奥数 行程问题
- 格式:docx
- 大小:32.48 KB
- 文档页数:3
行程问题1、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远?2、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇. 相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B 之间的距离是多少?3、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距几千米4、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?5、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?6、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?7 、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15 千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4 千米.两队相遇时,骑自行车的同学共行多少千米?8、甲乙二人分别从A、B两地同时出发,并在两地间往返行走。
第一次二人在距离B点400 米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?9.一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?10. 一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?11.一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
行程问题讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法例1.小明上学时坐车,回家时步行,在路上一共用了90分。
如果他往返都坐车,全部行程需30分。
如果他往返都步行,需多少分?(90-30÷2)×2=150例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。
汽车行驶了一半路程,在中途停留30分。
如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?280÷2÷﹙8÷2-0.5﹚-280÷8=5例3.一列火车于下午1时30分从甲站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。
甲、乙两站相距多少千米?6-1.5=4.5﹙60+60﹚×﹙4.5-1﹚+60=480例4.苏步青教授是我国著名的数学家。
一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米。
甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。
小朋友们,你能解答这道题吗?100÷(6+4)×10=100例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。
奥数:行程问题(6题)例1:某校和某工厂间有一条公路,该校下午2点钟派车去该厂接某劳模来较作报告,往返需用1小时,这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,上车去学校,在下午2点40分到,汽车速度是劳模的几倍解:汽车行驶全程时间是1个小时,现在情况汽车2点出发,2点40分回来,说明汽车行驶40分钟,也就是说走了全程的三分之二。
在不管单位的情况下可列式:车速*20min=三分之二路程(因为往返用了40min,所以单程是20min),人步行的时间是1点走到2点的60min,再加上汽车行驶三分之二路程用的20min,即80min,可列式:人速*80min=三分之一路程。
两式相除车速=8倍人速8倍例2、自行车队出发24分钟后,通信员骑摩托车去追他们。
在距出发点9千米处追上了自行车队。
通信员立即回出发点,然后又返回去追自行车队,再追上时恰好离出发点18千米。
求自行车队和摩托车的速度。
答案:与例1类似,摩托车24分钟行9千米×2,所以速度为9×2×(60÷24)=45(千米/小时) 摩托车行9千米用12(=24÷2)分钟,比自行车快24分钟,所以自行车36(=12+24)分钟行9千米,速度为9×60÷36=15(千米/小时)例3、刘江骑自行车在一条公共汽车线路上行驶。
线路的起点站和终点站间隔相同的时间发一次车,并且车速都相同。
他发现从背后每隔12分钟开过来一辆汽车,而迎面每隔4分钟有一辆汽车驶来。
问汽车是每隔多少时间发一辆车?答案:由于每隔12分钟,背后开过来一辆车,而每隔4分钟有一辆车迎面驶来,所以每经过12分钟,恰好有两辆车从不同的方向驶过身边,不妨假设一开始就如此。
设相邻两辆车的间隔为1个单位,到开始时,刘江背后的一辆车与刘江相距1个单位,刘江前面的在第三辆车与刘江相距3个单位,经过12分钟,这两辆车从不同方向驶过刘江身边,由于这两辆车之间相距4个单位,车速相等,所以各驶过2个单位,而刘江则走过1个单位,这表明车速是刘江的2倍,于是汽车6(=12÷2)分钟驶过1个单位,即每6分钟发一辆车。
奥数专题行程问题50道题目详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8 千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米?【解析】速度比=6:9=2:3时间比=3:2 3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少?【解析】前半程开了3小时,因故障停留30分钟,因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。
【解析】 11-7=4分钟甲乙车的速度比=1:0.8=5:4 甲乙行的时间比=4:5=16:20 所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
小学数学行程问题基本公式:路程=速度X时间(S=v X t)速度=路程+时间(v=s+t)时间=路程+速度(t=s + v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程♦总时间(「平=’・: 一;;•・例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往” 与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90x2=180 (千米),摩托车“往”的速度是每小时30千米,所用时间是:90+30=3 (小时), 摩托车“返”的速度是每小时45千米,所用时间是:90+45=2 (小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90x2+ (90+30+90+45)=180+5=36 (千米/小时)1、?山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20 千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(;」上):2;路程一定2「1「二:(1"1 ।[:),牢记平均速度公式,就不会错。
二、相遇问题公式:相遇路程=速度和x相遇时间:(L+l)xt=S相遇时间=相遇路程♦速度和:S+(L+1)=t相遇路程+相遇时间=速度和:S+t=(L+\)甲的速度=速度和一乙的速度:,:=S+t—1二乙的速度=速度和一甲的速度:k=S+t—L重要概念:甲的时间=乙的时间=相遇时间:'l=2=t甲的路程+乙的路程=相遇路程:’1, 飞=s例题.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时行6千米,乙每小时走4千米,二人几小时后相遇?分析:根据(相遇路程)小(速度和)=相遇时间,要求相遇时间,首先要求相遇路程,再求速度和。
行程问题【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【解答】后来小刚的速度是小明的(300-100)÷(200-100)=2倍,所以小明每100秒行150米,因此全程是1600+150×3=2050米。
【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
【题目3】从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
【题目4】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。
原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米【题目5】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
奥数行程问题有关奥数行程问题有关奥数行程问题1AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。
现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。
已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?解答:因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。
对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。
现在考虑甲和乙丙步行路程的距离。
甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。
甲步行1千米比乙少用1/4-1/5=1/20小时。
,所以甲比乙多步行的路程是乙步行路程的:1/20/(3/20=1/3.这样设乙丙步行路程为3份,甲步行4份。
如下图安排:这样甲骑车行骑车的3/5,步行2/5.所以时间为:30*3/5/20+30*2/5/5=3.3小时。
有关奥数行程问题2奥数一直是小升初阶段的的一个重点。
而作为奥数七大模块之一的行程问题一直是奥数学习的一个重点和难点。
其中的流水问题被称为行程问题中的特殊情况,是值得深究的。
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
第七讲行程问题
基础班
1. 邮递员早晨 9 时出发送一份邮件到对面山里,从邮局开始要走一段上坡路长 13 千米,一段下坡路长11 千米。
他上坡时每小时走6千米,下坡时每小时走8千米,到达目的地停留1.5 小时以后,又从原路
返回,邮递员来回共用多少小时?
解:24÷6+24÷8+1.5=7.5(小时)
2. 已知铁路桥长1000 米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120 秒,整列火车
完全在桥上的时间为80 秒。
求火车的速度和长度。
解:10 米/秒;200 米。
3. 一个车队以5米/秒的速度缓缓通过一座长200 米的大桥,共用145秒。
已知每辆车长5米,两车间
隔8米。
问:这个车队共有多少辆车?
解:分析:由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米)。
故车队长度为725-200=525(米)。
再由植树问题可得车队共有车(525-5)÷(5+8)+1=41(辆)。
4.快、慢两列火车相向而行,快车的车长是50 米,慢车的车长是80 米,如果坐在慢车的人见快车驶过窗
口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少秒?
解:.两车相向而行慢车上的人看到快车的速度是两车速度之和,即每秒50÷5=10(米),快车上的人看
到慢车的速度也是每秒10 米,因此坐在快车的人见慢车驶过窗口的时间是80÷10=8(秒)。
5. 小明从甲地向乙地走,小华同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走过程中,各自速度不变,两人第1次相遇在距甲地40 米处,第2次相遇在距乙地15 米处。
甲、乙两地之间相距多少
米?
解:根据题意,可画出如下线段图:
从图中我们看出,小明、小华两人第1次相遇,合行了1个全程,这时小明行了40 米;第2次相遇,小
明、小华共合行了3个全程,小明应行120(40×3)米,比1个全程多15 米,由此可求出甲、乙两地的距
离。
解40×3—15=105(米) 答:甲、乙两地之间相距105 米。
提高班
1. 邮递员早晨 9 时出发送一份邮件到对面山里,从邮局开始要走一段上坡路长 13 千米,一段下坡路长11 千米。
他上坡时每小时走6千米,下坡时每小时走8千米,到达目的地停留1.5 小时以后,又从原路
返回,邮递员来回共用多少小时?
解:24÷6+24÷8+1.5=7.5(小时)
2. 已知铁路桥长1000 米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120 秒,整列火车
完全在桥上的时间为80 秒。
求火车的速度和长度。
解:10 米/秒;200 米。
3. 一个车队以5米/秒的速度缓缓通过一座长200 米的大桥,共用145秒。
已知每辆车长5米,两车间
隔8米。
问:这个车队共有多少辆车?
解:分析:由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米)。
故车队长度为725-200=525(米)。
再由植树问题可得车队共有车(525-5)÷(5+8)+1=41(辆)。
4.快、慢两列火车相向而行,快车的车长是50 米,慢车的车长是80 米,如果坐在慢车的人见快车驶过窗
口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少秒?
解:两车相向而行慢车上的人看到快车的速度是两车速度之和,即每秒 50÷5=10(米),快车上的人看到慢车的速度也是每秒10 米,因此坐在快车的人见慢车驶过窗口的时间是80÷10=8(秒)。
5. 小明从甲地向乙地走,小华同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走过程中,各自速度不变,两人第1次相遇在距甲地40 米处,第2次相遇在距乙地15 米处。
甲、乙两地之间相距多少
米?
解:根据题意,可画出如下线段图:
从图中我们看出,小明、小华两人第1次相遇,合行了1个全程,这时小明行了40 米;第2次相遇,小
明、小华共合行了3个全程,小明应行120(40×3)米,比1个全程多15 米,由此可求出甲、乙两地的距
离。
解40×3—15=105(米) 答:甲、乙两地之间相距105 米。
6.小新骑自行车从家到火车站的汉堡店,以5千米/时的速度行进,下午2点到;以7千米/时的速度行进,上午12 点到。
如果希望中午11 点到,那么应以怎样的速度行进?
解:8.75 千米/小时。
精英班
1. 邮递员早晨9时出发送一份邮件到对面山里,从邮局开始要走一段上坡路,一段下坡路,路程总长24 千米。
他上坡时每小时走6千米,下坡时每小时走8千米,到达目的地停留1.5 小时以后,又从原路返回,
邮递员来回共用多少小时?
解:24÷6+24÷8+1.5=7.5(小时)
2. 已知铁路桥长1000 米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120 秒,整列火车
完全在桥上的时间为80 秒。
求火车的速度和长度。
解:10 米/秒;200 米。
3. 一个车队以5米/秒的速度缓缓通过一座长200 米的大桥,共用145秒。
已知每辆车长5米,两车间
隔8米。
问:这个车队共有多少辆车?
解:分析:由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米)。
故车队长度为725-200=525(米)。
再由植树问题可得车队共有车(525-5)÷(5+8)+1=41(辆)
4.快、慢两列火车相向而行,快车的车长是50 米,慢车的车长是80 米,如果坐在慢车的人见快车驶过窗
口的时间是5秒,那么坐在快车的人见慢车驶过窗口的时间是多少秒?
解:两车相向而行慢车上的人看到快车的速度是两车速度之和,即每秒 50÷5=10(米),快车上的人看到慢车的速度也是每秒10 米,因此坐在快车的人见慢车驶过窗口的时间是80÷10=8(秒)。
5. 小明从甲地向乙地走,小华同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走过程中,各自速度不变,两人第1次相遇在距甲地40 米处,第2次相遇在距乙地15 米处。
甲、乙两地之间相距多少
米?
解:.根据题意,可画出如下线段图:
从图中我们看出,小明、小华两人第1次相遇,合行了1个全程,这时小明行了40 米;第2次相遇,小
明、小华共合行了3个全程,小明应行120(40×3)米,比1个全程多15 米,由此可求出甲、乙两地的距
离。
解40×3—15=105(米) 答:甲、乙两地之间相距105 米。
6.小新骑自行车从家到火车站的汉堡店,以5千米/时的速度行进,下午2点到;以7千米/时的速度行进,上午12 点到。
如果希望中午11 点到,那么应以怎样的速度行进?
解:8.75 千米/小时。