2014-2015(1)《信号与系统》期末考试试卷A答案
- 格式:doc
- 大小:1.52 MB
- 文档页数:8
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
《信号与系统》考核试卷
专业班级:电子、通信工程考核方式:闭卷考试时量:120 分钟试卷类型: A
第2页共 8 页第1页共 8 页
图:
域模型图:
)的表达式:
第3页共 8 页第4页共 8 页
(a)
(b) (c) (d)
A 、
B 、
C 、
D 、
Y(w):
5、已知离散系统的差分方程为)(2)2(2)1(3)(n f n y n y n y =-+-+,求该
系统的系统函数)(z H 、单位响应)(n h 以及当激励信号)(2)(n n f n ε=时,
系统的零状态响应)(n y 。
(13分)
利用z 变换的移位特性,将差分方程变换为零状态下的z 域方程:
)(2)(2)(3)(21z F z Y z z Y z z Y =++--
2
322312)()()
(2221++=
++==--z z z z z z F z Y z H
2
412232)(22+++-=++=z z
z z z z z z H )(])2(4)1(2{)(n n h n n ε+--=∴
当激励信号)(2)(n n f n ε=时,2
)(-=
z z
z F 22)()()(3
2==z z z z H z F z Y 2
2
-
z
z 第5页 共 8 页
④由于该系统函数的所有极点均在
所以该系统是稳定系统。
第7页共页第8页共页第9页共页第10页共页
第7页共 8 页第8页共 8 页。
信号与系统期末考试试题(第一套)一、填空(共30分,每小题3分)1. 某连续系统输入输出关系为,该系统为。
(线性否)2. 序列和=。
3. 信号和如图A-1所示,,则=。
图A-14. 信号的傅立叶变换为,则的傅立叶变换为。
5. 单边拉普拉斯变换的原函数为。
6. 已知,对进行理想冲激取样,则使频谱不发生混叠的奈奎斯特间隔为。
7. 序列的单边变换为。
8. 试确定序列是否为周期序列。
若是,其周期为。
9. 积分=。
10. 频谱函数的傅立叶逆变换=。
二、计算题(共50分,每小题10分)1.信号的波形如图A-2所示,试画出和的波形。
ττd f t t y )(12)(⎰∞--=_________∑-∞=-ki ii )2(2δ_________)(1t f )(2t f )()()(21t f t f t f *=)1(-f_________)(t f )(ωj F )2(4-t f e tj _________4)(2+=-s se s F s_________)()(2t Sa t f =)(t f sT _________∑-=--1)]1()1[(2k i ikt εz _________)4sin(3)3cos(2)(k k k f ππ+=N _________)2()2(02τδτ-+⎰t _________)cos()()(4πωωωg j F =)(t f _________)22(t f -)(t f ττd f t)(⎰∞-图A-22.如图A-3所示信号的傅立叶变换记为,试求。
图A-33.已知周期信号,画出的单边振幅频谱图和相位频谱图。
4.某连续时间LTI 系统的单位冲激响应为,若输入信号,试求整个系统的输出。
5.已知某连续时间LTI 系统满足下列条件:(1)系统是因果的;(2)系统函数是有理的,且仅有两个极点在和; (3)当输入信号为时,系统的输出;(4)系统的单位冲激响应在时的值等于4;试根据以上信息确定系统函数及其收敛域。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
信号与系统期末考试试卷(有详细答案)《信号与系统》考试试卷(时间120分钟)院/系专业姓名学号⼀、填空题(每⼩题2分,共20分)1.系统的激励是)t (e ,响应为)t (r ,若满⾜dt)t (de )t (r =,则该系统为线性、时不变、因果。
(是否线性、时不变、因果?)2.求积分dt )t ()t (212-+?∞∞-δ的值为 5 。
3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其⾼频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最⾼频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5.信号在通过线性系统不产⽣失真,必须在信号的全部频带内,要求系统幅频特性为⼀常数相频特性为_⼀过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截⽌频率成反⽐。
7.若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8.为使LTI 连续系统是稳定的,其系统函数)s(H 的极点必须在S 平⾯的左半平⾯。
9.已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10.若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
⼆、判断下列说法的正误,正确请在括号⾥打“√”,错误请打“×”。
(每⼩题2分,共10分)1.单位冲激函数总是满⾜)()(t t -=δδ( √ )2.满⾜绝对可积条件∞不存在傅⽴叶变换。
( × ) 3.⾮周期信号的脉冲宽度越⼩,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点⽆关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增⾼,幅度谱总是渐⼩的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t -=21,信号<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
新疆天山职业技术学院2012-2014学年第二学期《信号与系统》期末试卷姓 名: 班 级: 年级编号:题 号 一 二 三 四 五 总 分 得 分一、单项选择题(本大题共10小题,每小题1分,共10分) 1、下列信号的分类方法不正确的是( )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号 2、将信号f (t )变换为( )称为对信号f (t )的平移或移位。
A 、f (k–k 0) B 、f (t –t 0) C 、f (at ) D 、f (-t ) 3、)1()1()2(2)(22+++=s s s s H ,属于其零点的是( ) A 、-1 B 、-2 C 、-j D 、j4、单边拉普拉斯变换F (s ) = 1+s 的原函数 f (t )= ( ) A 、e −tu (t ) B 、(1+e −t )u (t ) C 、(t +1)u (t ) D 、δ (t ) +δ’(t )5、将信号f (t )变换为( )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6、)2)(1()2(2)(-++=s s s s s H ,属于其极点的是( )A 、1B 、0C 、2D 、-27、已知 f (t) ,为求 f (3-2t) 则下列运算正确的是( ) A 、f (-2t) 左移3 B 、f (-2t) 右移 C 、f (2t) 左移3 D 、f (2t) 右移 8、 如函数f(t) 的图像如图所示,f(t)为( )A 、偶函数B 、奇函数C 、奇谐函数D 、都不是9、周期性非正弦连续时间信号的频谱,其特点为( )A 、频谱是连续的,收敛的B 、频谱是离散的,谐波的,周期的C 、频谱是离散的,谐波的,收敛的D 、频谱是连续的,周期的 10、序列和∑∞∞-)(n δ等于( )A 、0B 、∞C 、u (n )D 、1二、 填空题(本题共10小题,每题1分,共10分) 1、δ (−t ) = (用单位冲激函数表示)。
《信号与系统》期末试卷A 卷班级:班级: 学号:__________ 姓名:________ _ 成绩:_____________ 一. 选择题(共10题,20分) 1、nj nj een x )34()32(][p p +=,该序列是,该序列是 。
A.非周期序列 B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是,该系统是 。
A.因果时不变 B.因果时变因果时变C.非因果时不变非因果时不变D. 非因果时变非因果时变3、一连续时间L TI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是,该系统是 。
A.因果稳定因果稳定B.因果不稳定因果不稳定C.非因果稳定非因果稳定D. 非因果不稳定非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶 B.实且为奇实且为奇C.纯虚且偶纯虚且偶D. 纯虚且奇纯虚且奇5、一信号x(t)的傅立叶变换îíì><=2||02||1)(w w w ,,j X ,则x(t)为 。
A. tt 22sin B. ttp 2sin C. tt 44sin D. ttp 4sin6、一周期信号å¥-¥=-=n n t t x )5()(d ,其傅立叶变换)(w j X 为。
A. å¥-¥=-k k )52(52p w d p B. å¥-¥=-k k )52(25p w d pC. å¥-¥=-k k )10(10p w d pD. å¥-¥=-k k)10(101p w d p7、一实信号x[n]的傅立叶变换为)(wj eX ,则x[n]奇部的傅立叶变换为奇部的傅立叶变换为 。
A. )}(Re{wj eX j B. )}(Re{wj eX C. )}(Im{wj eX j D. )}(Im{wj eX8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为表示出原信号的最大采样周期为 。
北京航空航天大学2013 ~2014 学年第 二 学期 信号与系统 期末考试试卷(2014年 6月25 日)班级:__________;学号:______________;姓名:__________________;成绩:___________ 一、(本题35分)计算题。
(1)求⎰-494)(sin ππδdx x 的值。
1(2)已知信号t)2f(1-如图一(a )所示,求f(t)。
(图中“(3)”表示脉冲信号强度为3)。
(3)计算卷积)t (f )t (f )t (f 21⊗=,其中tt t )5.2sin()()t (f 1-=πδ、4cos(4t)3cos(3t)cos(2t)2cos(t)1)t (f 2++++=。
答案)4cos(4)3cos(3)(t t t f ππ+=(4)计算卷积)2n(x n)2(x y(n)21⊗=,其中(n)x 1=}6,5,4,3,2,1{0=↑n 、(n)x 2=}3,2,1{0---=↑n 。
答案}15,9,13,6,7,3,1{)(0-------==↑n n y(5)已知一实际工程系统的微分方程为()()()()()t e t t e t r t t r t t r 2d d 36d d 5d d 22+=++,求输入为)t 3cos()t (e=时的系统响应。
没有初始状态怎么求 (6)计算⎰∞+∞-2dt )tsin(2t)(。
答案π2(7)已知某连续时间线性时不变系统的单位冲激响应为)2()()(--=t u t u t h 。
输入信号为周期信号)(t x ,且已知)(t x 的单边拉普拉斯变换为)1(1s e s -+,试求系统的输出响应)(t y 。
答案)1()1()()(---=t u t t tu t y图一(a ) 图二二、(本题15 分)某因果线性时不变系统,在非零初始状态不变的情况下,三种激励信号分别作用于系统:当输入)()(1t t x δ=时,系统的输出为)()()(1t u e t t y t-+=δ;当输入)()(2t u t x =时,系统的输出为)(3)(2t u e t y t -=;当输入)(3t x 为图二中所示矩形脉冲时,求此时系统的输出)(3t y 。
浙江大学宁波理工学院2014–2015学年第一学期《信号分析与处理》课程期末考试试卷A 答案一、选择题(共10分,每空2分)1、一信号⎩⎨⎧><=2/1||02/1||1)(t t t x ,,,则其傅立叶变换为 C 。
A.ωsin B.ω2sin C.)2/sin(ω D.πωsin 23A –4A.5 A.1、(2、(78/π=Ω 3分742=Ωπ为有理数,分母为其基波周期,即N=7 4分 3、(10分)求出下列信号的拉氏反变换。
236512-<<-+++}Re{s s s s (反变换) 解:21326512+-+=+++=s s s s s S X )( 5分根据收敛域的双边情况,可求出反变换为双边信号如下:[])()()()(t u e t u e S X L t x t t -+==---2312 5分4、(15分)已知2112523)(---+--=zz z z X ,试问,)(n x 在以下三种收敛域下,哪一种是左边序列?哪一种是右边序列?哪一种是双边序列?并求出各对应的)(n x 。
(1)2||>z ; (2)5.0||<z ; (3)2||5.0<<zX ( ((2(35、(15分)已知)(t5(tx-的波形,要求画出分阶段变换的步骤x的波形如下,试画出)2下面画出6、(10分)求周期矩形脉冲信号的傅立叶级数(指数形式),并大概画出其频谱图。
解:指数级傅里叶展开如下 8分k c 的谱线图如下,只要绘制出趋势图即可2分四.论述题(25分)1、(10分)阐述拉普拉斯变换和傅立叶变换的关系,并用适当的公式加以说明。
答:1)傅立叶变换到拉氏变换:信号的傅立叶变换需满足狄立赫利收敛条件,不满足该条件的信号不存在傅立叶变换,对于部分不满足收敛条件的信号)(t x ,乘以衰减因子t e δ-后只要δ满足一定范围,t e t x δ-)(的傅立叶变换是存在的。
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。
下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。
下列说法不正确的是( D ). A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4。
将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。
下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、卷积f1(k+5)*f2(k—3) 等于。
(A)f1(k)*f2(k) (B)f1(k)*f2(k-8)(C)f1(k)*f2(k+8)(D)f1(k+3)*f2(k—3)2、积分等于。
(A)1。
25(B)2.5(C)3(D)53、序列f(k)=—u(-k)的z变换等于。
(A)(B)-(C)(D)4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于.(A)(B)(C)(D)5、已知一个线性时不变系统的阶跃相应g(t)=2e—2t u(t)+,当输入f(t)=3e—t u(t)时,系统的零状态响应y f(t)等于(A)(—9e—t+12e—2t)u(t) (B)(3-9e-t+12e-2t)u(t)(C)+(—6e—t+8e-2t)u(t) (D)3 +(—9e-t+12e-2t)u(t)6、连续周期信号的频谱具有(A)连续性、周期性(B)连续性、收敛性(C)离散性、周期性(D)离散性、收敛性7、周期序列2的周期N等于(A)1(B)2(C)3(D)48、序列和等于(A)1 (B) ∞(C) (D)9、单边拉普拉斯变换的愿函数等于10、信号的单边拉氏变换等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0。
5)k+1u(k+1)]*=________________________2、单边z变换F(z)=的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=,则函数y(t)=3e-2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j)=2u(1-)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换的原函数f(t)=__________________________6、已知某离散系统的差分方程为,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果,三、(8分),求(1) (2)六、(10分)某LTI系统的系统函数,一、选择题(共10题,每题3分,共30分,1、D2、A3、C4、B5、D6、D7、D8、二、填空题(共9小题,每空3分,共30分)1、2、3、4、5、6、7、8、9、,22k!/S k+1四、(10分)解:1)2)六、(10分)解:由得微分方程为将代入上式得二、写出下列系统框图的系统方程,并求其冲激响应。
读书破万卷下笔如有神实验二利用DFT分析离散信号频谱一、实验目的应用离散傅里叶变换(DFT),分析离散信号的频谱。
深刻理解DFT分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法。
二、实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换(DFT)与四种确定信号傅里叶变换之间的关系(见教材),实现由DFT分析其频谱。
三、实验内容?3的频谱;1.利用FFT分析信号x(310),nn?,1,...,n)?cos(8(1)、确定DFT计算的参数;N=32;n=0:N-1;x=cos(3*pi/8*n);X=fft(x,N);subplot(2,1,1);stem(n,abs(fftshift(X)));ylabel('Magnitude');xlabel('Frequency (rad)');title('朱艺星杨婕婕'); subplot(2,1,2);stem(n,angle(fftshift(X)));ylabel('Phase');xlabel('Frequency(rad)');读书破万卷下笔如有神进行理论值与计算值比较,讨论信号频谱分析过程中误差原因及改善2)(方法。
在频谱分析过程中由于取样频率过低或者由于信号的截取长度不当将会答:产生误差。
可以适当提高取样率,增加样点数,可能会产生混频现象,取样频率过低,来减少混叠对频谱分析所造成的误差。
对于连续周期信号,其时域取样必须kfo,即(其中K≥2*N+1N为最高谐波分量)其取样点数满足时域取样定理:2fm+fo。
≥≥2Nfo+fo;fs截取信号长度不当,会产生功率泄露,对周期序列进行频谱分析时,为避免泄露应做到:截取的长度应取一个基本周期或基本周期的整数倍,若待分析的周期信号事先不知道其确切的周期,则可截取较长时间长度的样点进行分析,以减少功率泄露误差。
信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。
信号是信息的传递载体,可以是电流、电压、声音、图像等形式。
系统是对信号进行处理、传输和控制的装置或网络。
信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。
第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。
按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。
第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。
线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。
时不变表示系统的性质不随时间变化而改变。
线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。
第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。
当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。
通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。
冲激响应还可以用于系统的卷积运算和信号的滤波等应用。
第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。
常用的采样方法包括周期采样和非周期采样。
周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。
采样频率和采样定理是采样过程中需要考虑的重要因素。
第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。
通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。
2014-2015(1)《信号与系统》期末考试试卷A答案D3)()40[(580)(580)]s n Y j u n u n ωωω∞=-∞=+----∑四、(20分)已知因果LTI 系统的微分方程为:()5()6()2()8()y t y t y t x t x t ''''++=+当激励()()t x t e u t -=时,初始状态(0)3,(0)2y y --'==(1)求系统函数()H s ,画系统的零极点图,判断系统的稳定性; (2)求系统的零输入响应、零状态响应以及全响应;(3)指出全响应中的自由响应分量和受迫响应分量,以及稳态响应分量和暂态响应分量;(4)画出系统的模拟结构框图。
解:(1)对微分方程两边进行单边拉氏变换:22()5()6()2()8()()28()()56s Y s sY s Y s sX s X s Y s s H s X s s s ++=++==++ 则有:124,2,3s s s =-=-=-零点极点j ω-4 σ-2-3× ×系统稳定(2)2231281341(),()1561123()[34]()zs t t t zs s X s Y s s s s s s s s y t e e e u t ---+==⋅=-++++++++=-+ 223317118()5623()118zi t tzi s Y s s s s s y t e e --+==-++++=-23()()()377,0t t tzs zi y t y t y t e e e t ---=+=+-≥(3)自由响应2377,0t te e t ---≥, 受迫响应3,0tet -≥稳态响应为零,暂态响应23377,0tt tee e t ---+-≥(4)五、(16分)已知离散因果系统的差分方程为)1()()2(256)1(51)(--=---+n x n x n y n y n y1.求出系统函数()H z ,注明收敛域,判断系统的稳定性并说明理由; 2.求系统的单位冲激响应()h n ;3.若已知()()x n u n =,求系统的零状态响应()zs y n ;答案:1. 121213()162351()()52555z z zH z z z z z z -----==>+--+ 由于两极点25和35-均在单位圆内,系统又为因果系统,所以该系统是稳定的。
2014-2015(1)《信号与系统》期末考试试卷A答案西南交通大学2014-2015学年第(1)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟题号 一 二 三 四 五 六 七 八 九 十 总成绩 得分阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1.信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( B )A.2B.2)2(-t δC. 3)2(-t δD. 5)2(-t δ 2.已知)(t f ,为求)(0at t f - 则下列运算正确的是(其中a t ,0为正数)( B ) A .)(at f - 左移0t B . )(at f - 右移 at 0C . )(at f 左移 0tD . )(at f 右移at 03.某系统的输入-输出关系)1(t )(y 2-=t x t ,该系统是( C ) A .线性时不变系统 B .非线性时不变系统 C .线性时变系统 D .非线性时变系统4.一个因果稳定的LTI 系统的响应可分为自由响应与受迫响应两部分,其自由响应的形式完全取决于( A ) A.系统的特性 B.系统的激励 C.系统的初始状态D.以上三者的综合 5.信号)2()1(2)(-+--t r t r t r 的拉氏变换的收敛域为 ( C )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在 6.理想低通滤波器是( C )A .因果系统 B. 物理可实现系统C. 非因果系统D. 响应不超前于激励发生的系统 7.时域是实偶函数,其傅氏变换一定是( A )A .实偶函数 B.纯虚函数 C.任意复函数 D.任意实函数班 级 学 号 姓 名密封装订线密封装订线8.信号)100()(tSatf=,其最低取样频率sf为(A )A.π100B.π200C.100πD.200π9.已知信号)(tf的傅氏变换为),(ωjF则)3-2-(tf的傅氏变换为( C )A.ωω2)3(3j ejF- B.ωω2)3(3jejF-- C.ωω6)3(3j ejF- D.ωω6)3(3jejF--10.已知Z变换Z11[()]10.5x nz-=-,收敛域0.5z>,求逆变换得x(n)为( A )A.0.5()n u n B. 0.5(1)n u n--- C. 0.5()n u n-- D. 0.5(1)n u n----二、(14分)画图题1.已知)21(tf-波形如图所示,画出)(tf的波形。
解:)()2()12()21(2121tftftftf tttttt−−→−−−→−+−−→−-→-→-→2.已知)(nf及)(nh如下图,试求)()()(nhnfny*=)(nf1210n1-112nn)(nh3)()40[(580)(580)]s n Y j u n u n ωωω∞=-∞=+----∑四、(20分)已知因果LTI 系统的微分方程为:()5()6()2()8()y t y t y t x t x t ''''++=+当激励()()t x t e u t -=时,初始状态(0)3,(0)2y y --'==(1)求系统函数()H s ,画系统的零极点图,判断系统的稳定性; (2)求系统的零输入响应、零状态响应以及全响应;(3)指出全响应中的自由响应分量和受迫响应分量,以及稳态响应分量和暂态响应分量;(4)画出系统的模拟结构框图。
解:(1)对微分方程两边进行单边拉氏变换:22()5()6()2()8()()28()()56s Y s sY s Y s sX s X s Y s s H s X s s s ++=++==++ 则有:124,2,3s s s =-=-=-零点极点j ω-4 σ-2-3× ×系统稳定(2)2231281341(),()1561123()[34]()zs t t t zs s X s Y s s s s s s s s y t e e e u t ---+==⋅=-++++++++=-+ 223317118()5623()118zi t tzi s Y s s s s s y t e e --+==-++++=-23()()()377,0t t tzs zi y t y t y t e e e t ---=+=+-≥(3)自由响应2377,0t te e t ---≥, 受迫响应3,0tet -≥稳态响应为零,暂态响应23377,0tt tee e t ---+-≥(4)五、(16分)已知离散因果系统的差分方程为)1()()2(256)1(51)(--=---+n x n x n y n y n y1.求出系统函数()H z ,注明收敛域,判断系统的稳定性并说明理由; 2.求系统的单位冲激响应()h n ;3.若已知()()x n u n =,求系统的零状态响应()zs y n ;答案:1. 121213()162351()()52555z z zH z z z z z z -----==>+--+ 由于两极点25和35-均在单位圆内,系统又为因果系统,所以该系统是稳定的。
2.212()1(),232323()()()()555555k k z zH z z H z z z z z z z z --===+-+-+-+1223551318,325555z z z z k k z z ==---==-==+- 38()235555z zH z z z =-+-+3283()()()()()5555n n h n u n u n =-+-3.212()(),2323231()()()()555555a a z z z Y z z Y z z z z z z z z z -=⋅==+--+-+-+12235523,325555z z z z a a z z ==-====+-1123()()55n n zs y n u n ++⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦六、(10分) 一个冲激响应为)(t h 的因果LTI 系统有下列性质:(1)当系统的输入为t e t x 2)(=,对所有的t ,其输出对全部t 是t e t y 261)(=。
(2)单位冲激响应)(t h 满足下列微分方程:4()2()()()()t dh t h t e u t bu t dt-+=+ 这里b 是未知常数。
求:1) 利用已知的性质确定该系统的系统函数;注意答案中不能有b. 2) 画出零极点分布图,判定系统的稳定性 3) 求当t e t x 5)(=(-∞<t<∞)时的系统响应y(t)解:1)根据已知的2个性质求得系统函数为1(1)4()2()4(4)(1)4()(2)(4)2(1)4261(2)12(22)(24)486(1)4242()(2)(4)(2)(4)(4)b s b b sH s H s s s s ss b bH s s s s b b b H b s b b s H s s s s s s s s s +++=+=++++=+++++===⇒=+++++===+++++ 2)有限s 平面没有零点,极点为s=0,s=-4。
因为有一个极点0,所以系统不稳定。
3) 当x(t)=e5t(-∞<t<∞)时的系统响应y(t)=(2/5)e5t。