2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r 的值;若不存在,请说明理由.18.(本小题满分17分)①圆心C在直线l:2x-7y+8=0上,且B(1,5)是圆上的点;②圆心C在直线x-2y=0上,但圆C不经过点(4,2),并且直线4x-3y=0与圆C相交所得的弦长为4;③圆C过直线l:2x+y+4=0和圆x2+y2+2x-4y-16=0的交点.在以上三个条件中任选一个,补充在下面问题中,问题:平面直角坐标系xOy中,圆C过点A(6,0),且________.(1)求圆C的标准方程;(2)求过点A的圆C的切线方程.19.(本小题满分17分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使得∠BPA=60°?若存在,求出点P的坐标;若不存在,请说明理由.第一章达标检测1.解析:由题意,令x =0,得y =-cb >0;令y =0,得x =-c a>0.即bc <0,ac <0,从而ab >0.答案:A2.解析:由点N 在直线x -y +1=0上,排除A ,B.由k MN =2,排除D.故选C. 答案:C 3.解析:∵直线l 1:x +(m +1)y +m -2=0与l 2:mx +2y +8=0平行,∴m (m +1)=1×2,解得m =1或m =-2.当m =-2时,直线l 1:x -y -4=0,l 2:x -y -4=0,l 1与l 2重合,故舍去;当m =1时,l 1∥l 2.∴m =1.故选A.答案:A4.解析:将“关于直线对称的两条直线”转化为“关于直线对称的两点”,在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,只有选项D 满足.答案:D5.解析:圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,由于圆心位于第三象限,所以a <0,b >0.直线方程x +ay +b =0可化为y =-1a x -b a .因为-1a >0,-ba >0,所以直线不经过第四象限.答案:D6.解析:由⎩⎪⎨⎪⎧x =1,x +y =2, 得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1).由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.答案:B7.解析:若|PQ |≥22 ,则圆心(2,1)到直线y =kx +1的距离d ≤ 4-⎝ ⎛⎭⎪⎫2222 =2 ,即|2k |1+k 2≤2 ,解得-1≤k ≤1. 答案:C8.解析:命题①中,当k =1时,圆心(1,1),半径r =1,满足与x 轴相切,故①正确;命题②③中,圆心(1,k )恒在直线kx -y =0上,该线与圆一定相交,故②正确,只要k 足够大,对任意直线,总有直线与圆相交,故③错误;命题④中,若(0,0)在圆上,则1+k 2=k 4,而k ∈N +,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,故④正确.故选C.答案:C9.解析:对于A ,若距离坐标为(0,0),即P 到两条直线的距离都为0,P 为两直线的交点,即距离坐标为(0,0)的点只有1个,A 正确;对于B ,若距离坐标为(0,1),即P 到直线l 1的距离为0,到直线l 2的距离为1,P 在直线l 1上,到直线l 2的距离为1,符合条件的点有2个,B 正确;对于C ,若距离坐标为(1,2),即P 到直线l 1的距离为1,到直线l 2的距离为2,有4个符合条件的点,即与直线l 1相距为2的两条平行线和与直线l 2相距为1的两条平行线的交点,C 正确;对于D ,若距离坐标为(x ,x ),即P 到两条直线的距离相等,则距离坐标为(x ,x )的点在2条相互垂直的直线上,D 错误.故选ABC.答案:ABC10.解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2 =2 |a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2 =2a 2+4a -4 =2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2 ,C 错误;满足条件的所有圆M 的半径之积为52 ×2 =10,D 正确.故选ABD.答案:ABD11.解析:A ,因为圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0相交于P ,Q 两点,所以两圆有两条公切线,故正确;B ,圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0的方程相减得3x -2y +9=0,所以直线PQ 的方程为3x -2y +9=0,故正确;C ,圆心O 到直线PQ 的距离为d =99+4=91313,所以线段PQ 的长|PQ |=2r 2-d 2=2 9-8113 =121313,故错误;D ,因为λ∈R ,λ≠-1,所以⎩⎪⎨⎪⎧x 2+y 2=9,x 2+y 2+6x -4y +9=0, 可知该圆恒过P ,Q 两点,方程可化为x 2+y 2+6λx 1+λ -4λy 1+λ +9λ-91+λ =0,而(6λ1+λ )2+(4λ1+λ )2-49λ-91+λ =16λ2+36(1+λ)2 >0,所以方程x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)表示圆,但不包括圆M ,故错误.故选AB.答案:AB12.解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝⎛⎭⎪⎫21+λ,λ-11+λ 代入2x +4y -1=0,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=013.解析:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行. 设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13 ,d 2=|m +13|13 ,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 答案:3x -2y -25=0或3x -2y -9=014.解析:圆C 的方程可化为[x +(a -1)]2+(y -6)2=-a 2-2a +37,当a =-1时,-a 2-2a +37取得最大值38,此时圆C 的半径最大,面积也最大;当a =-1时,圆心坐标为(2,6),圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则点(2,6)在直线上,所以2m+6n -6=0,即m +3n =3,由题得mn 3m +n =11m +3n,所以1m +3n =13 (m +3n )(1m +3n )=13(10+3n m +3m n )≥13(10+2 3n m ×3m n )=163 ,当且仅当3n m =3m n ,即m =n =34时取等号,所以mn 3m +n =11m +3n≤316.答案:-131615.解析:(1)∵直线BC 的斜率k BC =3+24+1 =1,∴BC 边上的高线所在直线的斜率k =-1.∴BC 边上的高线所在直线的方程为y -2=-(x +3), 即x +y +1=0.(2)∵B (4,3),C (-1,-2),∴|BC |=(-2-3)2+(-1-4)2=52 .由B (4,3),C (-1,-2),得直线BC 的方程为x -y -1=0,∴点A 到直线BC 的距离d =|-3-2-1|2 =32 ,∴S △ABC =12×52 ×32 =15.16.解析:(1)圆C 的标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C (0,1),半径r=5 ,圆心C (0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m |m 2+1 =|m |m 2+1 <1<5 ,因此直线l 与圆C 相交.(2)圆心C 到直线l 的距离d =(5)2-⎝ ⎛⎭⎪⎫3222=22 .又d =|m |m 2+1 ,|m |m 2+1=22,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0. 17.解析:(1)依题意,可设动圆C 的方程为(x -a )2+(y -b )2=25, 其中圆心(a ,b )满足a -b +10=0. 又因为动圆过点(-5,0),所以(-5-a )2+(0-b )2=25,联立⎩⎪⎨⎪⎧a -b +10=0,(-5-a )2+(0-b )2=25, 解得⎩⎪⎨⎪⎧a =-10,b =0, 或⎩⎪⎨⎪⎧a =-5,b =5.故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25.(2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=52 .当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆; 当r 满足r +5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r +5=d ,即r =52 -5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切. 故当动圆C 中与圆O 相外切的圆仅有一个时,r =52 -5. 18.解析:选①条件.(1)方法一:设所求圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(6-a )2+(0-b )2=r 2,(1-a )2+(5-b )2=r 2,2a -7b +8=0,解得a =3,b =2,r 2=13,∴所求圆的方程是(x -3)2+(y -2)2=13. 方法二:设线段AB 的垂直平分线为m ,则圆心C 在直线m 上且在直线l 上,即C 是m 与l 的交点, 直线AB 的斜率是-1,直线m 的斜率是1,AB 中点为(72 ,52 ),∴直线m :x -y -1=0,由⎩⎪⎨⎪⎧x -y -1=0,2x -7y +8=0, 解得⎩⎪⎨⎪⎧x =3,y =2, ∴圆心C (3,2)且|CA |=13 ,∴所求圆的方程是(x -3)2+(y -2)2=13.(2)∵A 在圆C 上,k AC =-23 ,过点A 的切线斜率为32 ,∴过点A 的切线方程是y =32 (x -6),即3x -2y -18=0.选②条件.(1)设所求圆的方程为(x -a )2+(y -b )2=r 2,由题意得a =2b ,设圆心C 到直线4x -3y =0的距离为d ,r 2=(a -6)2+b 2, 由垂径定理可知r 2=d 2+22,即(|4a -3b |5 )2+4=(a -6)2+b 2,将a =2b 代入得,b 1=2,b 2=4, 又∵圆C 不经过点(4,2),∴a =8,b =4,r 2=20,∴所求圆的方程是(x -8)2+(y -4)2=20.(2)∵A 在圆C 上,k AC =2,过点A 的切线斜率为-12 ,∴过点A 的切线方程是y =-12(x -6),即x +2y -6=0.选③条件.(1)方法一:设所求圆C 的方程为x 2+y 2+2x -4y -16+λ(2x +y +4)=0, 代入点A (6,0)得λ=-2,∴所求圆的方程为x 2+y 2-2x -6y -24=0,即(x -1)2+(y -3)2=34.方法二:设直线l :2x +y +4=0与圆x 2+y 2+2x -4y -16=0的交点E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧2x +y +4=0,x 2+y 2+2x -4y -16=0, 即5x 2+26x +16=0,解得x 1=-13+895 ,x 2=-13-895,∴E (-13+895 ,6-2895 ),F (-13-895 ,6+2895),设所求圆C 的方程为(x -a )2+(y -b )2=r 2,将A ,E ,F 代入,得所求圆的方程为(x -1)2+(y -3)2=34.(2)∵A 在圆C 上,k AC =-35 ,过点A 的切线斜率为53 ,∴过点A 的切线方程是y =53(x -6),即5x -3y -30=0.19.解析:(1)如图,连接PC ,由点P 在直线3x +4y +8=0上,可设点P 的坐标为⎝ ⎛⎭⎪⎫x ,-2-34x .圆C 的标准方程为(x -1)2+(y -1)2=1,所以圆心C (1,1),半径为1.所以S 四边形PACB =2S △PAC =2×12 ×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+⎝ ⎛⎭⎪⎫1+2+34x 2 =⎝ ⎛⎭⎪⎫54x +1 2+9,所以当x =-45 时,|PC |2min =9,所以|AP |min =9-1 =22 ,即四边形PACB 面积的最小值为22 .(2)假设直线上存在点P 满足题意.因为∠BPA =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0,整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.。
一、选择题(本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点P (1,-2),斜率为3的直线方程是( )A .y -2=3(x -1)B .y -1=3(x +2)C .y +2=3(x -1)D .y +2=-3(x -1)解析:选C.利用点斜式写出直线方程:y -(-2)=3(x -1),即y +2=3(x -1),故选C.2.下列说法不正确的是( )A .一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D .过一条直线有且只有一个平面与已知平面垂直解析:选D.A 项是平行四边形的判定定理,正确.B 项中,同一平面的两条垂线平行,所以一定在同一平面内,故B 正确.C 项过直线上一点与这条直线垂直的直线都在这条直线过该点的垂面内,C 正确.D 项中,若直线与已知平面垂直,则有无数个平面过已知直线且与已知平面垂直,故D 不正确.3.一束光线自点P (1,1,1)发出,被xOy 平面反射到达点Q (3,3,6)后被吸收,那么光线所走的路程是( ) A.57 B.47C.37D.33解析:选A.点P (1,1,1)关于xOy 平面的对称点P ′的坐标为(1,1,-1), 由两点间的距离公式,得|P ′Q |=(3-1)2+(3-1)2+(6+1)2=57,由对称性知光线所走路程等于|P ′Q |的长.4.体积为33的正方体内接于球,则球的体积为( )A .36π B.272π C.92π D .9π 解析:选C.设正方体的棱长为a ,则a 3=33,a = 3.又∵2R =3a ,∴R =32a .故V =43πR 3=92π.所以选C.5.若某空间几何体的三视图如图所示,则该几何体的表面积是( )A .3 B. 3C .3 3D .3+4 3解析:选D.由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的边长分别为1和3,三棱柱的高为3,故该几何体的表面积为2×12×3×1+(1+3+3+1)×3=3+4 3.6.正方体ABCD A 1B 1C 1D 1中,P ,Q 分别为D 1D 和DC 的中点,则BC 1与PQ 的夹角为( )A .30°B .60°C .90°D .45°解析:选B.如图所示,由正方体的性质易知BC 1∥AD 1,因为P ,Q 为D 1D 与DC 的中点,所以PQ ∥D 1C ,所以∠AD 1C 即为BC 1与PQ 的夹角.因为△ACD 1为正三角形,所以∠AD 1C =60°,即PQ 与BC 1的夹角为60°.7.过点A (-2,2),且在两坐标轴上截距相等的直线方程是( )A .x +y =0B .x =-2或y =2C .x -y +22=0D .x +y =0或x -y +22=0解析:选A.代入点A (-2,2)可排除C 、D 两项,又x =-2或y =2是两条直线,且每一条都仅有一个截距,所以B 项错.8.圆x 2+y 2-2x -2y -2=0上的点到直线x -y =2的距离的最小值是( )A .0B .1+ 2C .22-2D .2- 2解析:选A.∵圆x 2+y 2-2x -2y -2=0和直线x -y =2相交,∴最小距离是0.9.已知一圆与直线3x +4y +5=0相切于点(1,-2),且圆心在直线x +y +92=0上,则圆的方程为( )A .x 2+y 2+x -8y +10=0B .x 2+y 2+x +8y +10=0C .x 2+y 2-x -8y +10=0D .x 2+y 2-x -8y -10=0解析:选B.过点(1,-2)与直线3x +4y +5=0垂直的直线方程为4x -3y -10=0,由⎩⎪⎨⎪⎧4x -3y -10=0,x +y +92=0,解得圆心的坐标为⎝⎛⎭⎫-12,-4,且r =⎝⎛⎭⎫1+122+(-2+4)2=52,所以圆的方程为x 2+y 2+x +8y +10=0.10.在正方体ABCD A 1B 1C 1D 1中,BD 1与A 1D 所成的角为α1,AB 1与BC 1所成的角为α2,AA 1与BD 1所成的角为α3,则有( )A .α3<α2<α1B .α2<α3<α1C .α2<α1<α3D .α3<α1<α2解析:选A.连接AD 1,因为BA ⊥平面A 1ADD 1,所以AD 1为BD 1在平面A 1ADD 1上的射影,如图所示,因为A 1D ⊥AD 1,所以A 1D ⊥BD 1,即α1=90°.因为AD 1∥BC 1,所以AD 1与AB 1所成的角即为BC 1与AB 1所成的角.连接B 1D 1.因为△AB 1D 1为等边三角形,所以α2=60°.因为BB 1∥AA 1,所以BB 1与BD 1所成的角即为AA 1与BD 1所成的角.在Rt △BB 1D 1中,tanα3=B 1D 1BB 1=2,所以45°<α3<60°,所以α3<α2<α1. 二、填空题(本大题共5小题.把答案填在题中横线上)11.在空间直角坐标系中,已知M (2,0,0),N (0,2,10),若在z 轴上有一点D 满足|MD |=|ND |,则点D 的坐标为________.解析:设D (0,0,z ),由|MD |=|ND |,可解得z =5,故选A.答案:512.如图所示,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于__________.解析:因为EF ∥平面AB 1C ,而过EF 的平面ABCD 与平面AB 1C 交于AC ,所以EF ∥AC ,又因为点E 为AD 的中点,所以EF =12AC =1222+22= 2. 答案: 213.若直线x +ay +2=0和2ax +3y +1=0互相垂直,则a 等于__________.解析:a 应满足:1×2a +a ×3=0,即5a =0,∴a =0.答案:014.(2012·高考江西卷)过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是________.解析:∵点P在直线x+y-22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°,∴∠OPM=30°.故在Rt△OPM中,有OP=2OM=2.由两点间的距离公式得OP=x20+(-x0+22)2=2,解得x0= 2.故点P的坐标是(2,2).答案:(2,2)15.过△ABC所在平面外一点P,作PO⊥平面ABC,垂足为O,连接P A,PB,PC.①若P A=PB=PC,∠ABC=90°,则O为AB边的中点;②若P A=PB=PC,则O为△ABC的外心;③若P A⊥PB,PB⊥PC,PC⊥P A,则O为△ABC的垂心;④若P A⊥BC,PB⊥AC,则PC⊥AB;⑤若P A=PC,AB=BC,则PB⊥AC.以上五种说法中正确的是__________.解析:∵P A=PB=PC,PO⊥平面ABC,∴Rt△POA≌Rt△POB≌Rt△POC,∴OA=OB =OC,∴O为△ABC的外心,故①②均正确;∵P A⊥PB,PB⊥PC,且P A∩PC=P,∴PB ⊥平面P AC.∴PB⊥AC.又∵PO⊥AC,∴AC⊥平面POB,∴BO⊥AC.同理可证AO⊥BC,因而O为△ABC的垂心;类似于③可以证明④正确;对于⑤,取AC中点为M,可得PM⊥AC,BM⊥AC,且PM∩BM=M,∴AC⊥平面PMB,∴AC⊥PB.故⑤也正确.答案:①②③④⑤三、解答题(本大题共5小题.解答应写出必要的文字说明、证明过程或演算步骤)16.如图,在正方体ABCD-AB1C1D1中,E、F分别是BB1、CD的中点.(1)证明:AD⊥D1F;(2)求AE与D1F所成的角.解:(1)证明:因为AC1是正方体,所以AD⊥面DC1.又D1F DC1,所以AD⊥D1F.(2)取AB的中点G,连接A 1G,FG,因为F是CD的中点,所以GF AD,又A1D1AD,所以GF A1D1,故四边形GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于H,则∠A1HA是AE与D1F所成的角.因为E是BB1的中点,所以Rt△A1AG≌△ABE,∠GA1A=∠GAH,从而∠A1HA=90°,即直线AE与D1F所成的角为直角.17.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0(m∈R).(1)判断直线l与圆C的位置关系;(2)设直线l与圆C交于A,B两点,若直线l的倾斜角为120°,求弦AB的长.解:(1)直线l可改写为y-1=m(x-1),因此直线l过定点D(1,1),又12+(1-1)2=1<5,所以点D在圆C内,则直线l与圆C必相交.(2)由题意知m≠0,所以直线l的斜率k=m.又k=tan 120°=-3,即m=- 3.此时,圆心C(0,1)到直线l:3x+y-3-1=0的距离d =|-3|(3)2+12=32,又圆C 的半径r =5, 所以|AB |=2r 2-d 2=25-⎝⎛⎭⎫322=17. 18.在正方体ABCD A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN .(1)求证:MN ∥平面BB 1C 1C ;(2)当A 1M =AN =23a 时,求MN 的长. 解:(1)证明:如图所示,作MP ∥AB 交BB1于P ,NQ ∥AB 交BC 于Q ,所以MP ∥NQ .因为PM A 1B 1=BM A 1B ,即PM a =BM 2a .又因为NC AC =NQ AB ,所以NC 2a =NQ a,所以PM =NQ ,所以四边形MPQN 是平行四边形,所以MN ∥PQ .又因为PQ 平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .(2)由题设AN =A 1M =23a ,所以BQ =a 3=PB 1, 所以BP =23a ,所以MN =PQ =BP 2+BQ 2=53a . 19.一个简单多面体的直观图和三视图如图所示,它的主视图和左视图都是腰长为1的等腰直角三角形,俯视图为正方形,E 是PD 的中点.(1)求证:PB ∥平面ACE ;(2)求证:PC ⊥BD ;(3)求三棱锥C -P AB 的体积.解:(1)证明:连接BD ,BD ∩AC =O ,连接OE ,易知OE 是△BPD 的中位线, ∴BP ∥OE .OE 平面ACE ,PB ⃘平面ACE ,∴PB ∥平面ACE .(2)证明:俯视图为正方形,即ABCD 是正方形,∴AC ⊥BD .∵P A ⊥平面ABCD ,∴P A ⊥BD .P A ∩AC =A ,BD ⊥平面P AC ,PC 平面P AC ,∴PC ⊥BD .(3)易知正方形ABCD 的边长为1,P A =1,V C -P AB =V P -ABC =13×12×1×1×1=16. 20.已知坐标平面上点M (x ,y )与两个定点M 1(26,1),M 2(2,1)的距离之比等于5.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点M (-2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程.解:(1)由题意,得|M 1M ||M 2M |=5, (x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0.即(x -1)2+(y -1)2=25. ∴点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段的长为252-32=8,∴l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2),即kx -y +2k +3=0,圆心到l 的距离d =|3k +2|k 2+1. 由题意,得⎝ ⎛⎭⎪⎫|3k +2|k 2+12+42=52.解得k =512. ∴直线l 的方程为512x -y +236=0,即5x -12y +46=0. 综上,直线l 的方程为x =-2或5x -12y +46=0.。
数学必修二模块试题石油中学 胡伟红一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( ) (A )48 (B )64 (C )96 (D )192 2.一个棱柱是正四棱柱的条件是( )( ) A .底面是正方形,有两个侧面是矩形B .底面是正方形,有两个侧面垂直于底面C .底面是菱形,且有一个顶点处的三条棱两两垂直D .每个侧面都是全等矩形的四棱柱3、若直线2x -3y+6=0绕它与y 轴的交点逆时针旋转450角,则此时在x 轴上的截距是 ( ) A. 54-B. 52- C. -45 D. 524.一个凸多面体的面数为8,各面多边形的内角总和为16π,则它的棱数为 ( )A .24B .22C .18D .165.在棱长为1的正方体AC 1中,对角线AC 1在六个面上的射影长度总和是 ( )A .36B . 26C .6D .636、如果直线沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A. -31B. -3C. 31D . 37.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )A .33aB .43aC .63aD .123a3、过点P (1,1)作直线L 与两坐标轴相交所得三角形面积为10,直线L 有( )(A )、一条 (B )、两条 (C )、三条 (D )、四条 9.有一空容器,由悬在它上方的一根水管均匀地注水,直至 把容器注满.在注水过程中水面的高度曲线如右图所示, 其中PQ 为一线段,则与此图相对应的容器的形状是( )A .B .C .D .10、如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F 这六个字母之一,现放置成如图的三种不同的位置,则字母A,B,C 对面的字母分别为( )A) D ,E ,F B) F ,D ,E C) E, F ,D D) E, D,F二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果. 11.当a+b+c=0时,直线ax+by+c=0必过定点_______12.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为________.13.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是14..若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 三、解答题:本大题满分44分.15.(10分)过点P (1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.16.(10分)已知圆心在直线2x+y=0,且过点A (2,-1),与直线x -y -1=0相切,求圆的方程。
第五章复数1复数的概念及其几何意义........................................................................................ - 1 - 2复数的四则运算...................................................................................................... - 14 - 3复数的三角表示...................................................................................................... - 29 -1复数的概念及其几何意义1.1复数的概念学习任务核心素养1.了解引进虚数单位i的必要性,了解数集的扩充过程.(重点)2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.(重点、难点) 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.(重点)1.通过对复数的相关概念的学习,培养学生数学抽象素养.2.借助复数的分类、复数的相等的相关运算,培养学生数学运算素养.五百年前意大利的卡尔丹遇到这样一个问题,将10分成两个部分,使它们的乘积等于40,则x(10-x)=40即(x-5)2=-15,该方程无实数解,那么他遇到了什么问题呢?他想:负数为什么不能开方?他是怎样解决的呢?形如a+b i(其中a,b∈R)的数叫作复数,通常用字母z表示,即z=a+b i(a,b∈R).其中a称为复数z的实部,记作Re z, b称为复数z的虚部,记作Im z.知识点2复数的分类根据复数中a,b的取值不同,复数可以有以下的分类:复数a +b i(a ,b ∈R )⎩⎨⎧实数(b =0);虚数(b ≠0)⎩⎨⎧纯虚数(a =0),非纯虚数(a ≠0).1.在2+7,27i, 8+5i ,(1-3)i, 0.68这几个数中,纯虚数的个数为( ) A .0 B .1 C .2 D .3C [27i, (1-3)i 是纯虚数,故选C.]知识点3 复数集全体复数构成的集合称为复数集,记作C .显然RC .知识点4 复数相等两个复数a +b i 与c +d i(a ,b ,c ,d ∈R )相等定义为:它们的实部相等且虚部相等,即a +b i =c +d i 当且仅当a =c 且b =d . 1.两个复数一定能比较大小吗?提示:当两个复数为实数时,能够比较大小;否则不能比较大小.2.若复数a +2i =3+b i(a ,b ∈R ),则a +b 的值是什么?提示:因为a +2i =3+b i ,所以a =3,b =2,所以a +b =5.2.思考辨析(正确的画“√”,错误的画“×”)(1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z =b i 是纯虚数. ( ) (3)若两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )[提示] (1)错误.若b =0,则复数z =a +b i 是实数.(2)错误.若b =0,则复数z =b i =0是实数.(3)正确.若两个复数的实部的差和虚部的差都等于0,则这两个复数的实部和虚部分别相等,所以两个复数相等.[答案] (1)× (2)× (3)√类型1 复数的概念【例1】 (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3(2)已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________.(1)B (2)±2 5 [(1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.(2)由题意知⎩⎨⎧a 2=2,b -2=3,∴a =±2,b =5.](1)复数的代数形式:若z =a +b i ,只有当a ,b ∈R 时,a 才是z 的实部,b 才是z 的虚部,且注意虚部不是b i ,而是b .(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.(3)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这类题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.[跟进训练]1.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2;③实数集是复数集的真子集.其中正确说法的个数是( )A .0B .1C .2D .3B [对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,故①错误.对于②,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,故②错误.显然,③正确.故选B.]类型2 复数相等【例2】 (1)(教材北师版P 165例2改编)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧x 2-y 2=0,2xy =2, 解得⎩⎨⎧x =1,y =1或⎩⎨⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.[跟进训练]2.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________.5 [因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎨⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5.] 类型3 复数的分类【例3】 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i. (1)是虚数;(2)是纯虚数.1. 复数z =a +b i (a ,b ∈R )何时为虚数?[提示] b ≠0.2.复数z =a +b i (a ,b ∈R )何时为纯虚数?[提示] a =0,b ≠0. 3.(1)复数z 是虚数→令虚部不等于0→解方程组可得m 的值(2)复数z 是纯虚数→令虚部不等于0且实部等于0→解方程组可得m 的值[解] (1)当⎩⎨⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数. (2)当⎩⎨⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.1.例3的条件不变,当m 为何值时,z 为实数?[解] 当⎩⎨⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数. 2.例3的条件不变,当m 为何值时,z >0.[解] 因为z >0,所以z 为实数,需满足⎩⎨⎧m 2-m -6m +3>0,m 2-2m -15=0,解得m =5. 3.已知z =log 2(1+m )+ilog 12(3-m )(m ∈R ),若z 是虚数,求m 的取值范围. [解] ∵z 是虚数,∴log 12(3-m )≠0,且1+m >0, 即⎩⎨⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R )时应先转化形式.(2)注意分清复数分类中的条件,设复数z =a +b i(a ,b ∈R ),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0且b =0.当堂达标1.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i 等于( )A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i.]2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A.]3.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( )A .2B .3C .-3D .9 B [因为z 1=a +2i ,z 2=3+(a 2-7)i ,且z 1=z 2,所以有⎩⎨⎧a =3,a 2-7=2,解得a =3.故选B.]4.已知复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为________. -1或2 [因为复数z =m 2-1+(m 2-m -2)i 为实数,所以m 2-m -2=0,解得m =-1或m =2.]5.设m ∈R ,复数z =-1-m +(2m -3)i.(1)若z 为实数,则m =________;(2)若z 为纯虚数,则m =________.(1)32(2)-1[(1)若复数z=-1-m+(2m-3)i为实数,则2m-3=0,所以m=32;(2)若z为纯虚数,则-1-m=0,所以m=-1.]回顾本节内容,自我完成以下问题:1.如何正确理解复数的概念?[提示](1)对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况.(2)当两个复数不全是实数时,不能比较大小,只可判断相等或不相等,但两个复数都是实数时,可以比较大小.2.如何解决复数相等问题?[提示]两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.1.2复数的几何意义学习任务核心素养1.理解用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(难点)2.掌握实轴、虚轴、模、共轭复数等概念.(重点、难点)3.掌握用向量的模来表示复数的模的方法.(重点)1.通过学习复数的几何意义,培养学生直观想象素养.2.借助于复数的模和共轭复数的计算,培养学生数学运算素养.18世纪,瑞士人阿甘达注意到负数是正数的一个扩充,它是将方向和大小结合得出来的,他给出了负数的一些几何解释.而在使人们接受复数方面,高斯的工作更为有效,他不仅将复数z=a+b i表示为复平面的一点Z(a,b),而且阐述了复数的几何加法和乘法,这也和向量运算是一致的,使人们对复数不再有种神秘的印象.阅读教材,结合上述情境回答下列问题.问题1:上述材料中,复平面是如何定义的?问题2:复数与复平面内的点及向量的关系如何?问题3:复数的模是实数还是虚数?问题4:复数z=a+b i的共轭复数是什么?知识点1复平面通过建立平面直角坐标系来表示复数的平面称为复平面,x轴称为实轴,y轴称为虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.1.虚轴上的点都对应着唯一的纯虚数吗?提示:不是.除了原点外,虚轴上的点都表示纯虚数.知识点2复数的几何意义2.象限内的点与复数有何对应关系?提示:第一象限的复数特点:实部为正,且虚部为正;第二象限的复数特点:实部为负,且虚部为正;第三象限的复数特点:实部为负,且虚部为负;第四象限的复数特点:实部为正,且虚部为负.1.在复平面内,复数z=i+2i2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限B [∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限.]知识点3 复数的模向量OZ →的模称为复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|. 由向量模的定义可知,|z |=|a +b i|=a 2+b 2.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|z |=a 2+b 2=a 2=|a |(a 的绝对值).2.已知复数z 的实部为-1,虚部为2,则|z |=________.5 [|z |=(-1)2+22= 5.]知识点4 共轭复数(1)定义:若两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数z 的共轭复数用z 表示.当z =a +b i(a ,b ∈R )时,z =a -b i .(2)几何意义:在复平面内,表示两个共轭复数的点关于实轴对称,并且它们的模相等.另外,当复数z =a +b i 的虚部b =0时,有z =z .也就是说,任意一个实数的共轭复数仍是它本身,反之亦然.3.复数z =-1+i 的共轭复数对应的点位于第________象限.三 [z =-1+i 的共轭复数为z =-1-i ,位于第三象限.]类型1 复数与平面内的点的关系【例1】 (教材北师版P 167练习第2题改编)实数x 分别取什么值时,复数z =(x 2+x -6)+(x 2-2x -15)i 对应的点Z 在:(1)第三象限;(2)直线x -y -3=0上.[解] 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧x 2+x -6<0,x 2-2x -15<0,即当-3<x <2时,点Z 在第三象限. (2)z =x 2+x -6+(x 2-2x -15)i 对应点Z (x 2+x -6,x 2-2x -15),当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即当x =-2时,点Z 在直线x -y -3=0上.按照复数和复平面内所有点组成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值. [跟进训练]1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .[解] 若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z =0.若复数z 的对应点在实轴负半轴上,则⎩⎨⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.类型2 复数的模的几何意义【例2】 (教材北师版P 166例3改编)设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=3; (2)1≤|z |≤2.[解] (1)|z |=3说明向量OZ →的长度等于3,即复数z 在复平面内对应的点Z 到原点的距离为3,这样的点Z 的集合是以原点O 为圆心,3为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎨⎧|z |≤2|z |≥1.不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.解决复数的模的几何意义问题解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形;二是利用复数的模的概念,把模的问题转化为几何问题来解决. [跟进训练] 2.若复数z 满足|z |≤2,则z 在复平面所对应的图形的面积为________. 2π [满足|z |≤2的点Z 的集合是以原点O 为圆心,以2为半径的圆及其内部所有的点构成的集合,∴所求图形的面积为S =2π.故填2π.]类型3 复数、共轭复数与复平面内的向量的关系【例3】 (1)向量OZ 1对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,则OZ →1+OZ →2对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i(2)设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA→对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i1.复数z =a +b i (a ,b ∈R )在复平面内对应的向量OZ →和点Z 分别是什么?[提示] 向量OZ →=(a ,b ),点Z 的坐标为(a ,b ).2.设复数z =a +b i (a ,b ∈R )的共轭复数为z ,z 和z 在复平面内对应的点分别为A ,B ,则点A ,B 有什么关系?[提示] 点A ,B 关于x 轴对称.(1)C (2)D [(1)由复数的几何意义,可得OZ →1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数为0.(2)由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.] 1.在例3(2)中若BA →对应的复数是z ,求z .[解] 由例3(2)的解析可知BA →对应的复数是5-5i ,即z =5-5i ,所以z =5+5i.2.在例3(2)中,若点A 关于实轴的对称点为点C ,求向量OC →对应的复数.[解] 复数2-3i 表示的点A (2,-3)关于实轴对称的点为C (2,3),∴向量OC→对应的复数为2+3i.(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.[跟进训练]3.已知O 为坐标原点,OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i(a ∈R ),若OZ 1与OZ 2共线,求a 的值.[解] ∵OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i ,∴OZ 1=(-3,4),OZ 2=(2a ,1).又∵OZ 1与OZ 2共线,∴(-3)×1-4×2a =0,解之得a =-38.当堂达标1.若OZ →=(0,-3),则OZ →对应的复数为( )A .0B .-3C .-3iD .3C [OZ →对应的复数为-3i.]2.已知复数z 1=m +2i ,z 2=1+i ,若z 1+z 2为纯虚数,则实数m 的值为( )A .-1B .1C .4D .-4A [z 1+z 2=m +1+3i 为纯虚数,故m +1=0,m =-1,故选A.]3.已知z =m -1+(m +2)i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-1,2)B .(-2,1)C .(1,+∞)D .(-∞,-2)B [∵z =m -1+(m +2)i 在复平面内对应的点在第二象限,∴m -1<0,m +2>0,解得-2<m <1,则实数m 的取值范围是(-2,1).]4.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )A .a ≠2或a ≠1B .a ≠2或a ≠-1C .a =2或a =0D .a =0C [由题知a 2-2a =0解得a =0或a =2,故选C.]5.已知复数z =1+2i ,则|z |=________.5 [∵z =1+2i ,∴|z |= 5.]回顾本节内容,自我完成以下问题:复数的模的几何意义是什么?提示:(1)复数z在复平面内对应的点为Z,复数z0在复平面内对应的点为Z0,r表示一个大于0的常数,则:①满足条件|z|=r的点Z的轨迹为以原点为圆心,r为半径的圆,|z|<r表示圆的内部,|z|>r表示圆的外部;②满足条件|z-z0|=r的点Z的轨迹为以Z0为圆心,r为半径的圆,|z-z0|<r 表示圆的内部,|z-z0|>r表示圆的外部.(2)复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.如图所示:2复数的四则运算2.1复数的加法与减法学习任务核心素养1.掌握复数代数形式的加法和减法运算.(重点、难点)2.理解复数加法和减法所满足的交换律和结合律.(重点、难点)1.通过学习复数的加法和减法运算,培养学生数学运算素养.2.通过学习复数加法和减法运算所满足的运算律,培养学生数学抽象素养.随着生产发展的需要,我们将数的范围扩展到了复数.运算是“数”的主要功能,复数不同于实数,它是由实部、虚部两部分复合构造而成的整体.阅读教材,回答下列问题问题1:复数如何进行加、减运算呢?问题2:类比多项式的加、减运算,想一想复数又如何进行加、减法运算?问题3:两个复数的和或差得到的结果是什么?问题4:复数的加法法则可以推广吗?知识点1复数的加法与减法(1)复数加法的运算法则两个复数的和仍是一个复数,两个复数的和的实部是它们的实部的和,两个复数的和的虚部是它们的虚部的和,也就是(a+b i)+(c+d i)=(a+c)+(b+d)i.(2)复数减法的运算法则两个复数的差仍是一个复数,两个复数的差的实部是它们的实部的差,两个复数的差的虚部是它们的虚部的差,也就是(a+b i)-(c+d i)=(a-c)+(b-d)i.(3)复数的加法运算的运算律:结合律:(z1+z2)+z3=z1+(z2+z3);交换律:z1+z2=z2+z1.1.两个复数的和是个什么数,它的值唯一确定吗?[提示]是复数,唯一确定.1.已知复数z1=3+4i,z2=3-4i,则z1+z2等于()A.8i B.6 C.6+8i D.6-8iB[z1+z2=3+4i+3-4i=(3+3)+(4-4)i=6.]知识点2复数加法的几何意义如图,z1=a+b i,z2=c+d i(a,b,c,d∈R)分别与向量OZ1=(a,b),OZ2=(c,d)对应,根据平面向量的坐标运算,得OZ1+OZ2=(a+c,b+d),这说明两个向量OZ1,OZ2的和就是与复数(a+c)+(b+d)i对应的向量.因此,复数的加法可以按照向量的加法来进行,这是复数加法的几何意义.2.若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2?提示:不能,例如可取z 1=3+2i ,z 2=2i.2.计算(3+i)-(2+i)的结果为________.1 [(3+i)-(2+i)=3+i -2-i =1.]类型1 复数的加法和减法【例1】 (教材北师版P 169例1改编)(1)计算:⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i . (2)已知复数z 满足z +1-3i =5-2i ,求z .(3)已知复数z 满足|z |+z =1+3i ,求z .[解] (1)⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i =⎝ ⎛⎭⎪⎫13+2-43+⎝ ⎛⎭⎪⎫12-1+32i =1+i. (2)法一:设z =x +y i(x ,y ∈R ),因为z +1-3i =5-2i ,所以x +y i +(1-3i)=5-2i ,即x +1=5且y -3=-2, 解得x =4,y =1,所以z =4+i.法二:因为z +1-3i =5-2i ,所以z =(5-2i)-(1-3i)=4+i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2,∴|z |+z =(x 2+y 2+x )+y i =1+3i ,∴⎩⎨⎧x 2+y 2+x =1,y =3,解得⎩⎨⎧x =-4,y =3,∴z =-4+3i.复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [跟进训练] 1.(1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(1)6-2i (2)-a +(4b -3)i [(1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i =(a -2a )+(b +3b -3)i =-a +(4b -3)i.]类型2 复数加、减法的几何意义【例2】 (教材北师版P 170例4改编)如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0, 3+2i ,-2+4i.求:(1)AO →表示的复数;(2)对角线CA →表示的复数;(3)对角线OB →表示的复数.确定向量对应的复数→进行向量的运算→确定向量对应的复数[解] (1)因为AO →=-OA →,所以AO →表示的复数为-3-2i.(2)因为CA →=OA →-OC →,所以对角线CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB →=OA →+OC →,所以对角线OB →表示的复数为(3+2i)+(-2+4i)=1+6i.例2的条件不变,求向量AB →表示的复数.[解] 因为AB →=AO →+OB →,由例2的解析可知,AO →表示的复数为-3-2i ,OB→表示的复数为1+6i ,所以向量AB →表示的复数为(-3-2i)+(1+6i)=-2+4i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R )是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[跟进训练]2.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心A [由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.]当堂达标1.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [原式=1-i -2-i +3i =-1+i.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B.]3.在复平面内,复数1+i 与1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|等于( )A . 2B .2C .10D .4B [向量AB →对应的复数为(1+3i)-(1+i)=2i ,所以AB →=(0,2),故|AB →|=2.]4.(5-i)-(3-i)-5i =________.2-5i [(5-i)-(3-i)-5i =2-5i.]5.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i , ∴⎩⎨⎧x +3=5,2-y =-6,解得⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i , ∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.]回顾本节内容,自我完成以下问题:1.复数代数形式的加减运算之间有怎样的关系?[提示] 复数代数形式的加法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加减法的几何意义是什么?[提示] 复数加法的几何意义就是向量加法的平行四边形法则.复数减法的几何意义就是向量减法的三角形法则.2.2 复数的乘法与除法*2.3 复数乘法几何意义初探学习任务核心素养1.掌握复数代数形式的乘法和除法运算.(重点、难点)2.理解复数乘法的交换律、结合律和乘法对加法的分配律.(难点)3.了解复数乘法的几何意义.1.通过学习复数的乘法和除法,培养学生数学运算素养.2.通过学习复数乘法运算所满足的运算律,培养学生数学抽象素养.在研究复数的加、减法运算时,我们注意到复数的形式就像一个二项式,类比二项式乘二项式的法则,我们可以得到复数乘法的法则,让第一项与第二项的各项分别相乘,再合并“同类项”,即得到乘法的结果.阅读教材,回答下列问题.问题1:复数的乘法和除法运算法则各是什么?问题2:复数乘法的运算律有哪些?问题3:如何在复数范围内求方程的解?(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·_(z2·z3)乘法对加法的分配律z1·(z2+z3)=z1·z2+z1·z3(3)对复数z,z1,z2和正整数m,n,有z m·z n=z m+n,(z m)n=z mn,(z1·z2)n=z n1·z n2.(4)虚数单位i乘方的周期性对于任意自然数n,有i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1.(5)共轭复数的性质:互为共轭复数的两个复数的乘积是实数,等于这个复数(或其共轭复数)模的平方.即若z =a +b i(a ,b ∈R ),则z ·z =|z |2=|z |2=a 2+b 2.(6)复数乘法的几何意义设复数z 1=a +b i(a ,b ∈R )所对应的向量为OZ 1.①z 2=(a +b i)·c (c >0)所对应的向量为OZ 2,则OZ 2是OZ 1与c 的数乘,即OZ 2是将OZ 1沿原方向拉伸或压缩c 倍得到的.②z 3=(a +b i)·i 所对应的向量为OZ 3,则OZ 3是由OZ 1逆时针旋转π2得到的.1.复数乘法的多项式运算与实数的多项式运算法则是否相似? [提示] 相似,但是运算的结果要把i 2写成-1.1.复数(1+i)(1-i)=________. 2 [(1+i)(1-i)=1-i 2=2.] 知识点2 复数的除法 (1)复数的除法:对任意的复数z 1=a +b i(a ,b ∈R )和非零复数z 2=c +d i(c ,d ∈R ),规定复数的除法:z 1z 2=z 1·1z 2.即除以一个复数等于乘这个复数的倒数.因此z 1z 2=a +b i c +d i =(a +b i)⎝ ⎛⎭⎪⎫cc 2+d 2-d c 2+d 2i =ac +bd c 2+d 2-ad -bc c 2+d 2i . (2)复数除法的运算: 在实际计算a +b ic +d i时,通常把分子和分母同乘分母c +d i 的共轭复数c -d i ,化简后就得到上面的结果:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2-ad -bcc 2+d 2i .由此可见,在进行复数除法运算时,实际上是将分母“实数化”.2.类比根式除法的分母有理化,比如1+33-2=(1+3)(3+2)(3-2)(3+2),你能写出复数的除法法则吗?提示:设z 1=a +b i ,z 2=c +d i(c +d i ≠0),则z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -adc 2+d 2i.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( ) A .-i B .i C .-1 D .1A [z =1i =-i.]类型1 复数的乘法及其几何意义【例1】 (1)(教材北师版P 171例5改编)计算:①(2+i)(2-i);②(1+2i)2. (2)设O 是坐标原点,在矩形OABC (点O ,A ,B ,C 按逆时针排列)中,OA =3OC ,若A 对应的复数是3+4i ,求点B ,C 所对应的复数.[解] (1)①(2+i)(2-i)=4-i 2=4-(-1)=5; ②(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.(2)因为在矩形OABC 中,OA =3OC ,且A 对应的复数是3+4i , 所以点C 对应的复数为(3+4i)·13i =-43+i ,因为OA →=(3,4),OC →=⎝ ⎛⎭⎪⎫-43,1,所以OB →=OA →+OC →=⎝ ⎛⎭⎪⎫53,5,所以点B 对应的复数为53+5i.1.两个复数代数形式乘法的运算步骤 (1)首先按多项式的乘法展开; (2)再将i 2换成-1;(3)然后再进行复数的加、减运算,化简为复数的代数形式. 2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R ); (2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R ); (3)(1±i)2=±2i.[跟进训练]1.(1)计算:(1-i)2-(2-3i)(2+3i)=( ) A .2-13i B .13+2i C .13-13iD .-13-2i(2)复数(1-i)2(2-3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i(3)设复数2+i 对应的向量为OZ →,把OZ →沿原方向拉伸3倍所得到的向量对应的复数是( )A .-1+2iB .6+3iC .6+iD .-6-3i(1)D (2)B (3)B [(1)(1-i)2-(2-3i)(2+3i)=1-2i +i 2-(4-9i 2)=-13-2i.(2)(1-i)2(2-3i)=(-2i)(2-3i)=-6-4i.(3)把OZ →沿原方向拉伸3倍所得到的向量对应的复数是(2+i)·3=6+3i.] 类型2 复数的除法【例2】 (1)已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i的点是( )A .MB .NC .PD .Q(2)设复数z =1+2i ,则z 2+3z -1=( )A .2iB .-2iC .2D .-2(3)设复数z 满足1+z1-z=i ,则|z |等于( ) A .1 B . 2 C . 3D .2(1)D (2)C (3)A [(1)由图可知z =3+i ,所以复数z1+i =3+i 1+i=(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,表示的点是Q (2,-1).故选D.(2)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(3)由1+z 1-z =i ,得z =-1+i 1+i=(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.故选A.]两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.[跟进训练] 2.(1)3+i1+i=( ) A .1+2i B .1-2i C .2+iD .2-i(2)已知i 为虚数单位,则1+i3-i =( )A .2-i5 B .2+i 5 C .1-2i5 D .1+2i 5(1)D (2)D [(1)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5.] 类型3 复数几何意义的综合应用【例3】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)1. 复数z =-2+i 在复平面内对应的点在第几象限?[提示] 因为复数z =-2+i 在复平面内对应的点为(-2,1),它在第二象限. 2.若复数z =a +b i (a ,b ∈R )在复平面内对应的点在第四象限,则实数a ,b 应满足什么条件?[提示] a >0,b <0.3.(1)计算z 1z 2→求复数z 1z 2在复平面内对应的点→判断其所在的象限(2)计算(1-i )(a +i )→求复数(1-i )(a +i )在复平面内对应的点→构建方程组并求解(1)D (2)B [(1)由题可得,z 1z 2=1+i1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎨⎧a +1<0,1-a >0,解得a <-1.]1.把例3(1)中的复数“z 1z 2”换为“11+i ”,答案是哪个?[解]11+i =1-i (1+i )(1-i )=12-12i ,对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.2.把例3(2)中的复数“(1-i)(a +i)”换为“1-2ia +i”,其余条件不变, 求实数a 的取值范围.[解] 因为1-2i a +i =(1-2i )(a -i )(a +i )(a -i )=a -2a 2+1-2a +1a 2+1i ,由题意可得⎩⎪⎨⎪⎧a -2a 2+1<0-2a +1a 2+1>0,解得a <-12.(1)复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解法更加直观.[跟进训练]3.已知复数z 满足(1+2i)z =4+3i(i 为虚数单位),求z 及z z .[解] ∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=2-i , ∴z =2+i ,∴zz =2-i 2+i =(2-i )2(2+i )(2-i )=3-4i 5=35-45i. 当堂达标1.复数(1+i)2(2+3i)的值为( ) A .6-4i B .-6-4i C .6+4iD .-6+4iD [(1+i)2(2+3i)=2i(2+3i)=-6+4i.]2.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2iB .2iC .-2D .2A [∵z i =1+i ,∴z =1+i i =1i +1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i.] 3. 在复平面内,复数11-i的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限D [11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.]4.计算:(1-i)(1+i)+(-1+i)=________. 1+i [(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i.] 5.设复数z =1+2i ,则z 2-2z =________.-3 [ ∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.]回顾本节内容,自我完成以下问题: 1.如何进行复数代数形式的乘除运算?[提示] (1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.解决复数问题的基本思想是什么?[提示] 复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +b i(a ,b ∈R ),利用复数相等的充要条件转化.利用复数产生分形图以前我们学过的函数,定义域都是实数集的子集.但函数概念还可以推广:定义域是复数集的子集的函数称为复变函数.类似地,我们还可以得到多项式复变函数的概念.例如,f(z)=z2就是一个多项式复变函数,此时f(i)=i2=-1,f(1+i)=(1+i)2=2i.给定多项式复变函数f(z)之后,对任意一个复数z0,通过计算公式z n+1=f(z n),n∈N可以得到一列值z0,z1,z2,…,z n,….如果存在一个正数M,使得|z n|<M对任意n∈N都成立,则称z n为f(z)的收敛点;否则,称z n为f(z)的发散点.f(z)的所有收敛点组成的集合称为f(z)的充满茹利亚集.例如,当f(z)=z2时,如果z n=i,则得到的一列值是i,-1,1,1,…,1,…;如果z n=1+i,则算出的一列值是1+i,2i,-4,…,22n-1,….显然,对于f(z)=z2来说,i为收敛点,1+i为发散点.事实上,利用|z2|=|z|2可以证明,f(z)=z2的充满茹利亚集是一个单位圆盘(即由满足|z|≤1的所有z组成的集合).让人惊讶的是,当f(z)=z2+c时,对于某些复数c来说,f(z)的充满茹利亚集是非常复杂的.如果利用计算机对不同形态的收敛点和发散点进行不同的着色,就可以得到分形图.而且,如果按照一定的规则对c进行分类,并进行着色,可以得到如图所示的芒德布罗分形图.。
北师大版(2019)数学必修第二册第一章单元测试题一、单选题 1.11cos 3π=( )A B .C .12-D .122.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15-B .3715C .3720D .13153.点()sin 2019,cos 2019A 位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin 2y x =的图象( )A .向左平移6π个单位 B .向右平移12π个单位 C .向左平移12π个单位D .向右平移12π个单位 5.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .6.已知51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫- ⎪⎝⎭等于( )AB .13C .13-D. 7.已知tan 3θ=,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于A .32-B .32C .0D .238.设322sin,cos ,tan 555a b c πππ===,则 A .a b c << B .a c b <<C .b c a <<D .b a c <<二、多选题9.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将该函数的图象向左平移6π个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是( ) A .()102f =B .函数()y f x =的图象关于直线6x π=对称C .函数()y f x =的图象关于点5,012π⎛⎫⎪⎝⎭对称D .函数()y f x =的图象关于直线12x π=对称 10.已知函数()1212()tan ,,,22f x x x x x x ππ⎛⎫=∈-≠ ⎪⎝⎭,则下列结论中正确的是A .()()11f x f x π+=B .()()11f x f x -=C .()()12120f x f x x x ->-D .()()()121212022f x f x x x f x x ++⎛⎫>> ⎪⎝⎭11.关于函数()cos cos f x x x =+有下述四个结论中正确的是( ) A .()f x 是偶函数 B .()f x 在区间()0,π上递减 C .()f x 为周期函数D .()f x 的值域为[]1,1-12.已知函数()sin()f x A x ωϕ=+(其中0,0,0A ωϕπ>><<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则下列判断正确的是( ) A .函数()sin()f x A x ωϕ=+中,2T πω==B .直线2x π=是函数()f x 图象的一条对称轴C .点,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心D .函数1y =与35()1212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为7π三、填空题13.cos 6y x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为________.14.已知一扇形的弧所对的圆心角为54°,半径r =20cm ,则扇形的周长为___cm. 15.已知函数f (x )=sin (3x -4π),x∈[2π,π],则函数f (x )的单调递增区间为__________.16.tan(2)3x π+≥..为_____________________________________四、解答题17.设函数()sin(),0,0,2f x A x x πωϕωϕ⎛⎫⎛⎫=+∈>∈ ⎪ ⎪⎝⎭⎝⎭R 的部分图象如图所示,求()f x 的表达式.18.求下列函数的定义域:(1)y =(2)lg(1)y x =.19.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,π<ϕ)的一段图象如图所示.(1)求函数()f x 的单调递增区间; (2)若3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.20.方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.21.已知函数()()2cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.(1)求()f x 的单调增区间和对称轴;(2)若,63x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的最大值和最小值.22.已知函数2()sin sin 1f x x a x =-++ (1)当1a =时,求函数()f x 的值域;(2)若当0a >时,函数()f x 的最大值是3,求实数a 的值;参考答案 1.D 【分析】利用诱导公式化简可直接求得结果. 【详解】 111coscos 4cos 3332ππππ⎛⎫=-== ⎪⎝⎭. 故选:D. 2.D 【详解】因为角α的终边经过点()3,4-,所以5r =,则43sin ,cos 55αα=-=,即113sin cos 15αα+=.故选D . 3.C【详解】2019=5360+2192019⨯∴,为第三象限角,则sin 20190,cos 20190<<,∴点()sin 2019,cos 2019A 在位于第三象限角,故选C.4.D 【分析】根据函数sin()y A x ωϕ=+的图象变换规律,可得结论. 【详解】解:sin(2)sin 2()612y x x ππ=-=-,故将函数sin 2y x =的图象向右平移12π个单位,可得sin(2)6y x π=-的图象, 故选:D . 5.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 6.D 【分析】先利用诱导公式51cos 123πα⎛⎫+= ⎪⎝⎭化简得,1sin 123πα⎛⎫-= ⎪⎝⎭,然后利用同角三角函数的关系求cos 12πα⎛⎫- ⎪⎝⎭的值. 【详解】依题意551cos sin sin 12212123ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 由于2ππα-<<-,所以713121212πππα<-<,故cos 12πα⎛⎫-= ⎪⎝⎭故选:D. 【点睛】此题考查诱导公式和同角三角函数间的关系,属于基础题. 7.B 【详解】 因为tanθ=3,∴()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭=3cos 333.cos sin 1tan 132θθθθ---===--- 故选B . 8.D 【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可. 【详解】 sin35π=cos (2π﹣35π)=cos (﹣10π)=cos 10π,而函数y =cosx 在(0,π)上为减函数,则1>cos 10π>cos 25π>0,即0<b <a <1,tan 25π>tan 4π=1,即b <a <c , 故选D . 【点睛】本题主要考查了三角函数值的大小比较,利用三角函数的诱导公式,结合三角函数的单调性是解决本题的关键,属于基础题.9.ABC 【分析】利用正弦函数的周期性以及图像的对称性,求出函数的解析式,再根据函数()()sin f x x ωϕ=+的图像变化规律、正弦函数的图像的对称性,得出结论. 【详解】函数()()sin f x x ωϕ=+的最小正周期为2ππω=,2ω∴=,故()()sin 2f x x ϕ=+,将该函数的图象向左平移6π个单位后,得到()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭的图像, 根据得到的图象对应的函数为偶函数,可得32ππϕ+=,6πϕ∴=,故()sin 26f x x π⎛⎫+ ⎝=⎪⎭,对于A ,()10sin 62f π==,故A 正确;对于B ,当 6x π=时,则sin 1636f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对于C ,55sin 01266f πππ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,故C 正确;对于D ,sin sin 12663f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,故D 错误;故选:ABC 【点睛】本题考查了三角函数的平移变换以及三角函数的性质,解题的关键是求出函数的解析式,属于基础题. 10.AC 【分析】根据正切函数的周期性可得A 正确,根据奇偶性判断B 错误,根据单调性判断C 正确,结合函数图象即可判断D 错误. 【详解】()tan f x x =的周期为π,故A 正确;函数()tan f x x =为奇函数,故B 不正确;C 表明函数为增函数,而()tan f x x =为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故C 正确;由函数()tan f x x =的图像可知,函数在区间,02π⎛⎫- ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,在区间0,2π⎛⎫ ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 不正确.故选:AC 【点睛】此题考查正切函数图象性质的辨析,涉及单调性,奇偶性周期性,结合图象理解凹凸性. 11.AC 【分析】根据奇偶性的定义判断出()f x 为偶函数,A 正确;通过,2x ππ⎛⎫∈ ⎪⎝⎭时()f x 解析式,可知不满足单调递减定义,B 错误;通过分类讨论的方式去掉解析式的绝对值,得到分段函数的性质,可确定函数最小正周期,知C 正确;根据余弦函数值域可确定()f x 值域,知D 错误. 【详解】()()()()cos cos cos cos f x x x x x f x -=-+-=+=()f x ∴为偶函数,A 正确;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()cos cos 0f x x x =-=,不满足单调递减定义,B 错误;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()2cos f x x =;当32,222x k k ππππ⎡⎤∈++⎢⎥⎣⎦,k Z ∈时,()0f x = ()f x ∴是以2π为最小正周期的周期函数,C 正确;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()[]2,2f x ∈-,故()f x 值域为[]22-,,D 错误. 故选:AC 【点睛】本题考查与余弦型函数有关的函数的性质及值域的相关命题的辨析,涉及到函数奇偶性、单调性、周期性和值域的求解;关键是能够通过分类讨论的方式确定函数在不同区间内的解析式,进而研究函数性质. 12.ACD 【分析】首先根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】解:函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,且与点M 相邻的一个最低点为2(,3)3N π-,则2543124T πππ=-=, T π∴=,进一步解得22πωπ==,3A =,故A 正确.由于函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,52()12k k Z πϕπ∴⨯+=∈, 解得56k ϕπ=π-, 由于0ϕπ<<,∴当1k =时,6π=ϕ. ()3sin(2)6f x x π∴=+.对于B :当2x π=时,3()3sin262f ππ=-=-,故B 不正确; 对于C :由26x k ππ+=,k Z ∈,解得212k x ππ=-,k Z ∈, 当0k =时,对称中心为:,012π⎛⎫- ⎪⎝⎭,故C 正确;对于D :由于:351212xππ-, 则:0266x ππ+,∴函数()f x 的图象与1y =有6个交点.根据函数的交点设横坐标从左到右分别为1x 、2x 、3x 、4x 、5x 、6x ,由2262x k πππ+=+,k Z ∈,解得6x k ππ=+,k Z ∈,所以12263x x ππ+=⨯=,432263x x ππππ⎛⎫+=⨯+=+ ⎪⎝⎭,5622463ππx x ππ⎛⎫+=⨯+=+ ⎪⎝⎭,所以156423247333x x x x x x ππππππ+++++=++++=所以函数的图象的所有交点的横坐标之和为7π,故D 正确.∴正确的判断是ACD .故选:ACD . 13.1,12⎡⎤⎢⎥⎣⎦【分析】 由02xπ,可得663x πππ--,结合余弦函数的性质即可求解.【详解】 解:02xπ, ∴663x πππ--,∴1cos()126x π- 即112y ,即1,12y ⎡⎤∈⎢⎥⎣⎦, 故答案为:1,12⎡⎤⎢⎥⎣⎦.14.6π+40 【分析】根据角度制与弧度制的互化,可得圆心角310πα=,再由扇形的弧长公式,可得弧长l ,即可求解扇形的周长,得到答案. 【详解】由题意,根据角度制与弧度制的互化,可得圆心角35410πα==, ∴由扇形的弧长公式,可得弧长6l r απ=⋅=, ∴扇形的周长为(640)cm π+. 【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题. 15.711,1212ππ⎡⎤⎢⎥⎣⎦【分析】将π34x -代入三角函数的递增区间,求得的x 的范围,然后对k 进行赋值,从而求得在π,π2⎡⎤⎢⎥⎣⎦范围内的增区间. 【详解】 令232242k x k πππππ-+≤-≤+ ()Z k ∈,解得323244k x k ππππ-+≤≤+ ()Z k ∈, 故2212343k k x ππππ-+≤≤+ ()Z k ∈,令1k =,解得7111212x ππ≤≤, 故函数的单调递增区间为711,1212ππ⎡⎤⎢⎥⎣⎦.【点睛】本小题主要考查正弦型类型的三角函数的单调区间的求法,采用的是先求得所有的增区间,然后对k 进行赋值,来求得给定区间内的单调增区间. 16.{|,}2212k k x x k Z πππ≤<+∈ 【分析】 由题得2,332k x k k Z πππππ+≤+<+∈,解不等式得不等式的解集.【详解】 由题得2,332k x k k Z πππππ+≤+<+∈,所以2,,62212k k k x k x k Z ππππππ≤<+∴≤<+∈. 所以不等式的解集为{|,}2212k k x x k Z πππ≤<+∈. 故答案为{|,}2212k k x x k Z πππ≤<+∈ 【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.17.()sin 24f x x π⎛⎫=+ ⎪⎝⎭.【分析】通过图像最高点的纵坐标即可求得A ,然后根据图像求最小正周期,再根据最小正周期公式求ω,再通过代点并结合ϕ的范围即可求解. 【详解】由图象可得1A =,32=48844T ππππω=-=, ∴2ω=,从而()sin(2)f x x ϕ=+,又∵点,18π⎛⎫ ⎪⎝⎭在函数的图象上,∴sin 14πϕ⎛⎫+= ⎪⎝⎭,从而2,42k k ππϕπ+=+∈Z ,即2,4k k πϕπ=+∈Z ,∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴4πϕ=,故()f x 的表达式:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.故答案为:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.18.(1)22/,2cot ()33x k πππ⎡⎤∈++∈⎢⎥⎣⎦Z ; (2)3572,22,2()4444x k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .【分析】(1)由题可得2sin 0x ,即3sin 2x,在单位圆中作出满足该不等式的角的集合,即可得答案;(2)由题可得1010x x ⎧->⎪⎨+⎪⎩即cos x <,在单位圆中作出满足该不等式的角的集合,即可得答案.【详解】(1)∵2sin 0x ≥,∴3sin 2x,在单位圆中作出满足该不等式的角的集合,如图①所示,可得22,2()33x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z .①(2)∵1010x x ⎧>⎪⎨+⎪⎩∴cos x <,在单位圆中作出满足该不等式的角的集合,如图②所示,可得3572,22,2()4444x k k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .② 【点睛】本题考查借助三角函数线解三角不等式问题,属于基础题.19.(1)5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z ;(2)2⎡⎤⎣⎦ 【分析】(1)易知2A =,由13ππ288T ⎛⎫=-- ⎪⎝⎭,及2πT ω=,可求出ω,进而将点π,28⎛⎫- ⎪⎝⎭代入()f x 中,可求出ϕ,即可得到函数()f x 的表达式,进而求出单调递增区间即可; (2)由x 的范围,可求出3π24x +的范围,再结合正弦函数的性质,可求出()f x 的值域. 【详解】(1)由题意可知2A =,因为13πππ2882T ⎛⎫=--= ⎪⎝⎭,所以πT =, 所以2π2Tω==,此时()()2sin 2f x x ϕ=+, 把点π,28⎛⎫- ⎪⎝⎭代入()f x 表达式,得πsin 14ϕ⎛⎫-+= ⎪⎝⎭,则ππ2π42k ϕ-+=+,即3π2π4k ϕ=+,又πϕ<,故3π4ϕ=,故()3π2sin 24f x x ⎛⎫=+ ⎪⎝⎭,令π3ππ2π22π242k x k -+≤+≤+()k ∈Z , 解得5ππππ88k x k -+≤≤-+()k ∈Z , ∴函数()f x 的单调增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z .(2)∵3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,∴3π5π20,44x ⎡⎤+∈⎢⎥⎣⎦,当3π5π244x +=即π4x =时,()f x 取得最小值,()min 5π2sin 4f x == 当3ππ242x +=即π8x =-时,()f x 取得最大值,()max π2sin 22f x ==.∴函数()f x 的值域为2⎡⎤⎣⎦. 【点睛】本题考查了利用三角函数的图象求函数的解析式,考查求三角函数的值域,考查学生的计算求解能力,属于基础题. 20.(]1,0- 【分析】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,结合图象交点的个数即可得到结果.【详解】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,如图所示.由图象,可知当11122a -≤<,即10a -<≤时, cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦的图象与12a y -=的图象有两个交点,即方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根, 故实数a 的取值范围为(]1,0-. 【点睛】本题主要考查了余弦函数在给定区间内的图象,将题意转化为两图象交点的个数是解题的关键,属于中档题.21.(1)()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z ,()122k x k ππ=-+∈Z ;(2)()max 2f x =,()min f x =【分析】(1)利用函数的最小正周期求出()f x ,利用余弦函数的单调增区间和对称轴求出答案;(2)利用,63x ππ⎡⎤∈-⎢⎥⎣⎦,求出52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,可得()f x 的最大值和最小值.【详解】(1)由题意知2T ππω==,解得2ω=,所以()2cos 26f x x π⎛⎫=+ ⎪⎝⎭,令()2226k x k k ππππ-+≤+≤∈Z ,解得()71212k x k k ππππ-+≤≤-+∈Z , 故函数的单调递增区间为()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z .令()26x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,所以()f x 的对称轴为()122k x k ππ=-+∈Z .(2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦,则52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,∴当206x π+=时,()max 2f x =.当5266x ππ+=时,()min f x =所以,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()max 2f x =,()min f x =【点睛】本题考查三角函数的性质,考查余弦函数的单调性和最值,考查对称中心的求法,属于中档题.22.(1)514⎡⎤-⎢⎥⎣⎦,(2)3【分析】(1)1a =时,可得到2()sin sin 1f x x x =-++,可令t =sin x ,并得到二次函数y =﹣t 2+t +1,配方即可求出该函数的最大、最小值,即得出f (x )的值域;(2)化简f (x )并配方得到22()sin 124a a f x x ⎛⎫=--++ ⎪⎝⎭,讨论:2a ≥,02a <<,分别求出对应的f (x )的最大值,根据f (x )的最大值为3,即可求出实数a 的值. 【详解】解:(1)当1a =时,2()sin sin 1f x x x =-++, 令t =sin x , 1-≤t ≤1;则2215124y t t t ⎛⎫=-++=--+ ⎪⎝⎭,当12t =时,函数()f x 的最大值是54, 当1t =-时,函数()f x 的最小值是1-, ∴函数()f x 的值域514⎡⎤-⎢⎥⎣⎦,,(2)当0a >时,222()sin sin 1sin 124a a f x x a x x ⎛⎫=-++=--++ ⎪⎝⎭当1,22aa ≥≥时,当且仅当sin 1x = 时,max ()f x a =,又函数()f x 的最大值是3,∴3a =;当当01,022a a <<<<时,当且仅当sin 2a x = 时,2max ()14a f x =+,又函数()f x 的最大值是3,∴2134a+=,∴a =02a <<,不适合题意; 综上:实数a 的值为3 【点睛】本题考查正弦型二次函数的最值与值域,考查换元法与分类讨论思想,属于中档题.。
最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析:∵∁U B={x|x≤1},借助数轴可以求出∁U B与A的交集为图中阴影部分,即{x|0<x≤1}.答案:{x|0<x≤1}14.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.解析:(1)若A中有且只有1个奇数,则A={2,3}或{2,7}或{3}或{7};(2)若A中没有奇数,则A={2}或∅.答案:6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x+1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2}, A ∩(∁U B )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析: 当x =0时y =0,当x =1时y =-1, 当x =2时y =0,当x =3时y =3,值域为{-1,0,3}. 答案: A2.幂函数y =xm 2-2m -3(m ∈Z )的图像如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析: 从图像上看,由于图像不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图像看,函数是偶函数,故m 2-2m -3为负偶数, 将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.答案: C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解析: 汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t 的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s 随时间t 的变化越来越快,在减速行驶直至停车的过程中行驶路程s 随时间t 的变化越来越慢,排除B.答案: A4.函数y =f (x )的图像与直线x =a (a ∈R )的交点有( ) A .至多有一个 B .至少有一个 C .有且仅有一个D .有一个或两个以上解析: 由函数的定义对于定义域内的任意一个x 值,都有唯一一个y 值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x +1x解析: f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1,f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2,∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为 x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为( ) A .5 B .5 C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得lg 1 3lg 5·lg 6lg 3·lg xlg 6=2,∴-lg xlg 5=2.∴lg x=-2lg 5=lg 125.∴x=125.答案:D3.已知函数f(x)=4+a x+1的图像恒过定点P,则点P的坐标是()A.(-1,5) B.(-1,4)C.(0,4) D.(4,0)解析:∵y=a x恒过定点(0,1),∴y=4+a x+1恒过定点(-1,5).答案:A4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是()A.|a|>1 B.|a|>2C.a> 2 D.1<|a|<2解析:由0<a2-1<1得1<a2<2,∴1<|a|< 2.答案:D5.函数y=a x-1的定义域是(-∞,0],则a的取值范围是()A.a>0 B.a>1C.0<a<1 D.a≠1解析:由a x-1≥0得a x≥1,又知此函数的定义域为(-∞,0],即当x≤0时,a x≥1恒成立,∴0<a<1.答案:C6.函数y=f(x)=a x-b的图像如图所示,其中a,b为常数,则下列结论正确的是() A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0解析:由图像得函数是减函数,∴0<a<1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1, 则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3;当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1. ∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0; (2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2=(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数.18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域; (2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x ) ∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1, 则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a.第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围. 解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5.∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆B B .A ⊇B C .A =BD .A ∩B =∅解析: A ={y |y >0},B ={y |y ≥0},∴A ⊆B . 答案: A3.设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >aD .c >a >b解析: 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图像,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 52. 答案: D4.函数y =ax 2+bx +3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A .b >0且a <0 B .b =2a <0 C .b =2a >0D .a ,b 的符号不定解析: 由题知a <0,-b2a =-1,∴b =2a <0.答案: B5.要得到y =3×⎝⎛⎭⎫13x的图像,只需将函数y =⎝⎛⎭⎫13x的图像( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度D .向右平移1个单位长度解析: 由y =3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13xx -1正确.答案: D6.在同一坐标系内,函数y =x a (a <0)和y =ax +1a的图像可能是如图中的( )解析: ∵a <0,∴y =ax +1a 的图像不过第一象限.还可知函数y =x a (a <0)和y =ax +1a 在各自定义域内均为减函数.答案: B7.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析: ∵0<log 53<log 54<1,log 45>1,∴b <a <c . 答案: D8.若函数f (x )=ax 2+2x +1至多有一个零点,则a 的取值范围是( ) A .1B .[1,+∞)C .(-∞,-1]D .以上都不对解析: 当f (x )有一个零点时,若a =0,符合题意, 若a ≠0,则Δ=4-4a =0得a =1, 当f (x )无零点时,Δ=4-4a <0,∴a >1. 综上所述,a ≥1或a =0. 答案: D9.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析: 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3).又函数为f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3).答案: B10.设f (x )是奇函数,且在(0,+∞)内是增加的,又f (-3)=0,则x ·f (x )<0的解集是( ) A .{x |x <-3,或0<x <3} B .{x |-3<x <0,或x >3} C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}解析: ∵f (x )是奇函数, ∴f (3)=-f (-3)=0. ∵f (x )在(0,+∞)是增加的, ∴f (x )在(-∞,0)上是增加的.结合函数图像x ·f (x )<0的解为0<x <3或-3<x <0. 答案: D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛g .解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12. 答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}. 因为B ={x |2<x <10},所以(∁R A )∩B ={x |2<x <3或7≤x <10}.(3)因为A ={x |3≤x <7},C ={x |x <a },A ⊆C , 所以a 需满足a ≥7.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图像; (2)写出f (x )的单调递增区间.解析: (1)函数f (x )的图像如下图所示:(2)函数f (x )的单调递增区间为[-1,0]和[2,5]. 19.(本小题满分12分)计算下列各式的值: (1)⎝⎛⎭⎫21412-(-9.6)0-⎝⎛⎭⎫82723+⎝⎛⎭⎫32-2. (2)log 34273+lg 25+lg 4+7log 72. 解析: (1)原式=⎝⎛⎭⎫9412-1-⎝⎛⎭⎫233×23+⎝⎛⎭⎫32-2 =⎝⎛⎭⎫322×12-1-⎝⎛⎭⎫232+⎝⎛⎭⎫232=32-1=12. (2)原式=log 33343+lg(25×4)+2=log 33-14+lg 102+2=-14+2+2=154.20.(本小题满分12分)若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解析: (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1, 又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1,b =-1. 因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).21.(本小题满分13分)定义在[-1,1]上的偶函数f (x ),已知当x ∈[0,1]时的解析式为f (x )=-22x +a 2x (a ∈R ).(1)求f (x )在[-1,0]上的解析式. (2)求f (x )在[0,1]上的最大值h (a ). 解析: (1)设x ∈[-1,0], 则-x ∈[0,1],f (-x )=-2-2x+a 2-x ,又∵函数f (x )为偶函数, ∴f (x )=f (-x ), ∴f (x )=-2-2x+a 2-x ,x ∈[-1,0].(2)∵f (x )=-22x +a 2x ,x ∈[0,1], 令t =2x ,t ∈[1,2]. ∴g (t )=at -t 2=-⎝⎛⎭⎫t -a 22+a 24. 当a2≤1,即a ≤2时,h (a )=g (1)=a -1; 当1<a2<2,即2<a <4时,h (a )=g ⎝⎛⎭⎫a 2=a24;当a2≥2,即a ≥4时,h (a )=g (2)=2a -4. 综上所述,h (a )=⎩⎪⎨⎪⎧a -1, a ≤2,a24, 2<a <4,2a -4, a ≥4.22.(本小题满分13分)通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力(f (x )的值越大,表示接受能力越强),x 表示提出和讲授概念的时间(单位:分),可以有以下公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43, (0<x ≤10)59, (10<x ≤16)-3x +107, (16<x ≤30)(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟? (2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?解析: (1)当0<x ≤10时, f (x )=-0.1x 2+2.6x +43 =-0.1(x -13)2+59.9,故f (x )在0<x ≤10时递增,最大值为f (10)=-0.1×(10-13)2+59.9=59. 当10<x ≤16时,f (x )=59.当x >16时,f (x )为减函数,且f (x )<59.因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间. (2)f (5)=-0.1×(5-13)2+59.9=53.5, f (20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些. (3)当0<x ≤10时,令f (x )=55, 解得x =6或x =20(舍), 当x >16时,令f (x )=55, 解得x =1713.因此学生达到(含超过)55的接受能力的时间为1713-6=1113<13,所以老师来不及在学生一直达到所需接受能力的状态下讲授完这个难题.。
最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析: ∵∁U B ={x |x ≤1},借助数轴可以求出∁U B 与A 的交集为图中阴影部分,即{x |0<x ≤1}.答案: {x |0<x ≤1} 14.已知集合A{2,3,7},且A 中至多有1个奇数, 则这样的集合共有________个.解析: (1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 答案: 6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x +1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2},A ∩(∁UB )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3} B.{0,1,2,3}C.{y|-1≤y≤3} D.{y|0≤y≤3}解析:当x=0时y=0,当x=1时y=-1,当x=2时y=0,当x=3时y=3,值域为{-1,0,3}.答案:A2.幂函数y=xm2-2m-3(m∈Z)的图像如图所示,则m的值为()A.-1<m<3B.0C.1D.2解析:从图像上看,由于图像不过原点,且在第一象限下降,故m2-2m-3<0,即-1<m<3;又从图像看,函数是偶函数,故m2-2m-3为负偶数,将m=0,1,2分别代入,可知当m=1时,m2-2m-3=-4,满足要求.答案:C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()解析:汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s随时间t的变化越来越快,在减速行驶直至停车的过程中行驶路程s随时间t的变化越来越慢,排除B.答案:A4.函数y=f(x)的图像与直线x=a(a∈R)的交点有()A.至多有一个B.至少有一个C.有且仅有一个D.有一个或两个以上解析:由函数的定义对于定义域内的任意一个x值,都有唯一一个y值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x +1x解析:f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1, f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2, ∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]上的最大值为f (5)=265, 最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为()A .5B .5C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得 lg13lg 5·lg 6lg 3·lg x lg 6=2,∴-lg x lg 5=2. ∴lg x =-2lg 5=lg 125.∴x =125. 答案: D3.已知函数f (x )=4+a x +1的图像恒过定点P ,则点P 的坐标是( )A .(-1,5)B .(-1,4)C .(0,4)D .(4,0)解析: ∵y =a x 恒过定点(0,1), ∴y =4+a x +1恒过定点(-1,5). 答案: A4.函数y =(a 2-1)x 在(-∞,+∞)上是减函数,则a 的取值范围是( ) A .|a |>1 B .|a |>2 C .a > 2D .1<|a |<2解析: 由0<a 2-1<1得1<a 2<2,∴1<|a |< 2. 答案: D5.函数y =a x -1的定义域是(-∞,0],则a 的取值范围是( ) A .a >0 B .a >1 C .0<a <1D .a ≠1解析: 由a x -1≥0得a x ≥1,又知此函数的定义域为(-∞,0],即当x ≤0时,a x ≥1恒成立,∴0<a <1.答案: C6.函数y =f (x )=a x -b的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解析: 由图像得函数是减函数, ∴0<a <1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1,则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3; 当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1.∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1.答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0;(2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2 =(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数. 18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域;(2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x )∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1,则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a .第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围.解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵|1.187 5-1.125|=0.062 5<0.1, ∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5. ∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆BB .A ⊇BC.A=B D.A∩B=∅解析:A={y|y>0},B={y|y≥0},∴A⊆B.答案:A3.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>aC.c>b>a D.c>a>b解析:易知log23>1,log32,log52∈(0,1).在同一平面直角坐标系中画出函数y=log3x 与y=log5x的图像,观察可知log32>log52.所以c>a>b.比较a,b的其他解法:log32>log33=1 2,log52<log55=12,得a>b;0<log23<log25,所以1log23>1log25,结合换底公式即得log32>log52.答案:D4.函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则() A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不定解析:由题知a<0,-b2a=-1,∴b=2a<0.答案:B5.要得到y=3×⎝⎛⎭⎫13x的图像,只需将函数y=⎝⎛⎭⎫13x的图像()A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度解析:由y=3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13x=⎝⎛⎭⎫13x-1知,D正确.答案:D6.在同一坐标系内,函数y=x a(a<0)和y=ax+1a的图像可能是如图中的()解析:∵a<0,∴y=ax+1a的图像不过第一象限.还可知函数y=x a(a<0)和y=ax+1a在各自定义域内均为减函数.答案:B7.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<aC.a<b<c D.b<a<c解析:∵0<log53<log54<1,log45>1,∴b<a<c.答案:D8.若函数f(x)=ax2+2x+1至多有一个零点,则a的取值范围是()A.1 B.[1,+∞)C.(-∞,-1] D.以上都不对解析:当f(x)有一个零点时,若a=0,符合题意,若a≠0,则Δ=4-4a=0得a=1,当f(x)无零点时,Δ=4-4a<0,∴a>1.综上所述,a≥1或a=0.答案:D9.已知函数f(x)=log a|x|在(0,+∞)上单调递增,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)解析:因为f(x)=log a|x|在(0,+∞)上单调递增,所以a>1,f(1)<f(2)<f(3).又函数为f(x)=log a|x|为偶函数,所以f(2)=f(-2),所以f(1)<f(-2)<f(3).答案:B10.设f(x)是奇函数,且在(0,+∞)内是增加的,又f(-3)=0,则x·f(x)<0的解集是() A.{x|x<-3,或0<x<3}B.{x|-3<x<0,或x>3}C.{x|x<-3,或x>3}D.{x|-3<x<0,或0<x<3}解析:∵f(x)是奇函数,∴f(3)=-f(-3)=0.∵f(x)在(0,+∞)是增加的,∴f(x)在(-∞,0)上是增加的.结合函数图像x·f(x)<0的解为0<x<3或-3<x<0.答案:D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=________. 解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12.答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}.。
全书综合测评卷时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于向量a ,b ,下列命题中,正确的是( ) A .若|a |=|b |,则a =b B .若a =-b ,则a ∥bC .若a ∥b ,b ∥c ,则a ∥cD .若|a |>|b |,则a >b2.已知i 为虚数单位,复数z 1=1+2i ,z 2=2-i ,则( ) A .z 1的共轭复数为-1+2i B .z 1的虚部是2i C .z 1+z 2为实数 D .z 1z 2=4+3i3.三个数sin 1.5·sin 2·sin 3.1,cos 4.1·cos 5·cos 6,tan 7·tan 8·tan 9中,值为负数的个数有( )A .0个B .1个C .2个D .3个4.已知函数f (x )=cos (ωx +2π3 )(ω>0)的最小正周期为4π,则下面结论正确的是( )A .函数f (x )在区间(0,π)上单调递增B .函数f (x )在区间(0,π)上单调递减C .函数f (x )的图象关于直线x =2π3 对称D .函数f (x )的图象关于点(2π3 ,0)对称5.宜昌奥林匹克体育中心为了迎接湖北省第十六届运动会开幕式,将中心内一块平面四边形ABCD 区域设计灯带.已知灯带AB =CD =10米,BC =20米,AD =102 米,且∠A +∠C =3π4,则cos ∠BCD =( ) A .35 B .0 C .45 D .2106.已知△ABC 中,3AB → +AC → -6AD →=0,延长BD 交AC 于E ,则AE AC=( )A .23B .12C .13D .14 7.如图,已知三棱柱ABC A 1B 1C 1的各条棱长都相等,且CC 1⊥底面ABC ,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角为( )A .90° B.45° C .30° D.60°8.当函数y =sin ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x 取得最大值时,tan x 的值为( ) A .1 B .±1 C.3 D .-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.设z 1,z 2为复数,则下列命题中一定成立的是( ) A .如果z 1-z 2>0,那么z 1>z 2B .如果|z 1|=|z 2|,那么z 1z - 1=z 2z -2 C .如果⎪⎪⎪⎪⎪⎪z 1z 2 >1,那么|z 1|>|z 2|D .如果z 21 +z 22 =0,那么z 1=z 2=010.已知函数f (x )=cos (sin x ),g (x )=sin (cos x ),则下列说法不正确的是( ) A .f (x )与g (x )的定义域都是[-1,1] B .f (x )为奇函数,g (x )为偶函数C .f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1]D .f (x )与g (x )都不是周期函数11.已知f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝⎛⎭⎪⎫x -π4 +3.给出下列结论,其中不正确的是( )A .最小正周期为πB .对称轴为直线x =k π(k ∈Z )C .对称中心为⎝ ⎛⎭⎪⎫k2π+π4,0D .最大值为312.如图,已知四棱台ABCD A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22 ,A 1B 1=2 ,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A.该四棱台的高为3 B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,则m =________.14.已知tan α,tan β是方程2x 2+3x -5=0的两个实数根,则tan (α+β)=________.15.已知函数f (x )=2sin (ωx +φ)(ω>0)满足f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,且f (x )在区间⎝⎛⎭⎪⎫π4,π3 上单调,则ω的最大值为________.16.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a -3 c )sin A =b sin B -c sin C ,若△ABC 外接圆面积为π,则△ABC 面积的最大值为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)已知复数z =m 2-5m +6+(2m 2-3m -2)i ,m ∈R .若z 为纯虚数,求m 的值;(2)已知复数z =a +b i(a ,b ∈R ),若z 满足z ·z -+i z =15+3i ,求a ,b 的值. 18.(本小题满分12分)函数f (x )=A cos (ωx +φ)(A >0,ω>0,|φ|<π2 )的部分图象如图所示.(1)求函数f (x )的解析式;(2)若函数f (x )在区间[0,m ]有5个零点,求m 的取值范围.19.(本小题满分12分)如图,在长方体ABCD A1B1C1D1中,AD=AA1=1,AB=2,点E 是AB的中点.(1)证明:D1E⊥A1D;(2)在棱DD1上是否存在一点P,使得AP∥平面D1EC,若存在,求DPDD1,若不存在,说明理由;(3)求D到平面D1EC的距离.20.(本小题满分12分)在①2cos2B+cos2B=0,②b cos A+a cos B=3+1这两个条件中任选一个,补充在下面问题的横线中,并解决相应问题.已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若4S=b2+c2-a2,b=6,________,求△ABC的面积S的大小.注:如果选择多个条件分别解答,按第一个解答计分.21.(本小题满分12分)矩形ABCD 中,AB =2AD =2,P 为线段DC 的中点,将△ADP 沿AP 折起,使得平面ADP ⊥平面ABCP .(1)在DC 上是否存在点E 使得AD ∥平面PBE ?若存在,求出点E 的位置;若不存在,请说明理由;(2)求二面角P AD B 的余弦值. 22.(本小题满分12分)已知向量m =(1,cos ωx ),n =(sin ωx ,3 )(ω>0),函数f (x )=m ·n ,且f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝⎛⎭⎪⎫7π12,-2 .(1)求函数f (x )的解析式;(2)设a 为常数,判断方程f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上的解的个数;(3)在锐角△ABC 中,若cos ⎝ ⎛⎭⎪⎫π3-B =1,求f (A )的取值范围.全书综合测评卷1.答案:B解析:向量是既有大小又有方向的量,大小相等,但方向不一定相同,故A 错误;若a =-b ,得a ,b 方向相反,则a ∥b ,故B 正确;当b =0,a 与c 不一定平行,故C 错误;尽管两个向量的模有大小之分,但两个向量是不能比较大小的,故D 错误.故选B.2.答案:D解析:z 1=1+2i ,z -1=1-2i ,故A 错误;z 1的虚部是2,故B 错误;z 1+z 2=3+i为虚数,故C 错误;z 1·z 2=(1+2i)(2-i)=2-i +4i -2i 2=4+3i ,故D 正确.故选D.3.答案:B解析:0<1.5<π,0<2<π,0<3.1<π,∴sin 1.5·sin 2·sin 3.1>0;π<4.1<3π2,cos 4.1<0,3π2 <5<2π,3π2 <6<2π,cos 5>0,cos 6>0,∴cos 4.1·cos 5·cos 6<0;2π<7<5π2 ,5π2 <8<3π,5π2<9<3π,∴tan 7>0,tan 8<0,tan 9<0,tan 7·tan 8·tan9>0;只有一个负数.故选B.4.答案:C解析:由题意知:2πω =4π⇒ω=12 ,∴f (x )=cos (12 x +2π3)A ,B 选项,当x ∈(0,π)时,12 x +2π3 ∈(2π3 ,7π6 ),当12 x +2π3 ∈(2π3,π)时,f (x )单调递减,12 x +2π3 ∈(π,7π6 )时,f (x )单调递增.因此,A 和B 都错误;C 选项,x =2π3 时,12 x +2π3 =π;x =π是cos x 的对称轴,则x =2π3是f (x )的对称轴.因此,C 正确;D 选项,由C 可知,x =2π3是对称轴的位置,则必不是对称中心,D 错误.故选C.5.答案:A 解析:如图,连接BD .在△ABD 中,由余弦定理有:BD 2=BA 2+AD 2-2BA ×AD ×cos A =300-2002 cos A ①, 在△CBD 中,由余弦定理有:BD 2=BC 2+CD 2-2BC ×CD ×cos C =500-400cos C ②, 由①②得:-2 cos A =1-2cos C ,又∠A +∠C =3π4 ,∴-2 cos (3π4-C )=1-2cos C ,∴-sin C =1-3cos C ,又∵sin 2C +cos 2C =1.∴(3cos C -1)2+cos 2C =1,∴cos C =0或cos C =35,∵C ∈(0,3π4),∴sin C >0,若cos C =0,则sin C =-1(舍),∴cos C =35.故选A.6.答案:C解析:依题意,设AE → =λAC → ,BE → =μBD → ,则AE → =λAC → =λ(-3AB → +6AD →)=-3λAB → +6λAD → .又AE → =AB → +BE → =AB → +μBD → =AB → +μ·(AD → -AB → )=(1-μ)AB → +μAD → ,所以⎩⎪⎨⎪⎧-3λ=1-μ,6λ=μ, 两式相加得λ=13 ,即AE →=13 AC → ,所以AE AC =|AE →||AC →|=13 .故选C.7.答案:A 解析:设棱长为a ,将三棱柱ABC A 1B 1C 1补成正三棱柱A 1B 1C 1 A 2B 2C 2(如图),使AA 1=AA 2.平移AB 1至A 2B ,连接A 2M ,∠MBA 2(或其补角)即为AB 1与BM 所成的角,在△A 2BM 中,A 2B =2a ,BM =a 2+⎝ ⎛⎭⎪⎫a 22 =52 a ,A 2M =a 2+⎝ ⎛⎭⎪⎫3a 22 =132 a ,∴A 2B 2+BM 2=A 2M 2,∴∠MBA 2=90°.故选A.8.答案:A解析:y =⎝ ⎛⎭⎪⎫32cos x +12sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x =34 (sin 2x +cos 2x )+14 sin x cosx +34sin x cos x =34 +12 sin 2x .当sin 2x =1时,y max =3+24 ,此时2x =2k π+π2 (k ∈Z ),即x =k π+π4(k ∈Z ),∴tan x =1.故选A.9.答案:BC解析:取z 1=3+i ,z 2=1+i 时,z 1-z 2=2>0,但虚数不能比较大小,故A 项错误;由|z 1|=|z 2|,得|z 1|2=|z 2|2.又z 1z - 1=|z 1|2,z 2z - 2=|z 2|2,所以z 1z - 1=z 2z - 2,故B 项正确;因为⎪⎪⎪⎪⎪⎪z 1z 2 =|z 1||z 2|>1,所以|z 1|>|z 2|,故C 项正确;取z 1=1,z 2=i ,满足z 21 +z 22=0,但是z 1≠z 2≠0,故D 项错误.故选BC.10.答案:ABD解析:f (x )与g (x )的定义域是R ,故A 错误;f (-x )=cos (sin (-x ))=cos (sin x )=f (x ),则f (x )是偶函数,故B 错误;∵-1≤sin x ≤1,-1≤cos x ≤1,∴f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1],故C 正确;f (x +2π)=cos (sin (x +2π))=cos (sin x )=f (x ),则f (x )是周期函数,故D 错误.故选ABD.11.答案:BCD解析:因为f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝ ⎛⎭⎪⎫x -π4 +3=12 sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4 +3=12 sin⎝⎛⎭⎪⎫2x -π2 +3=-12 cos2x +3,所以f (x )的最小正周期T =π,图象的对称轴为直线x =k 2 π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π4+k 2π,3 ,k ∈Z ,最大值为3+12 =72 ,故只有A 正确.故选BCD.12.答案:AD 解析:给四棱台ABCD A 1B 1C 1D 1补上一个小四棱锥S A 1B 1C 1D 1即可得到四棱锥S ABCD ,如图.连接A 1C 1,B 1D 1交于点O 1,连接AC ,BD 交于点O ,连接SO .由AB =22 ,A 1B 1=2 ,可知△SA 1B 1与△SAB 的相似比为1∶2,则SA =2AA 1=4.由题意可得AO =2,则SO =23 ,则OO 1=3 ,故该四棱台的高为3 ,A 正确;因为SA =SC =AC =4,所以AA 1与CC 1的夹角为60°,B 错误;由题意可得该四棱台侧面的高为22-⎝ ⎛⎭⎪⎫22-222=142 ,则四棱台的表面积S =S上底+S下底+S 侧=2+8+4×2+222 ×142=10+67 ,C 错误;因为四棱台ABCD A 1B 1C 1D 1的上、下底面都是正方形,所以其外接球的球心在OO 1上.连接OB 1,在平面B 1BOO 1中,由OO 1=3 ,B 1O 1=1,得OB 1=2=OB ,即点O 到点B 与到点B 1的距离相等,则外接球半径r =OB =2,所以该四棱台外接球的表面积为4πr 2=16π,D 正确.故选AD.13.答案:-1解析:因为复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,所以⎩⎪⎨⎪⎧m 2+4m +3=0,m +3≠0, 所以m =-1.14.答案:-37解析:∵tan α,tan β是方程2x 2+3x -5=0的两个实数根,∴tan α+tan β=-32 ,tan αtan β=-52 ,由tan (α+β)=tan α+tan β1-tan αtan β =-321-⎝ ⎛⎭⎪⎫-52 =-37 . 15.答案:343解析:因为f (x )在区间⎝ ⎛⎭⎪⎫π4,π3 上单调,所以T 2 ≥π3 -π4 =π12 ,解得T ≥π6 ,所以2πω ≥π6 ,解得0<ω≤12.因为f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,所以2k +14 T =π-π4 =3π4 ,k ∈N *,所以T =3π2k +1 ,所以2πω =3π2k +1 ,所以ω=4k +23 ,k ∈N *,当ω=4k +23 ≤12时,解得k ≤172 ,k ∈N ,所以ωmax =4×8+23 =343.16.答案:2+34解析:由已知及正弦定理得a 2-3 ac =b 2-c 2,所以a 2+c 2-b 2=3 ac ,所以cos B =a 2+c 2-b 22ac =32 ,又B ∈(0,π),所以B =π6.由△ABC 的外接圆面积为π,得外接圆的半径R =1. 由正弦定理得b =2R sin B =1,所以a 2+c 2-1=3 ac ,所以a 2+c 2=3 ac +1≥2ac ,解得ac ≤2+3 ,所以△ABC 的面积S =12 ac sin B =14 ac ≤2+34,当且仅当a =c 时等号成立.17.解析:(1)因为z 是纯虚数,所以⎩⎪⎨⎪⎧m 2-5m +6=0,2m 2-3m -2≠0, 解得m =3.(2)设z =a +b i ,所以z -=a -b i , z ·z -+i z =(a +b i)(a -b i)+i(a +b i)=a 2+b 2-b +a i =15+3i.所以⎩⎪⎨⎪⎧a =3,a 2+b 2-b =15, 解得⎩⎪⎨⎪⎧a =3b =3 或⎩⎪⎨⎪⎧a =3,b =-2. 18.解析:(1)因为A >0,由图象可知A =2,且有T 2 =πω =2π3 -π6 =π2,所以ω=2,因为图象过点(π6 ,2),所以2cos (2·π6+φ)=2,即φ+π3 =2k π,解得φ=2k π-π3 ,k ∈Z ,因为|φ|<π2 ,所以φ=-π3 ,故f (x )=2cos (2x -π3).(2)由(1)知f (x )=2cos (2x -π3 ),因为x ∈[0,m ],所以2x -π3 ∈[-π3 ,2m -π3],由函数f (x )在区间[0,m ]上有5个零点,令2x -π3=t ,即y =2cos t 在区间[-π3 ,2m -π3]有5个零点,由y =cos t 的图象知,只需9π2 ≤2m -π3 <11π2即可,解得29π12 ≤m <35π12 ,故m ∈[29π12 ,35π12).19.解析:(1)如图所示,连接AD 1交A 1D 于点O ,则O 为AD 1的中点,由题意可知,四边形ADD 1A 1是正方形,∴A 1D ⊥AD 1. ∵AB ⊥平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴AB ⊥AD 1. 又∵AB ⊂平面AD 1E ,AD 1⊂平面AD 1E ,AB ∩AD 1=A , ∴A 1D ⊥平面AD 1E ,又D 1E ⊂平面AD 1E ,∴A 1D ⊥D 1E ,即D 1E ⊥A 1D .(2)存在一点P 满足DP DD 1 =12时,使得AP ∥平面ED 1C ,当点P 满足DP DD 1 =12,即P 为DD 1的中点,取CD 1的中点Q ,连接PQ ,EQ , 在△DD 1C 中,P ,Q 为中点,∴PQ ∥DC ,PQ =12DC ,∵在长方体AC 1中,E 是AB 的中点,∴AE ∥DC 且AE =12DC ,∴AE ∥PQ 且AE =PQ ,∴四边形AEQP 为▱AEQP ,∴AP ∥EQ , 又EQ ⊂平面D 1EC ,AP ⊄平面D 1EC ,∴AP ∥平面D 1EC . (3)连接DE ,设D 到平面D 1EC 的距离为h , ∵在长方体AC 1中,DD 1⊥平面ABCD , ∵矩形ABCD ,点E 是AB 的中点,∴S △DCE =12 S 矩形ABCD =12×1×2=1,∴VD 1-DCE =13 S △DCE ·DD 1=13 ×1×1=13,在Rt△D 1DC 中,D 1C =DD 21+DC 2=5 , 在Rt△ADE 中,DE =AD 2+AE 2=2 ,∵DD 1⊥平面ABCD ,DE ⊂平面ABCD ,∴DD 1⊥DE , 在Rt△D 1DE 中,D 1E =DD 21 +DE 2=3 , 在Rt△BCE 中,EC =BC 2+BE 2=2 ,∴D 1E 2+EC 2=CD 21 ,∴ED 1⊥CE ,∴S △D 1CE =12 D 1E ×EC =12 ×3 ×2 =62 ,又VD D 1CE =VD 1DCE ,∴13 S △D 1EC ×h =13 ,h =63 ,∴D 到平面D 1EC 的距离为63. 20.解析:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc,S =12bc sin A ,所以2bc sin A =2bc cos A , 显然cos A ≠0,所以tan A =1,又A ∈⎝⎛⎭⎪⎫0,π2 ,所以A =π4 . 若选择①,由2cos 2B +cos2B =0得, cos 2B =14. 又B ∈⎝⎛⎭⎪⎫0,π2 ,∴B =π3 , 由a sin A =b sin B 得,a =b sin A sin B =6×2232=2. 又sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =22 ×12 +22 ×32 =6+24 , 所以S =12 ab sin C =3+32. 若选择②,b cos A +a cos B =3 +1,则b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =b 2+c 2-a 22c +a 2+c 2-b 22c =c =3 +1,所以S =12 bc sin A =12 ×6 ×(3 +1)×22 =3+32. 21.解析:(1)存在.如图所示:连接AC ,BP ,设AC 交BP 于点F ,∵CP ∥AB ,且CP =12AB , ∴CF CA =PF PB =13. 取DC 的三等分点E ,使CE CD =13,连接EF ,PE ,BE ,则EF ∥AD , 又EF ⊂平面PBE ,AD ⊄平面PBE ,∴AD ∥平面PBE .故存在满足条件的点E ,且E 是线段CD 上靠近点C 的三等分点.(2)在矩形ABCD 中,AP =BP =2 ,AB =2,∴AP 2+BP 2=AB 2,∴AP ⊥BP ,又平面ADP ⊥平面ABCP ,BP ⊂平面ABCP ,平面ADP ∩平面ABCP =AP ,∴BP ⊥平面ADP ,∴BP ⊥DP ,∴BD 2=DP 2+BP 2=1+2=3.在△ADB 中,AB 2=AD 2+BD 2,∴AD ⊥DB ,又PD ⊥AD ,PD ⊂平面ADP ,BD ⊂平面ADB ,平面ADP ∩平面ADB =AD ,∴∠PDB 为二面角P AD B 的平面角,在Rt△PDB 中,cos ∠PDB =DP BD =13=33 ,∴二面角P AD B 的余弦值为33. 22.解析:(1)f (x )=m ·n =sin ωx +3 cos ωx =2(12 sin ωx +32cos ωx )=2sin ⎝⎛⎭⎪⎫ωx +π3 . ∵f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝ ⎛⎭⎪⎫7π12,-2 , ∴T 2 =7π12 -π12 =π2,∴T =π, 又ω>0,∴ω=2πT=2. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 . (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2 时,π3 ≤2x +π3 ≤4π3 , 由f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 的图象(图略)可知, 当a ∈[3 ,2)时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有两解; 当a ∈[-3 ,3 )或a =2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有一解; 当a <-3 或a >2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上无解. (3)在锐角△ABC 中,0<B <π2 ,-π6 <π3 -B <π3, 又cos ⎝ ⎛⎭⎪⎫π3-B =1,∴π3 -B =0,∴B =π3 . 在锐角△ABC 中,0<A <π2 ,A +B >π2, ∴π6 <A <π2 ,∴2π3 <2A +π3 <4π3, ∴sin ⎝ ⎛⎭⎪⎫2A +π3 ∈⎝ ⎛⎭⎪⎫-32,32 , ∴f (A )=2sin ⎝ ⎛⎭⎪⎫2A +π3 ∈(-3 ,3 ). ∴f (A )的取值范围是(-3 ,3 ).GS -2。
第二章综合测试一、单选题(每小题5分,共40分),1.函数()f x = )A .[]12-,B .(]12-,C .[)2+¥,D .[)1+¥,2.设函数()221121x x f x x x x ì-ï=í+-ïî,≤,,>,则()12f f öæ÷çç÷èø的值为( )A .1-B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +-=( )A .0B .1-C .1D .24.幂函数223a a y x --=是偶函数,且在()0+¥,上单调递减,则整数a 的值是( )A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f -等于( )A .10-B .2-C .6-D .146.已知函数22113f x x x x öæ+=++ç÷èø,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=-,那么( )A .()()()214f f f <<B .()()()124f f f <<C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x Î+¥¹,,,有()()21210f x f x x x --,且()20f =,则不等式()0xf x <的解集是( )A .()22-,B .()()202-+¥U ,,C .()()8202--U ,,D .()()22-¥-+¥U ,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ìï=íïî≥□<,设函数()12x f x -=□,则下列命题正确的有( )A .()f x 的值域为[)1+¥,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0-¥,D .不等式()()12f x f x +<成立的范围是()0+¥,10.关于函数()f x =的结论正确的是( )A .定义域、值域分别是[]13-,,[)0+¥,B .单调增区间是(]1-¥,C .定义域、值域分别是[]13-,,[]02,D .单调增区间是[]11-,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( )A .()00f =B .若()f x 在[)0+¥,上有最小值1-,则()f x 在(]0-¥,上有最大值1C .若()f x 在[)1+¥,上为增函数,则()f x 在(]1-¥-,上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--12.关于函数()f x )A .函数是偶函数B .函数在()1-¥-,)上递减C .函数在()01,上递增D .函数在()33-,上的最大值为1三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.x 123()f x 131()g x 32114.已知()f x 为R 上的减函数,则满足()11f f x öæç÷èø>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x Î-¥,时,()2f x x mx =+,若()23f =-,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=-=-,,定义函数:()[]f x x x =-,则下列说法正确的是________.①()0.80.2f -=;②当12x ≤<时,()1f x x -;③函数()f x 的定义域为R ,值域为[)01,;④函数()f x 是增函数,奇函数.四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+.(1)求()f x 的解析式.(2)若()g x 在()1+¥,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +-ìï=+íï-î,<<,,≤<,,≥(1)若()4f a =,且0a >,求实数a 的值.(2)求32f öæ-ç÷èø的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,.(1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102æùçúèû,上的单调性,并用函数单调性的定义进行证明.(3)当102x æùÎçúèû,时,()2f x m -≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55-℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11-,上的奇函数,且()11f =,对任意[]110a b a b Î-+¹,,,时有()()0f a f b a b++成立.(1)解不等式()1122f x f x öæ+-ç÷èø<.(2)若()221f x m am -+≤对任意[]11a Î-,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ì-Î-ï=í-Îïî,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =-有两个不同的零点,求实数a 的取值范围.第二章综合测试答案解析一、1.【答案】B【解析】选B .由10420x x +ìí-î>,≥,得12x -<≤.2.【答案】C【解析】选C .因为()222224f =+-=,所以()211115124416f f f öæööææ==-=÷çç÷ç÷ç÷èèøøèø.3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a -=-,所以()()0f a f a +-=.4.【答案】C【解析】选C .因为幂函数223aa y x --=是偶函数,且在()0+¥,上单调递减,所以2223023a a a z a a ì--ïÎíï--î<,,是偶数.解得1a =.5.【答案】B【解析】选B .因为()51255410f a b =++=,所以12556a b +=,所以()()51255412554642f a b a b -=--+=-++=-+=-.6.【答案】C【解析】选C .因为22211131f x x x x x x ööææ+=++=++ç÷ç÷èèøø,所以()21f x x =+(2x -≤或2x ≥),所以()233110f =+=.7.【答案】A【解析】选A .由()()22f t f t +=-,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B【解析】选B .因为()()21210f x f x x x --<对任意的[)()12120x x x x Î+¥¹,,恒成立,所以()f x 在[)0+¥,上单调递减,又()20f =,所以当2x >时,()0f x <;当02x ≤<时,()0f x >,又()f x 是偶函数,所以当2x -<时,()0f x <;当20x -<<时,()0f x >,所以()0xf x <的解集为()()202-+¥U ,,.二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ìöæïç÷=íèøïî,≤,,>,()f x 的图象为所以()f x 的值域为[)1+¥,,A 对;因为()()12f x f x +<,所以1210x x x +ìí+î>≤,或2010x x ìí+î<>,所以11x x ìí-î<≤,或01x x ìí-î<>,所以1x -≤或10x -<<,所以0x <,C 对.10.【答案】CD【解析】选CD .由2230x x -++≥可得,2230x x --≤,解可得,13x -≤≤,即函数的定义域为[]13-,,由二次函数的性质可知,()[]22231404y x x x =-++=--+Î,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11-,上单调递增,在[]13,上单调递减.11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x --=---=+>,,又()()f x f x -=-,所以()22f x x x =--,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x -=,是偶函数;作出函数图象,可知在()1-¥-,,()01,上递减,()10-,,()1+¥,上递增,当()33x Î-,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,,故()()21g f =.14.【答案】()()01-¥+¥U ,,【解析】因为()f x 在R 上是减函数,所以11x,解得1x >或0x <.15.【答案】12【解析】因为()f x 是奇函数,所以()()223f f -=-=,所以()2223m --=,解得12m =.16.【答案】①②③【解析】()[]f x x x =-,则()()0.80.810.2f -=---=,①正确,当12x ≤<时,()[]1f x x x x =-=-,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确,当01x ≤<时,()[]f x x x x =-=;当12x ≤<时,()1f x x =-,当0.5x =时,()0.50.5f =;当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f -==,,可得()()1.5 1.5f f -=,即有()f x 不为奇函数,④错误.四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ì=í+=î,,解得41a b =ìí=î,或453a b =-ìïí=-ïî,(不合题意,舍去).所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=-.若()g x 在()1+¥,上单调递增,则4118m +-≤,解得94m -≥,所以实数m 的取值范围为94öé-+¥÷êëø.18.【答案】(1)若02a <<,则()214f a a =+=,解得32a =,满足02a <<;若2a ≥,则()214f a a =-=,解得a =或a =,所以32a =或a =.(2)由题意,3311222f f f öööæææ-=-+=-ç÷ç÷ç÷èèèøøø1111212222f f ööææ=-+==´+=ç÷ç÷èèøø.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x -=-,所以0r =.又()()5121724f f ì=ïïíï=ïî,即52172.24p q q p ì+=ïïíï+=ïî解得212p q =ìïí=ïî,,所以()122f x x x =+.(2)()122f x x x =+在区间102æùçúèû,上单调递减.证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x -=-+-()()()()21211212121214222x x x x x x x x x x x x ---=-+=.因为12102x x <<≤,所以2112121001404x x x x x x -->,<<,>,所以()()120f x f x ->,所以()122f x x x =+在区间102æùçúèû,上单调递减.(3)由(2)知()122f x x x =+在区间102æùçúèû,上的最小值是122f öæ=ç÷èø.要使当102x æùÎçúèû,时,()2f x m -≥恒成立,只需当102x æùÎçúèû,时,()min 2f x m -≥,即22m -≥,解得0m ≥即实数m 的取值范围为[)0+¥,.20.【答案】(1)由题意知,可设()0120y a kx x k -=≤≤,<,即y a kx =+.依题意,当12x =时,55y =-,所以5512a k -=+,解得5512a k +=-.所以当012x ≤≤时,()()5501212x y a a x =-+≤≤.又当12x >时,55y =-.所以所求的函数关系式为()55012125512.x a a x y x ì-+ï=íï-î,≤≤,,>(2)当293a x ==,时,()3295529812y =-+=,即3km 上空的温度为8℃.21.【答案】(1)任取[]121211x x x x Î-,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-g 由已知得()()()12120f x f x x x +-+->,所以()()120f x f x -<,所以()f x 在[]11-,上单调递增,原不等式等价于112211121121x x x x ì+-ïïï-+íï--ïïî<,≤≤≤,所以106x ≤<,原不等式的解集为106öé÷êëø,.(2)由(1)知()()11f x f =≤,即2211m am -+≥,即220m am -≥,对[]11a Î-,恒成立.设()22g a ma m =-+,若0m =,显然成立;若0m ¹,则()()1010g g -ìïíïî≥≥,即2m -≤或2m ≥,故2m -≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10-,,[]02,,[]24,,()f x 在[]10-,,[]24,上递增,在[]02,上递减.(3)函数()y a f x =-有两个不同的零点,即为()f x a =有两个实根,由图象可得,当11a -<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123-U ,,.。
5.2 向量数量积的坐标表示必备知识基础练知识点一 数量积的坐标运算1.若a =(1,2),b =(x ,3)且a ·b =4,则x =( )A .-2B .-12C .12D .102.如图所示,在矩形ABCD 中,AB =2 ,BC =2,点E 在边CD 上,且DE → =2EC → ,则AE → ·BE →=________.3.已知向量a =(1,3),b =(2,5),c =(2,1). 求:(1)2a ·(b -a );(2)(a +2b )·c .知识点二 向量的模与夹角4.设x ∈R ,向量a =(x ,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A .5 B .10 C .25 D .105.已知向量a =(1,1),2a +b =(4,2),则向量a ,b 的夹角为( ) A .π6 B .π4 C .π3 D .π26.平面直角坐标系xOy 中,A (1,0),B (0,1),C (2,5),D 是AC 上的动点,满足AD → =λAC →(λ∈R ).(1)求|2AB → +AC →|的值; (2)求cos ∠BAC ;(3)若BD → ⊥BA →,求实数λ的值.知识点三 求点到直线的距离7.已知点A (-1,2),向量m =(3 ,1),过点A 以向量m 为方向向量的直线为l ,求点P (3,-1)到直线l 的距离.关键能力综合练一、选择题1.已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( )A .-1B .-12C .12D .12.已知向量a =(1,-2),b =(-3,5),若(2a +b )⊥c ,则c 的坐标可以是( ) A .(-2,3) B .(-2,-3) C .(4,-4) D .(4,4)3.已知向量a =(1,3 ),b =(3,m ),若向量a ,b 的夹角为π6,则实数m =( )A .23B .3C .0D .-34.已知向量a =(1,2),b =(-2,-4),|c |=5 .若(a +b )·c =52,则a 与c 的夹角为( )A .30°B .60° C.120° D .150°5.(探究题)已知点A (4,3)和点B (1,2),O 为坐标原点,则|OA → +tOB →|(t ∈R )的最小值为( )A .52B .5C .3D .5 二、填空题6.若a =(2,3),b =(-4,7),则a 在b 方向上的投影为________.7.(易错题)已知向量a =(1,0),b =(0,1).若向量k a +b 与a +2b 的夹角为锐角,则实数k 的取值范围为________.8.在矩形ABCD 中,已知AB =2,BC =1,点P 是对角线AC 上一动点,则AP → ·BP →的最小值为________.三、解答题9.设平面向量a =(cos α,sin α)(0≤α<2π),b =(-12 ,32).(1)求证:向量a +b 与a -b 垂直;(2)若向量3 a +b 与a -3 b 的模相等,求角α.学科素养升级练1.(多选题)已知a =(1,3 ),b =(cos θ,sin θ),则下列命题正确的有( )A .若a ⊥b ,则θ=π3B .a ·b 的最大值为2C .存在θ,使|a +b |=|a |+|b |D .|a -b |的最大值为32.(学科素养——逻辑推理)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC → ,AD → ·AB →=-32.(1)求实数λ的值;(2)若M 是线段BC 上的动点,求DM → ·BC →的取值范围.5.2 向量数量积的坐标表示必备知识基础练1.答案:A解析:因为a =(1,2),b =(x ,3)且a ·b =4,所以a ·b =1×x +2×3=x +6=4,所以x =-2.故选A.2.答案:329解析:以A 为原点,AB ,AD 所在直线分别为x ,y 轴,建立平面直角坐标系,如图所示. 则A (0,0),B (2 ,0),C (2 ,2),D (0,2).由DE → =2EC →得,E ⎝ ⎛⎭⎪⎫223,2 .∴AE → =⎝ ⎛⎭⎪⎫223,2 ,BE → =⎝ ⎛⎭⎪⎫-23,2 .∴AE → ·BE →=223 ×⎝ ⎛⎭⎪⎫-23 +2×2=329 .3.解析:方法一 (1)∵2a =2(1,3)=(2,6), b -a =(2,5)-(1,3)=(1,2),∴2a ·(b -a )=(2,6)·(1,2)=2×1+6×2=14.(2)∵a +2b =(1,3)+2(2,5)=(1,3)+(4,10)=(5,13), ∴(a +2b )·c =(5,13)·(2,1)=5×2+13×1=23.方法二 (1)2a ·(b -a )=2a ·b -2a 2=2(1×2+3×5)-2(1+9)=14. (2)(a +2b )·c =a ·c +2b ·c=(1×2+3×1)+2(2×2+5×1)=23. 4.答案:B解析:由a ⊥b ,可得a ·b =0,即x -2=0,解得x =2,所以a +b =(3,-1),故|a+b |=32+(-1)2=10 .故选B.5.答案:B解析:由2a +b =(4,2),a =(1,1)得,b =2a +b -2a =(2,0), 故a ·b =2,|a |=2 ,|b |=2.设向量a ,b 的夹角为θ,则cos θ=a·b |a ||b | =22 .又因为θ∈[0,π],所以θ=π4.故选B.6.解析:(1)由题意得AB → =(-1,1),AC → =(1,5),所以2AB → +AC → =(-1,7),|2AB →+AC → |=(-1)2+72=52 .(2)因为cos ∠BAC =AB →·AC→|AB →||AC →|,所以cos ∠BAC =(-1)×1+1×5(-1)2+12×12+52=21313. (3)由题意得BD → =AD → -AB →=λ(1,5)-(-1,1)=(λ+1,5λ-1),因为BD → ⊥BA → ,所以BD → ·BA →=0,又BA →=(1,-1),所以(λ+1)×1+(5λ-1)×(-1)=0,解得λ=12.7.解析:设n ⊥l ,即n ⊥m .设n =(x ,y ), 由n ⊥m ,得n ·m =(x ,y )·(3 ,1)=0,即3 x +y =0,令x =1,得y =-3 ,n =(1,-3 ).由A (-1,2),P (3,-1),得AP →=(4,-3). ∴点P 到直线l 的距离d =⎪⎪⎪⎪⎪⎪AP →·n |n | =⎪⎪⎪⎪⎪⎪(4,-3)·(1,-3)12+(-3)2 =4+332 . 关键能力综合练1.答案:D解析:a·b =(1,-1)·(2,x )=2-x =1,解得x =1.故选D. 2.答案:D解析:因为2a +b =(-1,1),所以当c =(4,4)时,(2a +b )⊥c .故选D. 3.答案:B 解析:∵a ·b =|a ||b |cos θ,根据题意可得(1,3 )·(3,m )=1+3 ×9+m 2 ×cos π6 ,即3+3 m =1+3 ×9+m 2 ×32,两边平方化简得m =3 .故选B. 4.答案:C解析:依题意,得a +b =(-1,-2),|a |=5 .设c =(x ,y ),a 与c 的夹角为θ,∵(a +b )·c =52 ,∴x +2y =-52 .又∵a ·c =x +2y ,∴cos θ=a ·c |a ||c | =x +2y5×5 =-525=-12.∴a 与c 的夹角为120°.故选C.5.答案:D解析:由题意可得OA → =(4,3),OB → =(1,2),则|OA → +tOB →|=|(4,3)+t (1,2)|=|(4+t ,3+2t )|=(4+t )2+(3+2t )2 =5t 2+20t +25 =5(t +2)2+5 ,结合二次函数的性质可得,当t =-2时,|OA → +tOB →|min =5 .故选D.6.答案:655解析:设a 与b 的夹角为θ,由题意得a ·b =|a ||b |cos θ=13,∴|a |·cos θ=a ·b|b |=655. 7.答案:⎝ ⎛⎭⎪⎫-2,12 ∪⎝ ⎛⎭⎪⎫12,+∞ 解析:∵a =(1,0),b =(0,1),∴k a +b =(k ,1),a +2b =(1,2).∵向量k a +b 与a +2b 的夹角为锐角,∴(k a +b )·(a +2b )=(k ,1)·(1,2)=k +2>0,解得k >-2.又当k =12 时,两个向量方向相同,∴k ∈(-2,12 )∪⎝ ⎛⎭⎪⎫12,+∞ . 8.答案:-45解析:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,又因为AB =2,BC =1,所以A (0,0),B (2,0),C (2,1),D (0,1),则直线AC 的方程为y =12x ,所以设P (2m ,m ),且0≤m ≤1,而AP → =(2m ,m ),BP → =(2m -2,m ),所以AP → ·BP →=2m (2m -2)+m 2=5m 2-4m ,结合二次函数的性质可知,当m =25 时,AP → ·BP → 有最小值,且最小值为5×⎝ ⎛⎭⎪⎫25 2-4×25 =-45.9.解析:(1)由题意,知a +b =⎝ ⎛⎭⎪⎫cos α-12,sin α+32 ,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32 .∵(a +b )·(a -b )=cos 2α-14 +sin 2α-34=0,∴(a +b )⊥(a -b ).(2)易得|a |=1,|b |=1.由题意,知(3 a +b )2=(a -3 b )2,化简得a ·b =0,∴-12 cos α+32 sin α=0,∴tan α=33.又0≤α<2π,∴α=π6 或α=7π6.学科素养升级练1.答案:BCD解析:依题意,对于A :a ⊥b ⇒a ·b =0,即a ·b =(1,3 )·(cos θ,sin θ)=3sin θ+cos θ=2sin (θ+π6 )=0,所以θ+π6 =k π(k ∈Z )⇒θ=k π-π6(k ∈Z ),故A 错误;对于B :由A 知a ·b =2sin (θ+π6 ),所以当θ+π6 =π2+2k π(k ∈Z )⇒θ=2k π+π3(k ∈Z )时,有最大值2,故B 正确; 对于C :当θ=π3 时,a =(1,3 ),b =(12 ,32 ),a +b =(1,3 )+(12 ,32 )=(32 ,332),所以|a +b |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫3322=3,|a |=1+(3)2 =2,|b |= ⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1,所以|a +b |=|a |+|b |,故C 正确; 对于D :a -b =(1,3 )-(cos θ,sin θ)=(1-cos θ,3 -sin θ),所以|a-b |2=(1-cos θ)2+(3 -sin θ)2=5-(23 sin θ+2cos θ)=5-4sin (θ+π6),当sin (θ+π6 )=-1,即θ+π6 =-π2 +2k π(k ∈Z )⇒θ=-2π3+2k π(k ∈Z )时,|a -b |2取得最大值9,所以|a -b |的最大值为3,故D 正确.故选BCD.2.解析:(1)由于AD → =λBC →,所以AD ∥BC ,所以∠BAD =120°,AD → ·AB → =|AD → |·|AB → |·cos 120°=-32 |AD → |=-32,所以|AD →|=1,所以AD → =16 BC →,λ=16.(2)以B 为原点建立如图所示平面直角坐标系,A (32 ,332 ),D (52 ,332),C (6,0), 设M (t ,0),0≤t ≤6,DM → =(t -52 ,332 ),BC →=(6,0),DM →·BC →=(t -52 ,332 )·(6,0)=6(t -52)=6t -15,由于0≤t ≤6,0≤6t ≤36,-15≤6t -15≤21,所以DM → ·BC →的取值范围是[-15,21].。
第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。
§2 两角和与差的三角函数公式 2.1 两角和与差的余弦公式及其应用必备知识基础练知识点一 公式的正用和逆用 1.cos π12 =( )A .6+24 B .6-24 C .-6+24 D .-6-242.已知-sin 10°+m cos 10°=2cos 160°,则m =________.知识点二 给值求值3.已知π4 <α<3π4 ,sin (α-π4 )=45 ,cos α=( )A .210 B .-210C .7210D .-72104.已知sin α-sin β=1-32 ,cos α-cos β=12,则cos (α-β)=( ) A .-32 B .-12C .12D .325.已知α,β都是锐角,若cos β=45 ,cos (β+α)=1213 ,则cos α=( )A .865B .6365 C .3365 D .-3365 知识点三 给值求角 6.已知sin α=55 ,sin β=1010,α和β都是锐角,则α+β=( ) A .π4 B .π3C .π4 或3π4D .3π47.已知sin α=437 ,且cos (α-β)=1314 ,0<β<α<π2,求角β的值.关键能力综合练一、选择题1.化简cos 15°cos 45°+cos 75°sin 45°=( ) A .12 B .32 C .-12 D .-322.已知sin (π2 +α)=12 ,-π2 <α<0,则cos (α-π3 )=( )A .12B .23C .-12D .1 3.已知点A (cos 80°,sin 80°),B (cos 20°,sin 20°),则|AB →|=( ) A .12 B .22 C .32D .1 4.若12 sin x +32 cos x =cos (x +φ),则φ的一个可能值是( )A .-π6B .-π3C .π6D .π35.(探究题)设角A ,B ,C ∈⎝⎛⎭⎪⎫0,π2 ,且cos A +cos B =cos C ,sin A -sin B =sin C ,则C -A =( )A .-π6B .-π3C .π3D .π3 或-π3二、填空题6.已知sin α=53 ,α∈(π2 ,π),则cos (α-π6)=________. 7.如图,在平面直角坐标系xOy 中,以Ox 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点,已知点A ,B 的横坐标分别为210 ,255,则cos (α-β)=________.8.(易错题)已知α,β∈⎝ ⎛⎭⎪⎫3π4,π ,sin (α+β)=-35 ,sin ⎝ ⎛⎭⎪⎫β-π4 =2425,则cos ⎝⎛⎭⎪⎫α+π4 =________. 三、解答题9.已知A (cos α,sin α),B (cos β,sin β),其中α,β为锐角,且|AB →|=105 .(1)求cos (α-β)的值;(2)若cos α=35 ,求cos β的值.学科素养升级练1.(多选题)下列说法中,正确的是( )A .存在α,β的值,使cos (α+β)=cos αcos β+sin αsin βB .不存在无穷多个α,β的值,使cos (α+β)=cos αcos β+sin αsin βC .对于任意的α,β,都有cos (α+β)=cos αcos β+sin αsin βD .不存在α,β的值,使cos (α+β)≠cos αcos β-sin αsin β2.(学科素养——数学运算)已知cos (α-β)=-1213 ,cos (α+β)=1213,且α-β∈⎝ ⎛⎭⎪⎫π2,π ,α+β∈(3π2,2π),求角β的值.2.1 两角和与差的余弦公式及其应用必备知识基础练1.答案:A解析:cos π12 =cos (π3 -π4 )=12 ×22 +32 ×22 =6+24 .故选A.2.答案:-3解析:由-sin 10°+m cos 10°=2cos 160°,得m 2cos 10°-12sin 10°=cos (150°+10°)=cos 150°cos 10°-sin 150°sin 10° =-32 cos 10°-12sin 10°. ∴m =-3 . 3.答案:B解析:因为π4 <α<3π4 ,所以0<α-π4 <π2 ,又sin (α-π4 )=45 ,所以cos (α-π4)= 1-sin 2(α-π4) =35 ,所以cos α=cos [(α-π4 )+π4]=cos (α-π4 )cos π4 -sin (α-π4 )sin π4 =22 ×(35 -45 )=-210.故选B. 4.答案:D解析:由sin α-sin β=1-32, 得sin 2α-2sin αsin β+sin 2β=74-3 ;由cos α-cos β=12 ,得cos 2α-2cos αcos β+cos 2β=14 .两式相加,得2-2(cos αcos β+sin αsin β)=2-3 , ∴cos αcos β+sin αsin β=32, ∴cos (α-β)=32.故选D. 5.答案:B解析:因为β为锐角,cos β=45 ,所以sin β=1-cos 2β =1-1625 =35, 因为α,β都是锐角,所以0<α+β<π, 因为cos (β+α)=1213,所以sin (β+α)=1-cos 2(β+α) =1-⎝ ⎛⎭⎪⎫12132=513 , 所以cos α=cos [(β+α)-β]=cos (β+α)cos β+sin (β+α)sin β=1213×45 +513 ×35 =6365.故选B. 6.答案:A解析:因为α和β都是锐角,且sin α=55 ,sin β=1010 ,所以cos α=255,cos β=31010 ,cos (α+β)=cos αcos β-sin αsin β=255 ×31010 -55 ×1010=22 .又因为α+β∈(0,π),所以α+β=π4 .故选A. 7.解析:∵sin α=437 ,0<α<π2 ,∴cos α=1-sin 2α =1-⎝ ⎛⎭⎪⎫4372 =17 , ∵0<β<α<π2 ,∴0<α-β<π2 ,又cos (α-β)=1314,∴sin (α-β)=1-cos 2(α-β) =1-⎝ ⎛⎭⎪⎫13142=3314 , ∴cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β)=1314 ×17+3314 ×437 =4998 =12, ∵0<β<π2 ,∴β=π3.关键能力综合练1.答案:B解析:原式=cos 15°cos 45°+sin 15°sin 45° =cos (45°-15°)=cos 30°=32.故选B. 2.答案:C解析:由已知得cos α=12 ,-π2 <α<0,∴sin α=-32 ,∴cos ⎝⎛⎭⎪⎫α-π3 =12 cos α+32 sin α=-12 .故选C.3.答案:D解析:|AB → |=(cos 80°-cos 20°)2+(sin 80°-sin 20°)2=2-2(cos 80°cos 20°+sin 80°sin 20°) =2-2cos 60° = 2-2×12=1.故选D.4.答案:A解析:12 sin x +32 cos x =cos x cos π6 +sin x sin π6 =cos ⎝ ⎛⎭⎪⎫x -π6 ,故φ的一个可能值为-π6.故选A.5.答案:B解析:由cos A +cos B =cos C ,得cos B =cos C -cos A ,所以cos 2C -2cos C cos A +cos 2A =cos 2B ①,同理可得sin 2C -2sin C sin A +sin 2A =sin 2B ②,由①+②,可得1-2(cos A cosC +sin A sin C )=0,即cos (C -A )=12 .因为C ,A ∈⎝ ⎛⎭⎪⎫0,π2 ,所以C -A ∈⎝⎛⎭⎪⎫-π2,π2 ,所以C -A =±π3.易知sin B >0,所以根据sin A =sin B +sin C ,得sinA >sin C ,又C ,A ∈⎝⎛⎭⎪⎫0,π2,所以C <A ,故C -A =-π3.故选B.6.答案:5-236解析:因为sin α=53 ,α∈(π2,π), 所以cos α=-1-sin 2α =-23,又cos(α-π6 )=cos αcos π6 +sin αsin π6 ,所以cos (α-π6 )=⎝ ⎛⎭⎪⎫-23 ×32 +53 ×12 =5-236 .7.答案:91050解析:依题意,得cos α=210 ,cos β=255.因为α,β为锐角,所以sin α=7210 ,sin β=55 ,所以cos (α-β)=cos αcos β+sin αsin β=210 ×255 +7210 ×55 =91050 . 8.答案:-45解析:因为α,β∈⎝⎛⎭⎪⎫3π4,π ,所以3π2 <α+β<2π,π2 <β-π4 <3π4 .由题易知cos (α+β)=45 ,cos ⎝ ⎛⎭⎪⎫β-π4 =-725 ,则cos ⎝⎛⎭⎪⎫α+π4 =cos⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =45 ×⎝ ⎛⎭⎪⎫-725 +⎝ ⎛⎭⎪⎫-35 ×2425=-45 . 9.解析:(1)由|AB →|=105,得(cos α-cos β)2+(sin α-sin β)2=105, ∴2-2(cos αcos β+sin αsin β)=25 ,∴cos (α-β)=45 .(2)∵cos α=35 ,cos (α-β)=45 ,α,β为锐角,∴sin α=45 ,sin (α-β)=±35.当sin (α-β)=35时,cos β=cos [α-(α-β)]=cos αcos (α-β)+sinαsin (α-β)=2425.当sin (α-β)=-35时,cos β=cos [α-(α-β)]=cos αcos (α-β)+sinαsin (α-β)=0.∵β为锐角,∴cos β=2425.学科素养升级练1.答案:AD解析:令α=β=0,则cos (α+β)=1,cos αcos β+sin αsin β=1,此时cos (α+β)=cos αcos β+sin αsin β,故A 正确;令α=β=2k π(k ∈Z ),cos (α+β)=1,cos αcos β+sin αsin β=1,此时cos (α+β)=cos αcos β+sin αsin β,故B 错误;由两角和的余弦公式可知,对于任意的α和β,cos (α+β)=cos αcos β-sin αsin β,故C 错误;不存在α,β的值,使cos (α+β)≠cos αcos β-sin αsin β,若存在α和β,则与两角和的余弦公式矛盾,故D 正确.故选AD.2.解析:由α-β∈⎝ ⎛⎭⎪⎫π2,π ,且cos (α-β)=-1213 , 得sin (α-β)=513 .由α+β∈⎝⎛⎭⎪⎫3π2,2π ,且cos (α+β)=1213 ,得sin (α+β)=-513.∴cos 2β=cos [(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β)=1213 ×⎝ ⎛⎭⎪⎫-1213 +⎝ ⎛⎭⎪⎫-513 ×513 =-1. 又∵α+β∈⎝⎛⎭⎪⎫3π2,2π ,α-β∈⎝ ⎛⎭⎪⎫π2,π ,∴2β∈⎝ ⎛⎭⎪⎫π2,3π2 , ∴2β=π,则β=π2 .。
§6 平面向量的应用 6.1 余弦定理与正弦定理第1课时 余弦定理必备知识基础练知识点一 已知两边和一角解三角形 1.在△ABC 中,(1)已知a =23 ,c =6 +2 ,B =45°,求b 及A ; (2)已知b =3,c =33 ,B =30°,求边a .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =120°,a =7,b +c =8,求b ,c .知识点二 已知三边解三角形3.在△ABC 中,若a =3,b =7 ,c =2,则B =( ) A .π3 B .π4 C .π6 D .2π34.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则角C 的余弦值为( )A .23B .12C .-23D .-125.如图,在△ABC 中,D 为AB 的一个三等分点,且AB =3AD ,AC =AD ,CB =3CD ,求cosB .知识点三 利用余弦定理判断三角形的形状6.在△ABC 中,A =60°,a 2=bc ,则△ABC 一定是( ) A .等腰直角三角形 B .钝角三角形 C .直角三角形 D .等边三角形7.已知在△ABC 中,c b =cos Ccos B,则△ABC 为( )A .直角三角形B .等腰直角三角形C .等腰三角形D .等腰或直角三角形关键能力综合练一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =5,c =7,则C =( ) A .150° B .120° C.60° D .30°2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =33 ,c =2,A +C =5π6,则b =( )A .13B .6C .7D .83.在△ABC 中,已知a =3,b =5,c =19 ,则最大角与最小角的和为( ) A .90° B .120° C.135° D .150°4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1+cos A 2 =b +c2c,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰直角三角形5.在△ABC 中,已知AB =3,BC =13 ,AC =4,则边AC 上的高为( ) A .322 B .332 C .32 D .33二、填空题6.在△ABC 中,若BC =5,AB =3,B =120°,则△ABC 的周长为________.7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2-(b -c )2bc=1,则A =________.8.(易错题)在钝角三角形ABC 中,a =1,b =2.边c 的取值范围是________.三、解答题9.(探究题)已知a ,b ,c 是△ABC 的内角A ,B ,C 所对的边,a =43 ,b =6,cos A =-13.(1)求c 的值; (2)求sin B .学科素养升级练1.(多选题)在△ABC 中,已知c =6 ,A =π4,a =2,则b =( )A .3 +1B .3+12C .3-12D .3 -1 2.(学科素养——数学运算)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足a =2,a cos B =(2c -b )cos A .(1)求角A 的大小;(2)求△ABC 周长的最大值.第1课时 余弦定理 必备知识基础练1.解析:(1)由余弦定理,得b 2=a 2+c 2-2ac cos B =(23 )2+(6 +2 )2-2×(6 +2 )×23 ×cos 45°=8,所以b =22 .由cos A =b 2+c 2-a 22bc,得cos A =(22)2+(6+2)2-(23)22×22×(6+2)=12 .因为0°<A <180°,所以A =60°.(2)由余弦定理b 2=a 2+c 2-2ac cos B ,得32=a 2+(33 )2-2×33 a ×cos 30°,即a 2-9a +18=0,所以a =6或a =3.2.解析:由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc (1-12),即bc =15,由⎩⎪⎨⎪⎧b +c =8,bc =15, 解得⎩⎪⎨⎪⎧b =3,c =5, 或⎩⎪⎨⎪⎧b =5,c =3. 3.答案:A解析:由已知得cos B =a 2+c 2-b 22ac =12 ,因为B ∈(0,π),所以B =π3.故选A.4.答案:D解析:∵(a +b -c )(a +b +c )=ab ,∴(a +b )2-c 2=ab ,即a 2+b 2-c 2=-ab ,∴cos C =a 2+b 2-c 22ab =-12.故选D.5.解析:设AD =m ,CD =n ,则AB =3m ,AC =m ,CB =3n ,BD =2m .在△BCD 中,cos ∠BDC =4m 2+n 2-9n22×2m ×n ,在△ACD 中,cos ∠ADC =m 2+n 2-m 22mn,由cos ∠BDC =-cos ∠ADC ,得m 2=32 n 2,即m =62 n .所以在△BDC 中,cos B =4m 2+9n 2-n 22×2m ×3n =7618.6.答案:D解析:在△ABC 中,∵A =60°,a 2=bc ,∴由余弦定理,得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,∴bc =b 2+c 2-bc ,即(b -c )2=0.∴b =c ,结合A =60°,得△ABC 一定是等边三角形.故选D. 7.答案:C解析:由c b =cos C cos B 及余弦定理知cb =a 2+b 2-c 22ab a 2+c 2-b22ac,化简得b =c .∴△ABC 是等腰三角形.无法判断其是不是直角三角形.故选C.关键能力综合练1.答案:B解析:cos C =a 2+b 2-c 22ab =9+25-492×3×5 =-12,所以C =120°.故选B.2.答案:A解析:∵A +C =5π6 ,∴B =π-(A +C )=π6 .∵a =33 ,c =2,∴由余弦定理可得b =a 2+c 2-2ac cos B =(33)2+22-2×33×2×32=13 .故选A. 3.答案:B解析:在△ABC 中,∵a =3,b =5,c =19 , ∴最大角为B ,最小角为A ,∴cos C =a 2+b 2-c 22ab =9+25-192×3×5 =12,∴C =60°,∴A +B =120°,∴△ABC 中最大角与最小角的和为120°.故选B. 4.答案:A解析:在△ABC 中,∵1+cos A 2 =b 2c +12 ,∴cos A =b c .由余弦定理,知b 2+c 2-a 22bc=bc,∴b 2+c 2-a 2=2b 2,即a 2+b 2=c 2,∴△ABC 是直角三角形.故选A. 5.答案:B 解析:如图,在△ABC 中,BD 为AC 边上的高,且AB =3,BC =13 ,AC =4.∵cos A =32+42-(13)22×3×4 =12 ,A ∈(0,π),∴sin A =32 .∴BD =AB ·sin A =3×32 =332.故选B. 6.答案:15解析:由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B =49,所以AC =7.所以△ABC 的周长为3+5+7=15.7.答案:π3解析:由a 2-(b -c )2bc =1得b 2+c 2-a 2bc =1.∴cos A =12 .∵0<A <π,∴A =π3.8.答案:(1,3 )∪(5 ,3)解析:因为a =1,b =2,所以1<c <3.若角B 是钝角,则cos B <0,即12+c 2-222×1·c<0,解得1<c <3 ;若角C 是钝角,则cos C <0,即12+22-c22×1×2 <0,解得5 <c <3.综上,边c 的取值范围是(1,3 )∪(5 ,3).9.解析:(1)因为a =43 ,b =6,cos A =-13,所以cos A =b 2+c 2-a 22bc =36+c 2-482×6×c =-13,整理得c 2+4c -12=0,即(c +6)(c -2)=0,解得c =2或c =-6(舍去),所以c =2.(2)因为cos B =a 2+c 2-b 22ac =48+4-362×43×2 =33 ,所以sin B =63. 学科素养升级练1.答案:AD解析:由a 2=b 2+c 2-2bc cos A ,得4=b 2+6-26 b ×22,即b 2-23 b +2=0,解得b =3 +1或b =3 -1.又6 -2<b <6 +2,∴b =3 ±1.故选AD.2.解析:(1)∵a cos B =(2c -b )cos A ,∴a ·a 2+c 2-b 22ac =(2c -b )·b 2+c 2-a 22bc ,化简得c =b 2+c 2-a 2b,即b 2+c 2-a 2=bc ,∴cos A =12 ,∵A ∈(0,π),∴A =π3 .(2)由(1)得b 2+c 2-4=bc ,即4=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )2-3(b +c )24 =(b +c )24,∴(b +c )2≤16,即b +c ≤4,当且仅当b =c =2时等号成立, ∴△ABC 周长的最大值为6.。
高一数学必修二模块考试题
命题人:高一年级组 侯雪慧
参考公式: 球的表面积公式S
球
24R π=,其中R 是球半径.
锥体的体积公式V
锥体
1
3
Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积V
台体
1
()3
h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高. 球的体积公式V
球
34
3
R π=,其中R 是球半径. 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、 图(1)是由哪个平面图形旋转得到的 ( )
2.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )
A . 相交
B . 异面
C . 平行
D .异面或相交 3.在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )
A 、
11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1B C 成60角
4.正三棱锥的底面边长为6,高为3,则这个三棱锥的全面积为( ) A.39 B.183 C.9(3+6) D.
6
5.如果两个球的体积之比为8:27,那么两个球的表面积之比为 ( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )
A.24πcm 2,12πcm 3
B.15πcm 2,12πcm 3
C.24πcm 2
,36πcm 3
D.以上都不正确
7一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()
A、8Лcm2B、12Лcm2C、16Лcm2D、20Лcm2
8、已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF⊥AB,
则EF与CD所成的角为()
A、900B、450C、600D、300
9、一个棱柱是正四棱柱的条件是()
A、底面是正方形,有两个侧面是矩形
B、底面是正方形,有两个侧面垂直于底面
C、底面是菱形,且有一个顶点处的三条棱两两垂直
D、每个侧面都是全等矩形的四棱柱
10.下列四个命题
①垂直于同一条直线的两条直线相互平行;
②垂直于同一个平面的两条直线相互平行;
③垂直于同一条直线的两个平面相互平行;
④垂直于同一个平面的两个平面相互垂直.
其中错误
..的命题有()
A. 1个
B. 2个
C. 3 个
D. 4个
11.已知各面均为等边三角形的四面体的棱长为2,则它的表面积是()
A.B.C. D.
12.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是()
A、2
3
B、
7
6
C、
4
5
D、
5
6
二、填空题(本大题共4小题,每小题6分,共24分)
1.长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.
2.如图:四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面
都是侧棱长为5的等腰三角形,则二面角V-AB-C的平面角为度
3.已知PA垂直平行四边形ABCD所在平面,若PC BD
⊥,平行则四边形ABCD
一定是.
4.有下列命题:(m,n是两条直线,α是平面)
○1若m║α,n║α,则m║n ○2若m║n ,n║α,则m║α
○3若m║α则m平行于α内所有直线○4若m平行于α内无数直线,则m║α以上正确的有个
三、解答题(共66分)
1、将圆心角为1200,面积为3 的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
2.如图,在四边形ABCD中,,,,,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
3.作图(不要求写出作法,请保留作图痕迹)
(1)画出下图几何体的三视图(尺寸自定);(7分)
(2)画出一个底面直径为4cm,高为2cm的圆锥的直观图(6分)
4、空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点, 且AC=BD,判断四边形EFGH的形状,并加以证明。
(10分)
5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;
(2 )1
AC ⊥面11AB D . (14分)
6、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,
∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AF
AC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;
(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)
D 1
O
D
B
A C 1
B 1
A 1C
F
E
D
B
A
C
数学必修二模块考试题参考答案
一、选择题(本大题共12小题,每小题5分,共60分)
1.A 2.D 3.D 4.C 5.C 6. A 7.B 8. D 9 . D 10. B 11.C 12.D 二填空题。
(本大题共4小题,每小题6分,共24分) 1. 15 2.600
3.菱形
4. 0
解答题. (共66分) 三、
1解:l=3,R=1;S=4π;V=
322π
. 2.S=60π+4π2;V=52π-38π=3
148π
3(1):如图:
3(2):略;
4:解:四边形ABCD 是菱形;证明:EH ABD EH ∴∆的中位线,
是 ∥BD 且=2
1
BD ,同理FG ∥BD
且FG =
2
1
BD ∴四边形EFGH 是平行四边形,∴=∴=EF EH BD AC 又四边形ABCD 是菱形。
(1)连结11AC ,设11111AC B D O =
5证明:
1AO , 1111ABCD A BC D -是正方体 11A ACC ∴是
连结
平行四边形
11
AC AC ∴且 11AC AC = 又1,O O 分别是11,AC AC 的中点,11O
C AO ∴且11O C AO =
{
091720
187=++=--y x y x
11AOC O ∴是平行四边形
111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D
∴1C O 面11AB D
(2)
1CC ⊥面1111A B C D 11!C C B D ∴⊥ 又
1111AC B D ⊥, 1111B D A C C
∴⊥面 1
11AC B D ⊥即 同理可证11AC AB ⊥, 又11
11D B AB B =
∴1
AC ⊥面11AB D 6:证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD ,
∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 又),10(<<==λλAD
AF AC AE
∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,
∴不论λ为何值恒有平面BEF ⊥平面ABC. (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,
∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2===
AB BD
,722=+=∴BC AB AC 由AB 2
=AE ·AC 得,7
6,7
6==∴=AC
AE AE λ
故当7
6
=λ时,平面BEF ⊥平面ACD.。