2.2矩阵的运算
- 格式:ppt
- 大小:772.00 KB
- 文档页数:29
2.2矩阵的运算及其性质1. 矩阵的加法矩阵的加法是指对应位置上的元素相加,即对两个相同大小的矩阵进行加法运算。
对于两个矩阵A和B,它们的加法运算可以表示为A + B,结果矩阵C的每个元素是A和B对应位置上元素的和。
矩阵的加法满足以下性质: - 交换律:A + B = B + A - 结合律:(A + B) + C = A + (B + C) - 零元素:存在一个零元素0,满足A + 0 = A - 负元素:对于任意矩阵A,存在一个负元素-A,满足A + (-A) = 02. 矩阵的减法矩阵的减法是指对应位置上的元素相减,即对两个相同大小的矩阵进行减法运算。
对于两个矩阵A和B,它们的减法运算可以表示为A - B,结果矩阵C的每个元素是A和B对应位置上元素的差。
矩阵的减法满足以下性质: - A - B = A + (-B)3. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素都乘以一个数。
对于一个矩阵A和一个数k,它们的数乘运算可以表示为k * A,结果矩阵B的每个元素都是A对应位置上的元素乘以k。
矩阵的数乘满足以下性质: - 结合律:(k1 * k2) * A = k1 * (k2 * A) - 分配律:(k1 + k2) * A = k1 * A + k2 * A - 分配律:k * (A + B) = k * A + k * B - 1 * A = A4. 矩阵的乘法矩阵的乘法是指矩阵和矩阵之间的一种运算。
对于两个矩阵A和B,它们的乘法运算可以表示为A * B,结果矩阵C的元素是A的行向量与B的列向量进行内积后得到的。
矩阵的乘法满足以下性质: - 结合律:(A * B) * C = A * (B * C) - 分配律:A * (B + C) = A * B + A * C - 分配律:(B + C) * A = B * A + C * A - 乘法不满足交换律,即A *B ≠ B * A5. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
矩阵的加法和乘法规则1. 矩阵的加法规则矩阵加法是指将两个相同大小的矩阵对应位置上的元素相加得到一个新的矩阵的运算规则。
设有两个矩阵A和B,它们的大小都是m行n列,表示为A = [a<sub>ij</sub>]<sub>m×n</sub>,B =[b<sub>ij</sub>]<sub>m×n</sub>。
则A和B的加法规则为:A +B = [a<sub>ij</sub> + b<sub>ij</sub>]<sub>m×n</sub>新矩阵中的每个元素都是原两个矩阵对应位置上元素的和。
2. 矩阵的乘法规则2.1 矩阵的数乘规则矩阵的数乘是指将一个数(标量)和矩阵的每个元素相乘得到一个新的矩阵的运算规则。
设有一个矩阵A,大小为m行n列,表示为A =[a<sub>ij</sub>]<sub>m×n</sub>,以及一个数(标量)k。
则A的数乘规则为:kA = [ka<sub>ij</sub>]<sub>m×n</sub>新矩阵中的每个元素都是原矩阵对应位置上元素与数k的乘积。
2.2 矩阵的乘法规则矩阵的乘法是指将一个m行n列的矩阵A和一个n行p列的矩阵B相乘得到一个m行p列的矩阵C的运算规则。
设有两个矩阵A和B,它们的大小分别为m行n列和n行p列,表示为A = [a<sub>ij</sub>]<sub>m×n</sub>,B =[b<sub>ij</sub>]<sub>n×p</sub>。
§2.2 矩阵的运算1.矩阵的加法定义:设有两个n m ⨯矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B ,规定为n m ij ij b a B A ⨯+=+)(设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-.2.数与矩阵相乘定义:数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ⨯=)(λλ 由数λ与矩阵A 的每一个元素相乘。
数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ=)(ii A A A μλμλ+=+)()(iii B A B A λλλ+=+)(3.矩阵与矩阵相乘定义:设)(ij a A =是一个s m ⨯矩阵,)(ij b B =是一个n s ⨯矩 那么规定矩阵A 与矩阵B 的乘积是一个n m ⨯矩阵)(ij c C =,其中),,2,1;,,2,1(,12211n j m i b a b a b a b a c kj sk ik sj is j i j i ij ===+++=∑=并把此乘积记作AB C =,两矩阵相乘,要求左边距阵的列等于右边矩阵的行,乘积的矩阵的行与左边的行相同,列与右边的列相同。
例3:求矩阵⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=043211,012301B A 的乘积BA AB 及. 解 ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=1204638311,50113BA AB 从本例可以看出AB 不一定等于BA ,即矩阵乘法不满足交换律 注:若有两个矩阵B A 、满足0=AB ,不能得出00==B A 或的结论,即矩阵乘法不满足消去律.矩阵的乘法满足下列结合律与分配律)(i )()(BC A C AB =)(ii 为数)其中λλλλ(),()()(B A B A AB == )(iii CA BA A C B AC AB C B A +=++=+)(,)(对单位矩阵E ,易知n m n n m n m n m m A E A A A E ⨯⨯⨯⨯=⋅=,可简记为 A AE EA ==4.矩阵的转置的定义:把矩阵A 的行列交换得到一个新矩阵,叫做A 的转置矩阵,记作T A矩阵的转置运算满足下述运算规律(假设运算都是可行的) )(i A A T T =)()(ii T T T B A B A +=+)()(iii T T A A λλ=)()(iv T T T A B AB =)(5.对称矩阵与反对称矩阵的定义:设A 是n 阶方阵,如果满足A A T =,即),,2,1,(,n j i a a ji ij ==则称A 是对称矩阵.对称矩阵的特点是:它的元素以对角线为对称轴对应相等. 如果满足A A T-=,即⎩⎨⎧=≠-=0)(ii ji ij a j i a a 则称A 是反对称矩阵.反对称矩阵的特点是:它的元素以对角线为对称轴对应相反6.方阵的行列式:由n 阶矩阵A 的元素构成的行列式(各元素位置不变),称为矩阵A 的行列式,记作A 或A det设A ,B 为n 阶方阵,λ为数,则有下列等式成立:B A AB A A A A n T ===;;λλ例4:设A 是n 阶反对称矩阵,B 是n 阶对称矩阵,证明:BA AB +是n 阶反对称矩阵证明:)()()()()()(,BA AB B A A B B A A B BA AB BA AB BB A A T T T T T T T T T +-=-+-=+=+=+∴=-=所以结论成立例5:设A 是n 阶方阵,满足E AA T =,且1-=A ,求E A + 解:由于A E A E A E A A E A AA A E A T T T T +-=+-=+=+=+=+)( 所以02=+E A ,即E A +=0§2.3矩阵的逆7.逆矩阵:对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使E BA AB ==,则称矩阵A 是可逆的,并把B 称为A 的逆矩阵。
§2.2 矩阵的运算一、矩阵的加法定义1⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A 221122222221211112121111设有两个矩阵那么矩阵与的和记作,规定为n m ⨯()(),,ij ij b B a A ==A B B A +说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.把矩阵中各元素变号得到的矩阵,称为A 的负矩阵,记作–A ,即n m ij )(a A ⨯=nm ij )a (A ⨯−=−矩阵加法的运算规律()A;B B A 1+=+()()().C B A C B A 2++=++()0.A A (4)=−+矩阵的减法可定义为A−B =A+ (−B )A 0A (3)=+矩阵0在矩阵加法运算中与数0在数的加法运算中有同样的性质。
定义2.ka ka ka ka ka ka ka ka ka kA mn m1m12n 22211n 1211⎪⎪⎪⎪⎪⎭⎫⎝⎛= 规定为的乘积记作与矩阵数,kA A k nm ij n m ij n m )(ka )k(a kA ⨯⨯⨯==二、数与矩阵相乘()()();1A A μλλμ=()();2A A A μλμλ+=+()().3B A B A λλλ+=+数乘矩阵的运算规律矩阵加法与数乘矩阵合起来,统称为矩阵的线性运算.(设为矩阵,为数)μλ,n m ⨯B A 、数乘关于数因子的结合律数乘关于数的加法的分配律数乘关于矩阵加法的分配律A1A =(4)三、矩阵与矩阵相乘例 根据下面的学生成绩表计算每个同学的总评成绩。
姓 名 平时(占35%) 期中测验(占25%) 期末考试(占40%) 总评刘 涛 79 85 88李 红 91 87 90叶 军 93 95 97计算总评成绩的公式是:总评成绩 = 平时35.0⨯+期中25.0⨯+期末40.0⨯.根据成绩表填写下面括号中的数字,计算以后就可 以得到:刘涛的总评成绩= ( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 = 84.1 .( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 ( 91 )×0.35 + ( 87 )×0.25 + ( 90 )×0.40( 93 )×0.35 + ( 95 )×0.25 + ( 97 )×0.40能不能用矩阵把它们表示出来?怎样表示?以上各式中的数,一部分是同学们的成绩,取出来可以得到矩阵A ,⎪⎪⎪⎭⎫⎝⎛=979593908791888579A另一部分是各种成绩所占百分比,取出来可以得到矩⎪⎪⎪⎭⎫⎝⎛=0.400.250.35B .例题中总评成绩算法格式相同,算式如下:以上算法可以总结为:用矩阵A 每一行的各个数分别和矩阵B 的各个数对应相乘再相加。
矩阵的运算与逆矩阵矩阵是线性代数中重要的概念之一,广泛应用于各个领域,包括数学、物理、计算机科学和经济学等。
本文将介绍矩阵的运算以及逆矩阵的概念与计算方法。
一、矩阵的基本概念矩阵是一个按照矩形排列的数或者变量的集合。
矩阵的行数与列数分别称为其维数。
二、矩阵的运算2.1 矩阵的加法将两个矩阵的相应元素进行相加,得到的结果矩阵即为它们的和。
2.2 矩阵的乘法矩阵的乘法是指将一个矩阵的行与另一个矩阵的列进行对应元素相乘再相加的运算。
注意乘法只有当第一个矩阵的列数与第二个矩阵的行数相等时才能进行。
2.3 矩阵的转置将矩阵的行与列进行交换得到的新矩阵称为原矩阵的转置矩阵。
转置矩阵的行数与原矩阵的列数相等,列数与原矩阵的行数相等。
三、逆矩阵的定义与性质3.1 逆矩阵的定义对于一个n阶实矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为单位矩阵,则矩阵B称为矩阵A的逆矩阵。
3.2 逆矩阵的存在性一个n阶矩阵A存在逆矩阵的充要条件是A是一个可逆矩阵,即其行列式不为零。
当A存在逆矩阵时,逆矩阵是唯一的。
3.3 逆矩阵的性质逆矩阵的转置等于逆矩阵的逆矩阵,即(A^-1)^T = (A^T)^-1。
两个矩阵的乘积的逆矩阵等于逆矩阵的乘积,即(AB)^-1 = B^-1 *A^-1。
四、计算逆矩阵的方法4.1 初等行变换法通过初等行变换将矩阵A通过一系列矩阵的乘法变为单位矩阵I,同时对单位矩阵进行相同操作所得的矩阵即为矩阵A的逆矩阵。
4.2 行列式法对于一个n阶矩阵A,如果其行列式不为零,则通过求解伴随矩阵所得的矩阵即为A的逆矩阵。
4.3 元素法通过增广矩阵[A, E](其中E为n阶单位矩阵)进行行变换将矩阵A变换为单位矩阵I,此时增广矩阵的右半部分即为A的逆矩阵。
五、矩阵与线性方程组利用矩阵与线性方程组的关系可以方便地求解线性方程组。
对于一个n个未知数和m个方程的线性方程组,可以将其写成矩阵形式AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。
数学初中二年级下册第二章矩阵的认识与运算矩阵是数学中一个重要的概念,它在各个领域起着重要的作用。
本章主要介绍矩阵的基本概念以及矩阵的运算。
1. 矩阵的基本概念矩阵由元素排列成的矩形阵列,其中每个元素都有自己的位置和值。
矩阵通常用大写的字母表示,如A、B等,元素用小写的字母表示,如a、b等。
矩阵的大小由行和列决定,如果一个矩阵有m行n列,则称其为m×n矩阵。
如下所示为一个3×4矩阵:$$A = \begin{bmatrix}a_{11} & a_{12} & a_{13} & a_{14} \\a_{21} & a_{22} & a_{23} & a_{24} \\a_{31} & a_{32} & a_{33} & a_{34} \\\end{bmatrix}$$2. 矩阵的运算2.1 矩阵的加法两个矩阵的加法要求其大小相同,即行数和列数都相等。
对应位置的元素相加得到新矩阵的对应元素。
例如,对于两个矩阵A和B的加法运算,结果矩阵C的对应元素为:$$c_{ij} = a_{ij} + b_{ij}$$2.2 矩阵的数乘矩阵的数乘即一个矩阵中的每个元素都乘以同一个数。
例如,对于矩阵A的数乘运算,结果矩阵B的对应元素为:$$b_{ij} = k \cdot a_{ij}$$其中k为一个实数。
2.3 矩阵的乘法矩阵的乘法是一种比较复杂的运算,要求被乘矩阵的列数等于乘矩阵的行数。
乘积矩阵的行数等于被乘矩阵的行数,列数等于乘矩阵的列数。
设矩阵A为m×n矩阵,矩阵B为n×p矩阵,则乘积矩阵C为m×p 矩阵。
乘积矩阵C的第i行第j列元素为:$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \cdots + a_{in}\cdot b_{nj}$$3. 矩阵的性质3.1 矩阵的转置矩阵的转置是将矩阵的行和列交换得到的新矩阵。