人类第一反应合成氨(1)
- 格式:ppt
- 大小:193.50 KB
- 文档页数:11
合成氨工业发展史一、人口增加与粮食需求农业出现在12000年以前,是人类企图用增加食物供给来增强自己生存的开始。
那时的人口约1500万。
在2000 年前,由于农业的发展使人口增加到2.5亿。
到1650年,人口又增长一倍,达到5亿。
然后,到1850年世界人口就翻了一番,高达10亿,这段历程仅仅花了200 年时间。
80 年后的1930年,人口超过了20亿。
这种增长速度还未减缓,到1985年地球上供养的人数已达50亿。
如果每年以1985年人口的2%水平继续增长下去的话,到2020年的世界人口将是100亿左右。
因此限制人口的增长势在必行。
目前,人口自然增长率在世界范围内正开始下降,据美国华盛顿人口局(1997年):2000年全球人口将由目前的58 亿增至61 亿,2025 年将达68 亿。
人口局称,人口增长最快的是全球最贫困的国家。
1996 年全球58 亿人中发展中国家的人口占了47 亿,占全球人口总增长率的98%。
中国人口增长的形势也不容乐观。
根据国家统计局的统计,中国人口已于1995年2 月15 日达到12亿。
据预测,到2000 年中国人口将突破13.5亿。
显然,人类将面临日益严重的问题是给自己提供充足的食物和营养,以及从根本上限制人口增长。
估计,到20 世纪末,严重营养不良的人数将达6.5 亿。
解决问题的出路,必然需要科学的帮助,化学看来是最重要的学科之一。
它之所以重要,首先是因为它能增加食物供给,其次它能给那些有意限制人口增长的人提供可靠的帮助。
在历史上,化学曾在扩大世界粮食供应过程中起过关键作用。
这就是合成氨的发明和现代农药的使用,以及它们的工业化。
二、合成氨工业发展史20 世纪初化学家们所面临的突出问题之一,是如何为大规模利用大气中氮找到一种实用的途径。
氮化合物是肥料和炸药所必不可少的。
但在当时,这种化合物的质量最优和最大来源是智利硝石。
但智利地处南美而且远离世界工业中心;可是全世界无论何处,大气的五分之四都是氮。
合成氨工艺流程简述合成氨是一种重要的化工原料,广泛应用于肥料、化肥、塑料、合成纤维等领域。
合成氨的工艺流程经过多年的发展和改进,已经相当成熟。
下面将简要介绍合成氨的工艺流程。
首先,合成氨的生产主要通过哈伯-玻斯曼工艺进行。
该工艺是利用氮气和氢气在一定的温度和压力下,经过催化剂的作用,反应生成氨气。
此工艺的主要步骤包括氮气和氢气的准备、反应器的设计、催化剂的选择、生产过程的控制等。
氮气和氢气的准备是合成氨工艺的第一步。
氮气主要来自空气分离装置,而氢气则通过蒸汽重整、水煤气变换等方式制备。
在这一步骤中,需要确保氮气和氢气的纯度和稳定性,以保证后续反应的顺利进行。
接下来是反应器的设计。
在哈伯-玻斯曼工艺中,通常采用高压反应器进行氮气和氢气的反应。
反应器的设计需要考虑到温度、压力、催化剂的选择等因素,以确保反应过程能够高效进行,并且保证反应器的安全性。
催化剂的选择是合成氨工艺中的关键一步。
通常采用铁、铑、钼等金属作为催化剂,以促进氮气和氢气的反应。
催化剂的选择需要考虑到反应速率、选择性、稳定性等因素,以提高氨气的产率和纯度。
生产过程的控制是合成氨工艺中的最后一步。
在反应过程中,需要控制温度、压力、气体流速等参数,以确保反应的高效进行。
此外,还需要对产物进行分离、纯化,以获取高纯度的氨气。
总的来说,合成氨工艺流程包括氮气和氢气的准备、反应器的设计、催化剂的选择和生产过程的控制。
通过这些步骤,可以高效地生产出高纯度的氨气,满足各种工业领域的需求。
合成氨工艺的不断改进和优化,将为化工行业的发展提供重要支持。
合成氨的工艺流程
《合成氨工艺流程》
合成氨是一种重要的化工原料,广泛应用于农业和化工领域。
合成氨的工艺流程主要包括催化剂制备、氮气和氢气的制备以及氨的合成三个主要步骤。
首先是催化剂的制备。
合成氨工艺中使用的主要催化剂是铁-
铝催化剂,它的制备需要经过一系列的化学反应和物理处理。
首先在高温下将铁酸钾和铝酸钾还原成铁铝合金,然后通过高温煅烧和还原处理,最终得到合成氨反应所需的铁-铝催化剂。
其次是氮气和氢气的制备。
氮气主要通过空气分离装置来获取,空气中的氮气含量大约为78%,通过空气分离装置可以将氮
气和氧气分离开来。
而氢气则主要通过蒸汽重整和部分氧化甲烷法制备,蒸汽重整法主要是通过将甲烷与水蒸气在催化剂的作用下反应生成一氧化碳和氢气,而部分氧化甲烷法则是通过将甲烷与氧气在高温下反应生成氢气和二氧化碳。
最后是氨的合成。
氮气和氢气经过净化后,进入合成氨反应器进行催化反应。
在高压和适当温度的条件下,铁-铝催化剂的
作用下,氮气和氢气会发生氮合成反应,生成氨。
这个反应是一个放热反应,因此需要控制反应温度及高压下的反应速率,避免能量过度损失。
综上所述,合成氨的工艺流程复杂且涉及多个步骤。
通过精确
控制每个步骤的条件和参数,可以确保生产安全高效地进行,从而满足氨的需求并为化工及农业领域提供丰富的原料。
第一单元氨的合成1.了解合成氨的主要原理、原料、重要设备、流程和意义,知道催化剂的研制对促进化工发展的重大意义,认识实际化工生产技术问题的复杂性,增强技术意识。
2.从合成氨工业流程与技术出发了解化学在工农业生产中的具体应用,认识化学学科发展对化工生产技术进步的促进作用,认识化学工业在国民经济发展中的地位。
卡尔·博施是德国工业化学家。
他的主要贡献是改进了哈伯首创的高压合成氨法,找到了合适的氧化铁型催化剂,使合成氨生产工业化,称为“哈伯-博施法”。
1908~1913年他改进了高压合成氨的催化方法,实现了合成氨的工业化生产,并在发展高压化学方面取得了成就.因此他获得了1931年的诺贝尔化学奖。
他的高压化学方法标志着化学合成工艺的巨大进步,此外,他还进行了合成汽油、合成甲醇的研究工作.错误!一、合成氨反应条件的选择1.合成氨反应的特点合成氨是20世纪初德国人哈伯发明的。
实际生产在高压、适宜温度和催化剂条件下进行:N2(g)+3H2(g) 2NH3(g)ΔH=-92。
4 kJ·mol-1,这一可逆反应的特点是正反应为气体体积减小的放热反应。
2.合成氨反应条件的选择在合成氨生产中要综合考虑反应速率、催化剂工作温度、反应物转化率、反应装置材料与生产技术水平来确定反应的条件.目前,工业上用铁触媒作催化剂,在20~50MPa、450 ℃左右用氮、氢混合气体进行氨的合成,得到的平衡混合物中,氨的含量约为20%。
二、合成氨的生产工艺1.合成氨的工业流程(1)制备原料气.合成氨的生产首先需要合成原料气。
原料气由体积比约为1∶3的氮气和氢气组成。
(2)反应前原料气的处理。
把原料气加压、预热后送到合成塔。
(3)合成反应。
在一定条件下发生合成反应,就可以得到含有一定质量分数氨气的平衡混合气。
(4)反应后平衡混合气体的处理。
从合成塔里排出的平衡混合气体中分离出氨气后,把未反应的氮、氢原料气送回合成塔循环利用。
合成氨的发展历程及煤合成氨原理一、合成氨的历程1.怎样固氮——问题浮出水面氨(Amonia),分子式NH3,1754 年由英国化学家普里斯特利(J.Joseph Priestley)加热氯化铵和石灰石时发现。
1784 年,法国化学家贝托雷(C.L.Berthollet)确定了氨是由氮和氢组成的。
从那以后很长一段时间,氨的主要来源是氮化物,而氮化物的主要来源是自然界中的硝石矿产。
19 世纪以来,人类步入了现代化的历程。
随着农业的发展,氮肥的需求量在不断提高;同时随着工业的突飞猛进,炸药的需求量也在迅速增长。
1809 年,在智利发现了一个很大的硝酸钠矿产地;但是面对人类不断膨胀的需求,自然界的生物和矿产资源毕竟有限。
然而全世界无论何处,大气的五分之四都是氮,如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。
因此将空气中丰富的氮固定下来并转化为可被利用的形式,成为一项受到众多科学家注目和关切的重大课题,而合成氨,作为固氮的一种重要形式,也变成了19 至20 世纪化学家们所面临的突出问题之一。
2.历经磨难,终成正果——从实验室到工业生产在合成氨研究屡屡受挫的情况下,德国物理化学家F·哈伯(Fritz Haber)知难而进,对合成氨进行了全面系统的研究和实验,决心攻克这一令人生畏的难题。
1912 年在德国奥堡(Oppau)建成世界上第一座日产30t合成氨的装置,1913 年9 月9 日开始运转,氨产量很快达到了设计能力。
一百多年来无数科学家们合成氨的设想,终于得以实现。
合成氨历经磨难,终于从实验室走向了工业化,它成了工业上实现高压催化反应的一座里程碑。
由于哈伯和博施的突出贡献,他们分别获得1918、1931 年度诺贝尔化学奖金。
3.艰难的探索N2+3H2=2NH3氨的合成反应式:N2+3H2=2NH3合成氨的化学原理,写出来,不过这样一个方程式;但就是这样一个简单的化学方程式,从实验室研究到最终成功、实现工业生产,却经历了约150 年的艰难探索。
合成氨发展史合成氨是一种重要的化工原料,广泛应用于农业、化肥、化学工业等领域。
它的发展历程可以追溯到19世纪末的德国。
本文将从历史的角度来探讨合成氨的发展史。
19世纪末,德国化学家弗里德里希·奥斯卡·巴斯纳(Friedrich Oscar Bosch)和卡尔·博斯(Carl Bosch)开始研究氨的合成方法。
当时,氨主要通过植物固氮和煤气化反应从气体中提取。
然而,这种方法效率低下,成本高昂,无法满足工业需求。
巴斯纳和博斯在研究中发现,通过高温和高压条件下,将氮气和氢气进行催化反应,可以合成氨。
于是,他们开始尝试使用铁作为催化剂,并在1910年成功地实现了工业化合成氨的试验。
然而,这个方法的实施并不容易。
高温高压条件下的反应对设备和催化剂提出了很高的要求。
巴斯纳和博斯花费了数年时间改进设备和催化剂,最终于1913年建立了第一个工业化的合成氨厂。
合成氨的工业化生产在发展初期遇到了很多问题。
首先,高温高压条件下的反应对设备的耐压性要求很高,这导致了设备的频繁故障和维修。
其次,铁催化剂的性能不稳定,容易失活,需要经常更换。
这些问题使得合成氨的生产成本居高不下。
随着时间的推移,合成氨的生产技术逐渐得到改进和完善。
20世纪30年代,德国化学家卡尔·博斯和他的团队提出了一种新的催化剂——铁-铝合金催化剂。
这种催化剂具有更好的活性和稳定性,使得合成氨的生产效率得到了大幅提升。
在二战期间,合成氨的生产技术得到了进一步的发展。
由于战争的需要,合成氨被广泛用于制造炸药。
为了提高生产效率,德国在合成氨生产中使用了更高的压力和更高的温度,从而使合成氨的产量大幅增加。
战后,合成氨的生产技术继续得到改进。
20世纪60年代,美国化学家阿尔弗雷德·埃尔登(Alfred E. Edden)提出了一种新的催化剂——铁-钼催化剂。
这种催化剂具有更高的活性和选择性,使合成氨的生产过程更加高效和稳定。
人工合成氨发展简史蔡 狄 李 冬 贺 竞 李 佳一、怎样固氮——问题浮出水面氨(Amonia) ,分子式 NH3,1754 年由英国化学家普里斯特利(J.Joseph Priestley)加热 氯化铵和石灰石时发现。
1784 年,法国化学家贝托雷(C.L.Berthollet)确定了氨是由氮和氢 组成的。
从那以后很长一段时间,氨的主要来源是氮化物,而氮化物的主要来源是自然界中 的硝石矿产。
19 世纪以来,人类步入了现代化的历程。
随着农业的发展,氮肥的需求量在不断提高; 同时随着工业的突飞猛进,炸药的需求量也在迅速增长。
1809 年,在智利发现了一个很大 的硝酸钠矿产地;但是面对人类不断膨胀的需求,自然界的生物和矿产资源毕竟有限。
然而 全世界无论何处,大气的五分之四都是氮,如果有人能学会大规模地、廉价地把单质的氮转 化为化合物的形式,那么,氮是取之不尽、用之不竭的。
因此将空气中丰富的氮固定下来并 转化为可被利用的形式,成为一项受到众多科学家注目和关切的重大课题,而合成氨,作为 固氮的一种重要形式,也变成了 19 至 20 世纪化学家们所面临的突出问题之一。
二、历经磨难,终成正果——从实验室到工业生产1.艰难的探索N2+3H2=2NH3合成氨的化学原理, 写出来, 不过这样一个方程式; 但就是这样一个简单的化学方程式, 从实验室研究到最终成功、实现工业生产,却经历了约 150 年的艰难探索。
在此期间,曾有 不少著名的化学家踏上了合成氨的研究之路,但他们的最终结局却都是无功而返。
1795 年,曾有人试图在常压下进行氨合成,后来又有人在 50 个大气压下试验,结果都 失败了。
19 世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可 逆的,增加压力将使反应推向生成氨的方向,提高温度会将反应移向相反的方向,然而温度 过低又使反应速度过小; 催化剂对反应将产生重要影响。
这实际上就为合成氨的试验提供了 理论指导。
合成氨发展史及未来的发展方向合成氨发展史及未来的发展方向各位同事工友们,下午好:我今天演讲的题目是“合成氨发展史及未来的发展方向”,是一种科普性质的讲义,作为一个搞氨合成的专业技术人员来说,知道合成氨的发展历史和未来的发展方向,对把握我们公司的发展和了解我们的现状,很有必要和意义。
一、为什么叫合成氨我们把氨叫做合成氨,为什么在氨的前面加了“合成”两个字,我们知道氨的分子式是NH3,由于氨的不活泼性,使得人们直到19世纪晚期仍然普遍认为将氮与氨直接合成氨是不可能的,20世纪初,虽然有人借助催化剂的作用合成了氨,但仍然认为无法工业化,因为确实遇到了诸如可供实际工业使用的催化剂难以找到、高温高压能够抵抗氢腐蚀的材料无法解决等问题,可以认为合成氨的技术开发历程阻力重重,举步维艰,经过千万次的不懈努力,才使得世界上第一座工业规模的氨系统于1913年在德国建成投产。
从此开创了氮肥工业的新纪元.为了纪念氨开发的艰难,特在氨前面加“合成”两个字.二、合成氨在国民经济中的地位和作用1、用氨制造氮肥。
我们知道土壤所缺的养份主要是氮磷、钾.从解放前直至改革开放初期,中国的粮食产量一直不能自给自足,主要原因是中国几乎所有的土壤都需补氮。
由于合成氨工业不能满足农业施肥的需要,土壤补氮不足,农作物只能在低产水平上徘徊(300斤过黄河,400斤跨长江),为了满足粮食生产的需要,我国一直把发展化肥工业作为整个化学工业的首要任务,中国要以全世界7%的耕地来养活全世界22%的人口。
经过60多年的发展,我国合成氨制造和氮肥产量已居世界首位,合成氨作为制造氮肥的主要原料,为粮食增产、农民增收、社会稳定立下了汗马功劳。
2、氨的工业用途氨是氮的一种固定形式,除少数场合直接使用外,更主要的是使用其中的氮与其他物质化合而成各种不同的含氮化合物,然后再用于各工业领域。
虽然氮分子只由两个氮原子组成,但是氮原子可以形成三个键,如果这三个键都与氢原子相联,就形成了氨(NH3),将氨的氢原子以各种不同的化学物质取代,就会的到不同的衍生物。