电力拖动原理图
- 格式:pptx
- 大小:3.07 MB
- 文档页数:23
第二章 直流电动机的电力拖动§2-1电力拖动系统的动力学基础一、电力拖动系统的运动方程式电力拖动装置通常由电动机、工作机构、控制设备和电源四部分组成。
电动机和工作机构之间一般还有传动机构,把电动机的运动经过中间变速或变换运动方式后再传给生产机械的工作机构。
(一)运动方程式对于直线运动,方程式为F -F Z = m dt dv(N)式中 F -拖动力 F Z -阻力 m dt dv-惯性力 m 的单位为kg对于旋转运动,方程式为T -T Z =J dt d Ω(N ·m )式中 T -拖动转矩T Z -阻转矩(或称负载转矩)J dt d Ω-惯性转矩(或称加速转矩)通常将转动惯量J 用飞轮矩GD 2来表示,它们之间的关系为J=mp 2=g 4GD2式中 m 与G -转动部分的质量(kg )与重量(N );ρ与D -惯性半径与直径(m );g=9.81m/s 2 -重力加速度再将机械角速度Ω用转速n 表示,则可得运动方程式的实用形式T – T Z = 3752GD dt dn式中 GD 2-飞轮矩 N ·m 2电动机的工作状态可由运动方程式判断(1) 当 T=T Z , dt dn=0 , 则n=0 或 n=常值 电动机静止或等速旋转,即拖动系统稳定运行。
(2) 当 T>T Z , dt dn>0 , 电力拖动系统加速运行。
(3) 当 T<T Z , dt dn<0 , 电力拖动系统减速运行。
(二)运动方程式中转矩的正负号分析根据电动机和生成机械负载类型及运转状态的不同,运动方程式中的T 和T Z 都有方向变化带来的正负号问题,一般可作如下规定:先规定某一方向为n 的正方向,则转矩T 的方向与此方向相同为正,反之为负,转矩T Z 的方向与此方向相反为正,相同为负。
dt dn的大小及正负符号由T 及T Z 的代数和来决定。
上述运动方程式是对一根轴而言的,适用于单轴系统。
一、设计题目:提升机主电路的设计:图1—提升机电力拖动系统原理图图2—提升机电力拖动系统速度图1.加速阶段t1:以最大加速度加速,速度由0增加到v1,当v=v1时,电机工作在固有特性上。
2.等速阶段t2:以v1速度匀速运行。
3.调速阶段t3:以v2速度匀速运行,v2 =0.7v1。
4.减速阶段t4:以最大减加速度减速,速度由v2减小0。
二、课程设计的目的将损坏拖动系统的传动机构。
图3他励直流电动机直接启动接线图2)降低电源电压启动:将励磁绕组接通电源,并将励磁电流调到额定值,然后从低向高调节电枢回路电压的启动方法称为降低电源电压启动;要限制启动电流,首先考虑的是降低电动机输入电压,在直流电动机启动瞬问,给电动机加上较低的电压,以后随着电动机转速的升高,逐步增加直流电压的数值,直到电动机启动完毕,加在电动机上的电压即是电动机的额定电压特点:缩短启动时间,启动过程中能量损耗小,启动平稳,便于实现自动化。
需要一套可调的直流电源启动设备,增加初投资。
用减压启动的方法启动并励电动机时必须注意:启动时必须加上额定的励磁电压,使磁通一开始就有额定值,否则电动机的启动电流虽然比较大,但启动转矩较小,电动机仍无法启动。
图4降低电源电压启动接线图3)电枢回路串电阻启动:电枢回路中串接启动电阻以限制启动电流的启动方法称为电枢回路串电阻启动。
电枢回路串电阻启动即启动时在电枢回路串入电阻,以减小启动电流I,电动机启动后,再逐渐切除电阻,s以保证足够的启动转矩。
在分级启动过程中,若忽略电枢回路电感,并合理的选择每次切除的电阻值就能做到每切除一段启动电阻,电枢电流就瞬间增大到最大启动电流1I 。
此后,随着转速上升,电枢电流逐渐下降。
每当电枢电流下降到某以数值2I 时就切除一段电阻,电枢电流就又突增到最大电流1I 。
这样,在启动过程就可以把电枢电流限制在1I 和2I 之间。
2I 称为切换电流。
启动电阻分段数目越少,启动过程中电流变化范围大,转矩脉动大,加速不均匀,而且平均启动转矩小,启动时间长。