LabVIEW_顺序结构
- 格式:ppt
- 大小:1.22 MB
- 文档页数:38
当我开始在键盘上敲打出这句话的时候,我已经使用LabVIEW 7 年了。
7 年的时间,就算天赋平平也可以积攒下一箩筐可供参考的经验了。
所以我打算利用今后的闲暇时间写一些这方面的东西,既可以同大家交流,也是作为自己这七年工作的总结。
还是在上大学的时候,有一次老师让编写一段软件,用来模拟一个控制系统:给它一个激励信号,然后显示出它的输出信号。
那时我就想过,可以把每一个简单的传递函数都做成一个个小方块,使用的时候可以选择需要的函数模块,用线把它们连起来,这样就可以方便地搭建出各种复杂系统。
后来,我第一次看到别人给我演示的LabVIEW编程,就是把一些小方块用线连起来,完成了一段程序。
我当时就感觉到,这和我曾经有过的想法多么相似啊。
一种亲切感油然而生,从此我对LabVIEW的喜爱就一直胜过其他的编程语言。
LabVIEW 的第一个版本发布于1986年,是在Macintosh 机上实现的,后来才移植到了PC机上,并且LabVIEW 从未放弃过对跨平台的支持。
这也给LabVIEW 带来了一些麻烦。
最明显的就是LabVIEW开发环境的界面风格。
它总是与一般的Windows 应用程序有些格格不入:面板是深灰色的,按键钮是看起来别别扭扭的3D 模样。
还有一些可能不太容易发现:比如对于整数的存储,LabVIEW即便是运行在x86系统上,采用的也是高地址位存高位数据(big-ending)。
这与我们习惯了的x86 CPU使用的格式正相反,这往往给编写存取二进制文件带来了不多不少的麻烦。
我接触过的最早的LabVIEW版本是4.0版,发布包是一个装有十几张三寸软盘的大盒子。
安装的时候要按顺序把软盘一个一个塞到计算机里。
尽管当时LabVIEW的界面不是很好看,但我还是非常喜欢它。
真方便呐!比如说要画一个开关,用LabVIEW 一拖就行了。
如果要自己动手用C 语言设计一个好看的开关,,那得费多少时间啊!我尤其喜欢它通过连线来编程的方式,尽管很多熟悉了文本编程语言的人刚开始时会对这种图形化编程方式非常不适应。
LabVIEW编程中的数据结构与算法优化技巧在LabVIEW编程中,数据结构和算法的选择与优化对于程序的性能和可维护性至关重要。
本文将介绍在LabVIEW编程中常用的数据结构和算法优化技巧,帮助开发人员提高程序的效率和可靠性。
一、数据结构的选择在LabVIEW编程中,选择合适的数据结构是实现功能的关键。
以下是几种常见的数据结构及其适用场景:1. 数组(Array):用于存储同类型的数据,并且数据的大小是固定的。
数组适用于需要按顺序访问和操作数据的场景,例如存储一组测量数据或图像像素。
2. 队列(Queue):用于实现先进先出(FIFO)的数据存储和访问方式。
队列适用于需要按顺序处理数据的场景,例如数据采集和处理时的数据缓存。
3. 栈(Stack):用于实现后进先出(LIFO)的数据存储和访问方式。
栈适用于需要按相反顺序处理数据的场景,例如函数调用的递归操作。
4. 链表(Linked List):用于存储具有动态长度的数据。
链表适用于频繁插入和删除数据的场景,例如数据缓存和排序等算法。
5. 图(Graph):用于表示多个实体之间的关系,并且这些关系保存在边中。
图适用于复杂网络分析和路径搜索等算法。
在选择数据结构时,需要考虑数据的特性、访问方式和操作需求,以及程序的性能要求等因素,综合评估后选择最合适的数据结构。
二、算法的优化除了选择合适的数据结构之外,优化算法也是提高LabVIEW程序性能的重要手段。
下面是几个常见的算法优化技巧:1. 减少循环次数:循环是LabVIEW程序中常用的操作,但过多的循环会增加程序的执行时间。
在编写程序时,应尽量减少循环次数,例如通过向量化操作或者使用矩阵运算来代替循环运算。
2. 缓存数据:对于需要频繁访问的数据,可以将其存储在缓存中,以减少对内存的访问次数。
例如使用Shift Register或者Local Variable来保存中间计算结果,避免重复计算。
3. 并行计算:LabVIEW支持并行计算,在多核处理器上可以充分利用硬件资源,提高程序的执行效率。
labview中for循环在顺序结构中用法1. 引言1.1 介绍labview中for循环在顺序结构中的用法在LabVIEW中,for循环是一种非常常见的结构,它可以在顺序结构中被灵活应用。
顺序结构是LabVIEW中的一种基本结构,它按照从上到下的顺序执行代码,一次执行一条线路上的程序。
在顺序结构中使用for循环可以帮助我们简化程序,节省时间和精力。
for循环能够重复执行特定的操作,直到达到设定的条件。
这使得我们能够简化代码、提高代码的可读性和可维护性。
在实际项目中,经常会出现需要重复执行相同操作的情况,此时for循环就派上用场了。
LabVIEW为我们提供了方便的工具来添加for循环至顺序结构中。
通过简单拖拽的方式,我们就可以将for循环放置在需要的位置。
而设置for循环的循环次数也是非常简单的,只需在循环结构中输入结束条件即可。
在for循环中执行特定操作也非常容易。
我们可以在for循环中添加需要重复执行的代码块,这样就可以实现对特定操作的循环执行。
通过合理的设计和设置,我们可以充分利用for循环在顺序结构中的优势,提高程序的效率和可维护性。
2. 正文2.1 什么是循环结构循环结构是编程语言中一种重要的控制结构,允许程序在满足特定条件下重复执行一段代码块。
在计算机程序中,循环结构可以大大简化重复性工作的编写,提高代码的效率和可维护性。
在labview中,for循环是一种常见的循环结构,它允许用户指定循环次数并在每次迭代中执行特定的操作。
通常情况下,for循环适用于已知循环次数的情况,比如要对一组数据进行处理或执行固定次数的任务。
循环结构的实现通常包括三个要素:循环变量、循环终止条件和循环体。
循环变量用于追踪循环的当前状态,循环终止条件确定循环何时结束,循环体则包含需要重复执行的代码块。
在labview中使用for循环可以简化重复性工作的编写,提高程序的可读性和可维护性。
通过合理的设计和控制循环变量和循环终止条件,可以确保程序的正确运行并有效地处理大量数据。
执行结构:详细说明While循环与文本编程语言中的Do循环或Repeat-Until循环类似,必须满足特定条件之后,While循环才会执行其内的程序代码,如图1所示。
图1. LabVIEW中的While循环;具备While循环功能的流程图;还有While循环功能的伪码范例While 循环位于Structures面板上。
从面板上选择While Loop之后,针对所要重复的代码区块,可用鼠标拖拽出矩形并将之圈住。
放开鼠标之后,即会有While循环圈住用户所选的区块。
只要将对象拖拽至While循环中,即可将其新增至While循环中。
只要条件接线端接收特定的布尔值之后,While循环随即执行代码也可通过While 循环的条件接线端来处理基本错误。
若将错误簇连接至条件接线端,则只有Status参数的真或假值传送至接线端。
同样,Stop if True和Continue if True快捷菜单项目,将分别变更为Stop if Error和Continuewhile Error。
计数接线端属于输出端点,其中包含已完成的循环次数。
While循环的循环计数均从零开始。
注意: While循环将至少执行一次。
无限循环无限循环为常见的程序错误,即无法停止的循环。
若条件接线端 i为True时停止,而用户又在While循环外部放置布尔控件接线端。
一旦循环开始,控件值即成为FALSE,就会形成无限循环。
图2.While循环之外的布尔控件因为在循环开始之前,仅读取该值一次,所以改变控件的值并无法停止无限循环。
若要通过控件停止While循环,则必须在循环中配置控件接线端。
若要停止无限循环,则按下工具栏上的Abort Execution按钮,即可终止该VI。
在图3中的While 循环将不断执行,直到随机数函数的输出大于或等于10.00,且Enable控件为TRUE时才会停止。
当且仅当“与”函数的两个输入都为真时,函数的返回值才为真。
labview控制程序流程——labview事件结构1 事件结构及它的图形化表示法事件被用来通知用户有异步活动发生。
图形化语言的事件响应包括:用户界面事件、外部I/O 事件和程序其它部分的事件。
对事件的处理程序也被称为:事件驱动程序。
事件驱动程序可以分为若干个分支,每个分支处理不同的事件响应。
所以对事件的响应结果也可以控制程序的流程。
事件驱动机制来自于可视化的操系统,可视化操作系统对用户事件提供了简洁、有效的响应方式,最常见的事件来自于鼠标和键盘。
虚拟仪器借助于操作系统的事件处理机制实现了图形化语言的事件响应能力。
在没有引入事件结构之前,LabVIEW 是借助于轮询的方式来查询用户操作,由于轮询的方式会占用一定的CPU 资源,甚至可能遗漏事件,所以这种处理方式并非理想。
事件结构的出现避免了对CPU 资源的占用,同时也避免了事件的遗漏。
事件结构在函数选板》编程》结构子选板中可以找到,并可以将其直接拖拽到程序框图中,图形化表示的事件结构,参见下图。
图 1 图形化的事件结构与Case 结构和循环结构类似,事件结构也包含了一个主框架,这个框架内将用来放置事件处理的事件驱动程序代码。
如果事件处理任务众多,会有众多事件分支存在,在结构上类似Case 的多帧结构(选择器标签)。
当在程序框图上拖放一个事件结构时,我们只能看到上图所示的一帧已经预先注册的超时事件(Timeout),超时事件分支。
它具有定时延迟的基本功能(不包括While 循环),参见下图。
图 2 具有定时延迟的基本功能当然也可以采用另一种表示方法,参见下图。
图 3 利用事件结构内部节点获得中止时间通过这个例子也好理解内部节点中时间的含义(是事件响应的停止时间)。
超时事件超时事件是一种特殊的事件,当然也可以看成是默认的事件分支。
如果存在其它事件源时,超时事件完全可以被忽略或取消。
看下面一个例子。
图 4 仅有的两个事件之一超时事。
LabVIEW中的控制结构和循环LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种图形化编程语言和开发环境,用于测量与控制系统。
在LabVIEW 中,控制结构和循环是实现自动化控制和流程控制的重要组成部分。
一、控制结构1. 顺序结构顺序结构按照程序中的逐行顺序执行。
在LabVIEW中,通过将各个步骤连接起来,即可实现顺序执行。
2. 选择结构选择结构用于根据条件的不同,执行不同的代码块。
在LabVIEW 中,选择结构包括“Case结构”和“Select结构”。
- Case结构:根据条件进行分支选择。
不同的条件对应不同的代码块。
你可以在其中添加多个Case并分别编写代码,这样可以根据不同的条件执行不同的操作。
- Select结构:类似于Case结构,但是它使用数字索引来选择要执行的代码块,而非条件。
3. 循环结构循环结构用于重复执行某个代码块,直到满足退出条件为止。
在LabVIEW中,循环结构包括“For循环”、“While循环”和“Do循环”。
- For循环:用于已知循环次数的情况下重复执行代码块。
你可以设置循环的次数,并且在每次迭代中可以自定义循环变量的起始值、终止值和步长。
- While循环:在满足条件的情况下重复执行代码块。
你可以设置循环的退出条件,并且在每次迭代中可以自定义条件的判定。
- Do循环:先执行代码块,再判断循环条件是否满足。
如果满足,则继续循环执行,直到条件不满足为止。
4. 跳转结构跳转结构用于在程序中实现跳转操作,常见的跳转结构有“跳出循环”和“跳转到指定位置”。
- 跳出循环:当满足特定条件时,可以用于提前终止循环的执行。
一般在循环结构内部设置条件,满足条件时通过跳转结构跳出循环。
- 跳转到指定位置:用于在程序中实现指定位置之间的跳转。
你可以在程序的任意位置插入标记,然后使用跳转结构指定要跳转到的标记位置。
引言概述:控制结构:1.顺序结构:介绍LabVIEW中的顺序结构,通过实例分析顺序执行程序的流程。
2.分支结构:详细阐述LabVIEW中的分支结构,包括条件、多分支和循环分支结构的使用方法和应用场景。
3.事件结构:介绍LabVIEW中的事件结构,如按钮点击事件和键盘输入事件,探讨事件结构的应用和事件处理方式。
4.并行结构:讨论LabVIEW中的并行结构,包括并行循环和并行结构的使用场景和开发技巧。
5.限定结构:详细介绍LabVIEW中的限定结构,如条件执行和迭代执行结构,探讨限定结构的作用和灵活运用的方法。
模块化编程:1.子VI的创建与调用:阐述如何创建和调用子VI,在程序设计中充分利用模块化编程的优势。
2.模块化设计原则:介绍模块化编程的设计原则,包括高内聚、低耦合、单一职责等,指导程序开发过程中模块的设计与实现。
3.面向对象编程:讨论LabVIEW中的面向对象编程,包括类的定义、继承、多态等概念及应用案例。
4.模块重用性:探讨如何提高模块的重用性,通过示例说明如何将已开发的模块应用于不同的项目中。
5.模块化测试与调试:阐述模块化编程带来的测试和调试的便利性,介绍常用的测试方法和调试工具。
用户界面设计:1.前端设计原则:介绍LabVIEW设计界面的原则,包括界面美观、用户友好和交互性等方面的考虑。
2.控件选择与布局:详细阐述LabVIEW中的各种控件的选择和布局,探讨控件的应用场景和交互方式。
3.图表绘制与图像处理:介绍LabVIEW中的图表绘制和图像处理功能,包括数据可视化和图像处理的方法和技巧。
4.用户输入与输出:讨论LabVIEW中用户输入和输出的方式,如文本框、按钮、图像显示等,详细阐述输入输出控件的配置和应用场景。
5.界面优化与体验改进:探讨如何优化用户界面,提高用户体验,包括响应速度、操作流畅性和界面布局的改进方法。
数据采集与处理:1.数据采集原理:介绍LabVIEW中的数据采集原理,包括模拟输入、数字化和数据存储的过程和相关技术。
绪论虚拟仪器(virtual instrumention)是基于计算机的仪器。
计算机和仪器的密切结合是目前仪器发展的一个重要方向。
粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。
随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。
另一种方式是将仪器装入计算机。
以通用的计算机硬件及操作系统为依托,实现各种仪器功能。
虚拟仪器主要是指这种方式。
下面的框图反映了常见的虚拟仪器方案。
虚拟仪器的主要特点有:⏹尽可能采用了通用的硬件,各种仪器的差异主要是软件。
⏹可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。
⏹用户可以根据自己的需要定义和制造各种仪器。
虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。
虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。
目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的Lab VIEW。
虚拟仪器的起源可以追溯到20世纪70年代,那时计算机测控系统在国防、航天等领域已经有了相当的发展。
PC机出现以后,仪器级的计算机化成为可能,甚至在Microsoft公司的Windows诞生之前,NI公司已经在Macintosh计算机上推出了LabVIEW2.0以前的版本。
对虚拟仪器和Lab VIEW长期、系统、有效的研究开发使得该公司成为业界公认的权威。
普通的PC有一些不可避免的弱点。
用它构建的虚拟仪器或计算机测试系统性能不可能太高。
目前作为计算机化仪器的一个重要发展方向是制定了VXI标准,这是一种插卡式的仪器。
每一种仪器是一个插卡,为了保证仪器的性能,又采用了较多的硬件,但这些卡式仪器本身都没有面板,其面板仍然用虚拟的方式在计算机屏幕上出现。
这些卡插入标准的VXI 机箱,再与计算机相连,就组成了一个测试系统。
VXI仪器价格昂贵,目前又推出了一种较为便宜的PXI标准仪器。
中大型LABVIEW软件三层设计架构目录一、总览 (2)二、详解 (3)(1) Driver Level﹔ (3)a.组态(configuration):开启或关闭与仪器的连结、将仪器初始化及设定组态等。
(3)b.量测(measurement):由仪器读出测量值或特定的资料。
(3)c.动作/状态(action/status):一个流程的启始或结束动作、检查错误等。
(3)(2) Test Level: (4)(3) Main Level: (4)a) 可让操作者设定或更改操作参数: (5)b) 在特定的情况下使用适当的Control: (5)c) 要将众多的Control及Indicator依使用功能分类,并适当地利用页面切换来显示。
5d) 在执行程序时可以选择cancel或abort: (5)e) 在Front Panel上多使用图形,避免过多的文字或数据。
(5)f) 在Main Level中统一处理所有的exception massage: (6)一、总览通常一个VI若包含三、四十个以上的subVI(不包含LabVIEW本身在Functions中提供的VI)时,就可算是一个中大型的软件计划(software project)了。
虽然比起软件工程中的一些作业环境软件(如Windows系列)或大型应用软件(如Word、Excel)等仍算是小工程,但其复杂性亦在一定程度之上,若没有事先想好在撰写程序时的一些规划与方法,想要完成这类中大型的软件绝对不是一件简单的事。
尤其这类软件通常不是由一个人,而是由一个团队所共同完成的,因此整个软件的结构,就要能让团队中的每一成员都能清楚的了解,而且要够简单,才算是好的软件结构。
以下将参考由Rick Bitter等人所着”LabVIEW Advanced rogramming Techniques”,中之第4章的部分内容,介绍所谓软件计划中的三层式结构(the Three-Tiered Structure)的概念及其优点。