手动正转控制线路
- 格式:doc
- 大小:93.00 KB
- 文档页数:8
课题名称:课题一手动正转控制电路的安装调试教学目的:1.正确掌握低压熔断器、低压开关的选用、检测;2. 正确进行手动正转控制线路装配德育目标:培养学生勇于承认错误,正视自身的弱点和不足教学重点:低压熔断器和低压开关的选用、检测方法教学难点:安装和检修手动正转控制线路教学方法:讲解法、演示法、现场实习法课的类型:实习课教学过程:课前准备:1.准备实习设备、材料及教学用具;2.检查学生出勤情况,工具及劳动保护穿戴情况;3.集中学生注意力,准备讲授教学内容。
安全教育: 1.集体背诵安全操作规程;2.正确使用电工工具及仪表;3.按操作规程要求正确操作电器设备的运行。
讲授新课:课题一手动正转控制电路的安装调试一、低压熔断器低压熔断器主要作短路或过载保护用,串联在被保护的线路中。
线路正常工作时如同一根导线,起通路作用;当线路短路或过载时熔断器熔断,起到保护线路上其他电器设备的作用。
熔断器的结构有管式、磁插式、螺旋式、等几种。
其核心部分熔体(熔丝或熔片)是用电阻率较高的易熔合金制成,如铅锡合金;或者是用截面积较小的导体制成。
熔体额定电流的选择:1.无冲击电流的场合(如电灯、电炉);2.一台电动机的熔体:熔体额定电流≥电动机的起动电流÷2.5;如果电动机起动频繁,则为:熔体额定电流≥电动机的起动电流÷(1.6~2);3.几台电动机合用的总熔体:熔体额定电流=(1.5~2.5)×容量最大的电动机的额定电流+其余电动机的额定电流之和。
二、低压开关刀开关又叫闸刀开关,一般用于不频繁操作的低压电路中,用作接通和切断电源,有时也用来控制小容量电动机的直接起动与停机。
刀开关由闸刀(动触点)、静插座(静触点)、手柄和绝缘底板等组成。
刀开关的种类很多。
按极数(刀片数)分为单极、双极和三极;按结构分为平板式和条架式;按操作方式分为直接手柄操作式、杠杆操作机构式和电动操作机构式;按转换方向分为单投和双投等。
电动机控制线路图1手动正转控制利用铁壳开关或胶盖瓷底刀开关的控制线路如图1所示。
在一般工厂中使用的三相电风扇及砂轮机等设备常采用这种控制线路。
图中QS-FU表示铁壳开关(或胶盖瓷底刀开关)。
当合上铁壳开关,电动机就能转动,从而带动生产机械旋转。
拉闸后,熔断器就脱离电源,以保证安全。
2.采用转换开关的控制转换开关控制线路如图2所示。
图中QS为转换开关,也叫组合开关。
它的作用是引入电源或控制小容量电动机的启动和停止。
图2采用转换开关的控制机床电气控制中常用的转换开关有HZ10系列。
这种转换开关有3副静触片,每一触片的一端固定在绝缘垫板上,另一端伸出盒外,并附有接线柱,以便和电源、用电设备相接。
3个动触片装至绝缘垫板上,垫板套在附有手柄的绝缘杆上。
手柄能向任一方向每次转动90°,并带动3个动触片分别与3副静触片同时通断。
3.用倒顺开关的正反转控制常用的倒顺开关有HZ3-132型和QX1-13M/4.5型,其控制线路如图3所示。
图3用倒顺开关的正反转控制倒顺开关有6个接线柱,L1、L2和L3分别接三相电源,D1、D2和D3分别接电动机。
倒顺开关的手柄有3个位置:当手柄处于停止位置时,开关的两组动触片都不与静触片接触,所以电路不通,电动机不转;当手柄拨到正转位置时,A、B、C、F触点闭合,电动机接通电源正向运转;当电动机需向反方向运转时,可把倒顺开关手柄拨到反转位置上,这时A、B、D、E触片接通,电动机换相反转。
在使用过程中电动机处于正转状态时欲使它反转,必须先把手柄拨至停转位置,使它停转,然后再把手柄拨至反转位置,使它反转。
倒顺开关一般适用于4.5kW以下的电动机控制线路。
4.具有自锁的正转控制具有自锁的正转控制线路如图4所示。
当启动电动机时合上电源开关QS,按下启动按钮SB1,接触器KM线圈获电,KM主触点闭合,使电动机M运转;松开SB1,由于接触器KM常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。
正反转控制电路原理正反转控制电路是一种用于控制电动机正、反转运行的电路。
在工业自动化领域中,电动机的正反转控制是非常常见的应用。
正反转控制电路的基本原理是根据输入信号的不同,通过改变电动机的接线方式,实现电动机的正转或反转运行。
正反转控制电路最常见的应用场景是用于控制电动机的正转和反转。
例如,工业中的输送带系统、搅拌设备、电梯等场景,常常需要通过正反转控制电路来控制电动机的运行方向。
正反转控制电路的原理主要包括以下几个方面:1. 电磁继电器:正反转控制电路通常使用电磁继电器来控制电动机的正转和反转。
电磁继电器是一种具有电磁吸合和释放功能的电器元件,可以通过控制电流来实现开关动作。
正反转控制电路中的电磁继电器通常被设计为双刀双掷结构,通过切换继电器的触点,可以使电动机的线圈正转或反转。
2. 开关控制:正反转控制电路通常通过开关来控制电磁继电器的工作状态。
开关可以是手动开关,也可以是自动开关。
手动开关通常由操作员来控制,而自动开关则可以通过控制器或传感器来实现自动控制。
根据控制信号的不同,正反转控制电路可以实现电动机的正转或反转。
3. 电源供电:正反转控制电路需要提供适当的电源供电,以驱动电磁继电器和电动机。
电源供电的电压和电流应根据电动机的要求进行调整,以确保电动机正常运行。
通常,正反转控制电路会通过适当的保护措施来防止电流过大或过载等故障。
4. 保护措施:正反转控制电路还需要考虑电动机的保护问题。
在电动机正反转过程中,如果电动机的负载过大或发生故障,可能会导致电机损坏。
因此,正反转控制电路通常会设置相应的保护措施,如过载保护、短路保护、过热保护等。
正反转控制电路的工作原理如下:首先,根据输入信号的不同,控制电磁继电器的触点状态。
当电磁继电器的触点处于正转状态时,电源的正极会与电动机的正极相连,电源的负极会与电动机的负极相连,这样电动机就会正转运行。
相反,当电磁继电器的触点处于反转状态时,电源的正极会与电动机的负极相连,电源的负极会与电动机的正极相连,这样电动机就会反转运行。
低压电器实训指导书( 总学时数:1周 )一、实训目的低压电器实训作为独立的教学环节,是工控类及相关专业集中实践性环节系列之一,是学习完《低压电器原理及应用》课程后,并在进行相关实训基础上进行的一次综合练习。
其目的在于加深对低压电器的理解,掌握低压电器应用系统的设计方法;掌握常用接口芯片的正确使用方法;强化低压电器应用电路的设计与分析能力;提高学生在低压电器应用方面的实践技能和科学作风;培育学生综合运用理论知识解决问题的能力,力求实现理论结合实际,学以至用的原则。
学生通过查阅资料、安装调试、整理资料等环节,初步掌握工程设计方法和组织实践的基本技能;熟悉开展科学实践的程序和办法,为今后从事生产技术工作打下必要的基础;学会灵活运用已经学过的知识,并能不断接受新的知识,大胆发明创造的设计理念。
二、实训要求实训应充分体现“教师指导下的以学生为中心”的教学模式,以学生为认知主体,充分调动学生的积极性和能动性,重视学生自学能力的培养。
根据实训具体课题安排时间,确定课题的设计、编程和调试内容,分小组进行。
根据合理的进度安排,一步一步、踏踏实实地开展实训活动,按时完成每部分工作。
实训集中在教室、机房进行,每天由班长负责考勤,指导教师抽查。
在实训过程中,坚持独立完成,实现课题规定的各项指标,并写出设计报告。
三、实训时间及进度安排实训集中在一周(5天)进行。
为保证达到预计的教学任务及目的,以小组为单位分别进行资料的收集、方案论证、电路设计、编程、四、实训课题及内容:具体课题和内容详见《低压电器实训指导书》,根据实验室条件和具体情况可任选一题。
五、设计报告中的几点说明:设计完成后,要求每个同学写出设计报告。
设计报告包括设计过程、逻辑电路图、程序框图、程序、调试说明、心得体会等内容,逻辑电路图和程序框图必须按照下列原则画出。
1、程序框图的原则是:①程序框图一般有几个框图构成,通常所有的框图画在一张图纸上。
所画框图不必太详细,也不能太模糊,关键是要反映出程序的主要思路,逻辑顺序,输入输出以及控制点的设计思想。
课程教学教案
新课讲授一、正转控制线路的概念
正转控制线路只能控制电动机单向启动和停止。
并带动生产机械的运动不见朝一个方向旋转或运动。
对于小容量的电动机,只要电动机接上额定电压就可以直接起动。
这种起动方式,称为全压起动。
对于三相鼠笼式异步电动机,全压起动时流过电动机的电流,将远远超过电动机的额定电流,大约为额定电流的5~7倍。
过大的起动电流会引起线路上很大的电压降,要影响其它用电设备的正常运行。
所以全压起动仅适用于容量较小的电动机。
而对于容量较大的电动机应采用减压起动的方法。
二、正转控制线路的工作原理
原理图如下:
1.线路的特点:
1)优点:简单、造价也低。
2)缺点:不能远距离操作且操作时不安全,易发生灼伤手的事故。
2.各低压电器的作用:
1)手动开关QS起接通、断开电源用;。