矩阵及基本运算
- 格式:ppt
- 大小:490.50 KB
- 文档页数:36
矩阵基本运算及应用201700060牛晨晖在数学中,矩阵是一个按照长方阵列排列的或集合。
矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。
矩阵的运算是领域的重要问题。
将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。
1矩阵的运算及其运算规则1.1矩阵的加法与减法1.1.1运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.1.1.2运算性质满足交换律和结合律交换律;结合律.1.2矩阵与数的乘法1.2.1运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.1.2.2运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.1.2.3典型举例已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知1.3矩阵与矩阵的乘法1.3.1运算规则设,,则A与B的乘积是这样一个矩阵:(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.1.3.2典型例题设矩阵计算解是的矩阵.设它为可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.1.3.3运算性质(假设运算都是可行的)(1) 结合律.(2) 分配律(左分配律);(右分配律).(3) .1.3.4方阵的幂定义:设A是方阵,是一个正整数,规定,显然,记号表示个A的连乘积.1.4矩阵的转置1.4.1定义定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.例如,矩阵的转置矩阵为.1.4.2运算性质(假设运算都是可行的)(1)(2)(3)(4) ,是常数.1.4.3典型例题利用矩阵验证运算性质:解;而所以.定义:如果方阵满足,即,则称A为对称矩阵.对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.1.5方阵的行列式1.5.1定义定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作或.1.5.2运算性质(1) (行列式的性质)(2) ,特别地:(3) (是常数,A的阶数为n)思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是?不妨自行设计一个二阶方阵,计算一下和.例如,则.于是,而2光伏逆变器的建模光伏并网逆变器是将光伏组件输出的直流电转化为符合电网要求的交流点再输入电网的关键设备,是光伏系统并网环节中能量转换与控制的核心。
矩阵知识点总结矩阵是线性代数中重要的概念和工具之一,广泛应用于数学、物理、工程、计算机科学等领域。
下面将对矩阵的基本知识点进行总结。
1. 矩阵的定义:矩阵是一个按照长和宽排列的矩形数组,其中的元素可以是任意类型的数值。
一个矩阵由行和列组成,通常记作A=[a_ij]。
2. 矩阵的运算:(1) 矩阵的加法和减法:对应元素相加或相减。
(2) 矩阵的乘法:矩阵乘法是一种非交换运算,两个矩阵相乘的结果是第一个矩阵的行乘以第二个矩阵的列。
(3) 矩阵的转置:将矩阵的行和列交换位置得到的新矩阵。
(4) 矩阵的数量乘法:将矩阵的每个元素同一个实数相乘得到的新矩阵。
3. 矩阵的特殊类型:(1) 方阵:行数和列数相等的矩阵。
(2) 零矩阵:所有元素都为零的矩阵。
(3) 对角矩阵:除了对角线上的元素外,其他元素都为零的矩阵。
(4) 单位矩阵:对角线上的元素都为1,其他元素都为零的矩阵。
(5) 上三角矩阵:下三角(低三角)矩阵:除了对角线及其以上的元素外,其他元素都为零的矩阵。
4. 矩阵的性质:(1) 矩阵的加法和乘法满足结合律和分配律,但不满足交换律。
(2) 矩阵乘法的转置性质:(AB)^T = B^T A^T。
(3) 矩阵的逆:如果矩阵A的逆存在,记作A^(-1),则A和A^(-1)的乘积等于单位矩阵:A A^(-1) = I。
(4) 矩阵的秩:矩阵的秩是指矩阵中非零行的最大线性无关组数。
5. 矩阵的应用:(1) 线性方程组的解:通过矩阵的运算和逆矩阵可以解决线性方程组的求解问题。
(2) 向量空间的表示:矩阵可以表示向量空间内的线性变换和线性组合。
(3) 特征值和特征向量:矩阵的特征值和特征向量可以用于描述矩阵的性质和变换规律。
(4) 数据处理和机器学习:矩阵在数据处理和机器学习中广泛应用,用于存储和处理大量数据。
总的来说,矩阵是一种重要的数学工具,它的运算性质和特殊类型有助于解决线性方程组、描述线性变换和计算大量数据等问题。
矩阵的运算规则矩阵是数学中重要的概念之一,在各个学科领域都有广泛的应用。
矩阵的运算规则是研究和操作矩阵的基础,它们被广泛用于解决线性方程组、矩阵计算和数据处理等问题。
本文将详细介绍矩阵的基本运算规则,包括矩阵的加法、乘法以及转置等操作。
一、矩阵的加法矩阵的加法是指将两个具有相同行数和列数的矩阵相加的操作规则。
假设有两个矩阵A和B,它们的行数和列数相等,则可以将它们对应位置的元素相加,得到一个新的矩阵C。
例如,有两个2×2的矩阵A和B:A = [a11, a12][a21, a22]B = [b11, b12][b21, b22]则矩阵A与B的加法运算可表示为:C = A + B = [a11+b11, a12+b12][a21+b21, a22+b22]二、矩阵的乘法矩阵的乘法是指将两个矩阵相乘的操作规则。
要使两个矩阵能够相乘,第一个矩阵的列数必须等于第二个矩阵的行数。
例如,有两个m×n的矩阵A和n×p的矩阵B:A = [a11, a12, ..., a1n][a21, a22, ..., a2n][..., ..., ..., ...][am1, am2, ..., amn]B = [b11, b12, ..., b1p][b21, b22, ..., b2p][..., ..., ..., ...][bn1, bn2, ..., bnp]则矩阵A与B的乘法运算可表示为:C = A × B = [c11, c12, ..., c1p][c21, c22, ..., c2p][..., ..., ..., ...][cm1, cm2, ..., cmp]其中,矩阵C的元素cij的计算方式为:cij = a(i1)b(1j) + a(i2)b(2j) + ... + a(in)b(nj)三、矩阵的转置矩阵的转置是指将矩阵的行和列进行交换得到的新矩阵。
假设有一个m×n的矩阵A,则它的转置矩阵记为A^T,具有n×m的行列数。
矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
本文将介绍矩阵的基本概念、运算规则以及常见的应用。
一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。
矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。
矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。
矩阵可以是实数矩阵,也可以是复数矩阵。
实数矩阵的元素全为实数,复数矩阵的元素可以是复数。
例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。
矩阵的基本运算公式大全矩阵是数学中一种常用的工具,它可以在一组数字的数字或者一组函数的函数中表示一种关系。
矩阵的基本运算包括加减乘除和求逆等。
在学习矩阵的基本运算之前,必须先了解矩阵的基本概念。
矩阵是由一组有序的数字或者函数构成的方阵。
在一个矩阵中,每一行代表一个数字或者函数,每一列代表一个变量。
一个矩阵可以用一个由大写英文字母表示的括号表示,例如A=(a11,a12,...,a1n;a21,a22,...,a2n;...;am1,am2,...,amn)。
矩阵的大小也可以用一个由小写字母表示的括号表示,例如A=(m×n)。
矩阵的基本运算包括加法,减法,乘法,除法以及求逆。
矩阵的加减法,可以把两个同样大小的矩阵,相应的位置上的元素相加减,然后得到一个新的矩阵。
矩阵的乘法是指把两个矩阵相乘,得到一个新的矩阵。
在矩阵的乘法中,我们可以把矩阵A乘以矩阵B,得到一个矩阵C。
在这里,矩阵A和B的大小是m×n和n×p,那么矩阵C的大小就是m×p。
具体的乘法规则是,把矩阵A的n列和矩阵B的n行相乘,然后把得到的结果全部加起来,就是矩阵C的对应位置的值。
除法是除以另一个矩阵的逆矩阵来求解的。
求逆矩阵有多种方式,最常用的是使用行列式的值来求解的。
首先,求得一个矩阵的行列式,如果它的值不为零,则该矩阵是可逆的,可以求出它的逆矩阵。
然后把这个矩阵除以它的逆矩阵,就可以求出除法的结果。
矩阵的基本运算非常实用,它们经常被用来解决复杂的数学问题。
例如,我们可以用矩阵的加减乘除运算来解决向量和矩阵之间的运算,也可以用矩阵乘法来解决线性方程组。
此外,在矩阵的基本运算中,我们还可以求解矩阵的秩,对角化矩阵,求得矩阵的特征值等问题。
在很多应用科学中,矩阵的基本运算也是一个不可或缺的工具。
例如,在电路设计中,可以通过矩阵乘法来分析电路的响应特性;在统计学中,可以通过矩阵的乘法来求数据的均值和方差等等。
线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置- 6DAN - 博客园线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置1. 矩阵加法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相加2. 矩阵减法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相减3. 矩阵取负前提条件:无操作数:任意一个m*n矩阵A=[aij]基本动作:元素对应取负4. 矩阵乘法前提条件:左矩阵A的列数与右矩阵B的行数相等操作数:m*n矩阵A=[aij],n*m矩阵B=[bij],A是具有m行的行矩阵,,B是具有n列的列矩阵,基本动作:行列积5. 矩阵数乘前提条件:无操作数:任意一个m*n矩阵A=[aij],数k基本动作:数k乘以每一个元素6. 矩阵转置前提条件:无,任意一个m*n矩阵A=[aij]基本动作:行列互换,第i行第j列的元素换为第j行第i列的元素,m*n的矩阵转置后为n*m矩阵,矩阵运算不满足交换律和消去率Matlab实现<table class="MsoNormalTable"style="border-collapse:collapse;border:none;mso-border-a lt:solid black .5pt;mso-yfti-tbllook:1184;mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-border-insideh:.5pt solid black;mso-border-insidev:.5pt solid black" border="1" cellpadding="0" cellspacing="0">矩阵运算<td style="width:40.9pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">算符<td style="width:71.75pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">形式<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A+B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm5.4pt 0cm 5.4pt" valign="top" width="96">A-B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵取负<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">-A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵数乘<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*k或k*A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵转置<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">’<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A’<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A^N<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X+Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X-Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55"><td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.*Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组除法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top"width="55">./或.\<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X./Y或X.\Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">.^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.^N。
矩阵及其运算矩阵是线性代数中的一个重要概念,它在数学和工程领域中得到广泛应用。
本文将介绍矩阵的定义和基本操作,包括矩阵的加法、减法、乘法以及转置运算。
1. 矩阵的定义矩阵由m行n列的数排列成的矩形数表称为m×n矩阵,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个数称为元素,用a(i,j)表示矩阵中第i行第j列的元素。
例如,一个2×3的矩阵A可以定义为:A = [a(1,1) a(1,2) a(1,3)][a(2,1) a(2,2) a(2,3)]2. 矩阵的加法和减法对于两个同型矩阵A和B(即行列数相等),它们的和记为A + B,差记为A - B。
加法和减法的运算法则是对应元素相加或相减。
例如,对于两个2×3的矩阵A和B,它们的和A + B和差A - B可以表示为:A +B = [a(1,1) + b(1,1) a(1,2) + b(1,2) a(1,3) + b(1,3)][a(2,1) + b(2,1) a(2,2) + b(2,2) a(2,3) + b(2,3)]A -B = [a(1,1) - b(1,1) a(1,2) - b(1,2) a(1,3) - b(1,3)][a(2,1) - b(2,1) a(2,2) - b(2,2) a(2,3) - b(2,3)]3. 矩阵的乘法矩阵的乘法是定义在矩阵上的一种运算,对于矩阵A(m×p)和矩阵B(p×n),它们的乘积记为AB,结果是一个m×n的矩阵。
具体计算过程是,矩阵AB的第i行第j列的元素是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
用数学公式表示为:AB(i,j) = ∑(A(i,k) * B(k,j)) (k从1到p)例如,对于一个2×3的矩阵A和一个3×2的矩阵B,它们的乘积AB可以表示为:AB = [a(1,1)*b(1,1) + a(1,2)*b(2,1) + a(1,3)*b(3,1) a(1,1)*b(1,2) +a(1,2)*b(2,2) + a(1,3)*b(3,2)][a(2,1)*b(1,1) + a(2,2)*b(2,1) + a(2,3)*b(3,1) a(2,1)*b(1,2) +a(2,2)*b(2,2) + a(2,3)*b(3,2)]4. 矩阵的转置一个矩阵的转置是将其行和列互换得到的新矩阵。
矩阵的加减乘除运算法则矩阵是线性代数中的重要概念,它在各个领域中都有着广泛的应用。
矩阵的加减乘除运算是矩阵运算中最基本的操作,掌握了这些运算法则,才能更好地理解和应用矩阵。
一、矩阵的加法矩阵的加法是指将两个矩阵按照相同位置的元素进行相加得到一个新的矩阵。
两个矩阵相加的前提是它们的行数和列数相等。
具体的加法运算规则如下:- 相加的两个矩阵必须具有相同的行数和列数。
- 相加的结果矩阵的每个元素等于相加的两个矩阵对应位置的元素的和。
例如,对于两个3行3列的矩阵A和B,它们的加法运算可以表示为:A = [1 2 3; 4 5 6; 7 8 9]B = [9 8 7; 6 5 4; 3 2 1]A +B = [10 10 10; 10 10 10; 10 10 10]二、矩阵的减法矩阵的减法是指将两个矩阵按照相同位置的元素进行相减得到一个新的矩阵。
两个矩阵相减的前提也是它们的行数和列数相等。
具体的减法运算规则如下:- 相减的两个矩阵必须具有相同的行数和列数。
- 相减的结果矩阵的每个元素等于相减的两个矩阵对应位置的元素的差。
例如,对于两个3行3列的矩阵A和B,它们的减法运算可以表示为:A = [1 2 3; 4 5 6; 7 8 9]B = [9 8 7; 6 5 4; 3 2 1]A -B = [-8 -6 -4; -2 0 2; 4 6 8]三、矩阵的乘法矩阵的乘法是指将两个矩阵进行相乘得到一个新的矩阵。
乘法运算的条件是第一个矩阵的列数等于第二个矩阵的行数。
具体的乘法运算规则如下:- 第一个矩阵的列数等于第二个矩阵的行数。
- 乘法的结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
- 结果矩阵中的每个元素等于第一个矩阵的对应行与第二个矩阵的对应列的乘积之和。
例如,对于一个2行3列的矩阵A和一个3行2列的矩阵B,它们的乘法运算可以表示为:A = [1 2 3; 4 5 6]B = [7 8; 9 10; 11 12]A *B = [58 64; 139 154]四、矩阵的除法矩阵的除法并不像加减乘法那样常见,因为矩阵的除法并没有一个统一的运算法则。
矩阵的基本运算和性质矩阵是线性代数中一个重要的概念,广泛应用于数学、工程、计算机科学等领域。
本文将介绍矩阵的基本运算和性质,旨在帮助读者理解和应用矩阵。
一、矩阵的基本定义和表示方法在开始讨论矩阵的运算和性质之前,首先应了解矩阵的基本定义和表示方法。
矩阵是一个按照矩形排列的数表,它由m行n列的元素组成。
一般用大写字母表示矩阵,例如A、B等,而矩阵的元素一般用小写字母表示,例如a、b等。
矩阵的表示方法有多种,其中最常见的是用方括号将矩阵的元素排列起来。
例如:A = [a11, a12, a13; a21, a22, a23; a31, a32, a33]其中A是一个3行3列的矩阵,a11、a12等表示矩阵A的元素。
二、矩阵的基本运算1. 矩阵的加法和减法矩阵的加法只能对应位置的元素进行相加,也就是说,如果两个矩阵具有相同的行数和列数,则可以将它们对应位置的元素进行相加,得到一个新的矩阵。
例如,对于两个相同维数的矩阵A和B,其加法和减法运算的规则如下:A +B = [a11 + b11, a12 + b12; a21 + b21, a22 + b22]A -B = [a11 - b11, a12 - b12; a21 - b21, a22 - b22]2. 矩阵的数乘和数除矩阵的数乘是指将矩阵的每个元素乘以一个常数,矩阵的数除是指将矩阵的每个元素除以一个常数。
例如,对于一个矩阵A和一个常数k,其数乘和数除运算的规则如下:kA = [ka11, ka12; ka21, ka22]A/k = [a11/k, a12/k; a21/k, a22/k]3. 矩阵的乘法矩阵的乘法是指将一个矩阵的行与另一个矩阵的列相乘并相加得到结果。
例如,对于两个矩阵A和B,其乘法运算的规则如下:C = AB其中,C为一个m行n列的矩阵,其元素cij可以通过下面的公式计算得到:cij = a[i1]*b[1j] + a[i2]*b[2j] + ... + a[in]*b[nj]4. 矩阵的转置矩阵的转置是指将矩阵的行与列互换得到一个新的矩阵。
矩阵基本运算及应用201700060牛晨晖在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
矩阵的运算是数值分析领域的重要问题.将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。
1矩阵的运算及其运算规则1.1矩阵的加法与减法1。
1.1运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.1。
1.2运算性质满足交换律和结合律交换律;结合律.1。
2矩阵与数的乘法1.2.1运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.1。
2.2运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知1.3矩阵与矩阵的乘法1.3。
1运算规则设,,则A与B的乘积是这样一个矩阵:(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.设矩阵计算解是的矩阵.设它为可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.1。
第二章 矩阵及其运算矩阵是数学中重要的概念,许多实际问题作数学描述时,都需要用到矩阵,同时矩阵是代数学的一个重要研究对象,它不仅在数学这门学科中有着重要的应用而且还广泛地渗透于其他的学科领域中.第一节 矩阵的基本运算一 矩阵的概念在初等数学中,已经有了二阶矩阵的概念,本节将二阶矩阵推广到m m N ∈()行n n N ∈()列的情形.定义1 由m n ⨯个数ij a (i m = 1,2,,;j n = 1,2,,)排成的m 行n 列数表,成为一个m n ⨯矩阵,记作n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭111212122212A , (1)其中ij a 称为矩阵A 的第i 行第j 列的元素.一般情况下用大写字母A ,B ,C , 表示矩阵,有时为了表明矩阵的行数m 和列数n ,也可以写成m n ×A 或ij m n a ⨯()A =.下面举几个例子说明矩阵的应用.例1(系数矩阵)n 个变量n x x x 12,,,与m 个变量m y y y 12,,,之间的关系式n n n nmm m mn n y a x a x a x y a x a x a x y a x a x a x⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ 11111221221122221122.........................., (2)表示一个从变量n x x x 12,,,到变量m y y y 12,,,的线性变换,其中ij a (i m = 1,2,,;j n = 1,2,,)构成的矩阵A =ij m n a ⨯()称为系数矩阵.线性方程组n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 11112211211222221122 (3)也有系数矩阵ij m n a ⨯()A =.例2(价格矩阵)四种食品(记为F F F F 1234,,,)在三家商店(记为S S S 123,,)中的单位价格(以某一货币单位计)可以用以下矩阵给出:F F F F S S S ⎛⎫ ⎪ ⎪ ⎪⎝⎭1234123177112115913191881519.这里行表示商店,列表示食品,例如a =2313表示食品F 3在商店S 2的价格为13,a =3419表示食品F 4在商店S 3的价格为19.例3(赢得矩阵)一个称为对策论或竞赛论的数学分支,是研究社会现象的一种特定的数学方法. 我国古代“齐王赛马”的故事,就是一个对策问题,故事说战国时代齐王与其大将田忌赛马双方约定各出上、中、下3个等级的马各一匹进行比赛,这样共赛马三次,每次比赛的败者付给胜者一百金. 已知在同一等级马的比赛中,齐王之马可以稳操胜券,但田忌的上、中等级的马分别可胜齐王中、下等级的马. 问田忌应采取怎样的策略才能获胜.齐王与田忌在排列赛马出场顺序时,各可采取如表2-1所示的6种策略之一:表2-1:赛马策略策略1 策略2 策略3 策略4 策略5 策略6 上、中、下中、上、下下、中、上上、下、中中、下、上下、上、中将6种策略按表2-1的编号,可写出齐王的赢得矩阵:田忌策略 ⎛⎫⎪ ⎪ ⎪-=⎪- ⎪ ⎪- ⎪ ⎪⎝⎭31111-1131-1111131111113111111311111-13P 齐王策略, 其中p =-321,表示齐王采用策略3,田忌采用策略2,则比赛结束时齐王净输一百金. 由矩阵P 可知,当齐王采用策略1,2,3,4,5,6,时,田忌须采用策略6,4,2,3,1,5才能获胜.例4(航线矩阵)四个城市的单向航线如图2-1所示,若令ij i j a i j ⎧⎪=⎨⎪⎩10市到市有一航向市到市航向未通, 1423↔↓←则图2-1可用矩阵表示为: 图2-1⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭0111100001001010.二 矩阵的基本运算定义2(同型矩阵)两矩阵的行数相等、列数也相等时,就称它们是同型矩阵. 定义3(矩阵相等)如果矩阵A 与B 是同型矩阵,并且它们的对应元素相等,即ij ij a b =(i m = 1,2,,;j n = 1,2,,), 那么称矩阵A 与B 相等,记作A =B .定义4(数乘矩阵)数λ与矩阵ij m n a ⨯()A =的乘积记为λA 或λA ,简称数乘矩阵,规定λA =λA =ij m na λ⨯=()n n m m mn a a a aa a a a a λλλλλλλλλ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭111212122212.特别地,当λ=-1时,λA =(-1)A 称为矩阵A 的负矩阵,简记为 -A . 定义5(矩阵加法)两个同型矩阵ij m n a ⨯()A =,ij m n b ⨯=()B 的和,记为A +B .,规定A +B ij ij m na b ⨯=+=()1111121n 21222n m1m2mn n n m m mn a b a b a b a b a b a b a b a b a b ⎛⎫+++ ⎪+++ ⎪⎪ ⎪⎪+++⎝⎭1212122212. 特别地,(-)A +B 称为A 与B 的差,又记为 -A B .为了引入矩阵乘法定义,先看下面例5.例5 某厂向三个商店发送四种产品的数量可列成矩阵A =111213142122232431323334a a a a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭, 其中ij a 为工厂向第(1,2,3)i i =店发送的第(1,2,3,4)j j =种产品的数量. 这四种产品的单价及单位重量也可列成矩阵B =1112212231324142b b b b b b b b ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 其中:1j b 为第j 种产品的单价,2j b 为第j 种产品的单位重量,1,2,3,4j =. 现在希望作出一张汇总表,它能指明工厂向各个商店发出的商品的总价格与总重量.解 所需的汇总表可归结为下列矩阵总价格 总重量商店1商店2 商店3 例如c 11表示工厂向商店1发出的商品的总价格为c a b a b a b a b =⨯+⨯+⨯+⨯111111122113311441,c 12表示工厂向商店1发出的商品的总重量为c a b a b a b a b =⨯+⨯+⨯+⨯121112122213321442,类似地,可计算其余的ij c ,从而求得C .定义6(矩阵的乘法)设ij m s a ⨯()A =是一个m s ⨯矩阵,ij s n b ⨯()B =是一个s n ⨯矩阵,规定A 与B 的乘积是一个m n ⨯矩阵C =ij m n c ⨯(),其中c sij i j i j is sj i k k jk a b a b a b ab ==+++=∑ 11221(i m = 1,2,,;j n = 1,2,,) 并把此乘积记作AB =C .例6 求矩阵2424==1236⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭----A ,B的乘积AB 与BA .解 由矩阵乘法定义得c c c c c c ⎛⎫ ⎪= ⎪ ⎪⎝⎭111221223132C,AB =24241236⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭----=1632816⎛⎫ ⎪⎝⎭--,BA =24243612⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭----=0000⎛⎫ ⎪⎝⎭.注意:由例6可知AB ≠BA .,而例5中的AB 有意义.,BA 却没有意义. 可见在矩阵的乘法中,必须注意矩阵相乘的顺序,矩阵的乘法一般不满足交换律. 若AB =BA ,则称A 与B 是可交换的.定义7(矩阵的转置)把矩阵A 的行换成同序数的列得到一个新的矩阵,叫做A 的转置矩阵,记作TA .例如矩阵A =⎛⎫ ⎪-⎝⎭120311的转置矩阵为T A =⎛⎫⎪- ⎪ ⎪⎝⎭132101. 矩阵的运算性质:(1)加法 A +B =B +A ;()A +B +C =()A +B +C . (2)数乘 ))λμλμ((A =A ;)λμλμ++(A =A A ;()=λλλA +B A +B .(3)乘法 ()AB C =()A BC ;()=()()λλλAB A B =A B ;(+)=A B C AB+AC ;(+)=+B C A BA CA .(4)转置 T T =()A A ;T T T +()A +B =A B ;TT λλ=()A A ;T ()AB =T T B A .其中λμ,为实数.这里仅证T()AB =TTB A .证明 设ij m s a ⨯()A =,ij s n b ⨯()B =,记AB =C =ij m n c ⨯(),T T ij n m d ⨯==()B A D . 于是由矩阵乘法定义得sji jk kik c ab ==∑1,而T B 的第i 行为i i si b b b 12(,,,),TA 的第j 列为T j j js a a a 12(,,,),因此ssij ki jkjk kik k d b aab ====∑∑11,即ij ji d c =(i n = 1,2,,;j m = 1,2,,),也就是T =D C ,从而T()AB =T T B A .例7 已知 A =⎛⎫ ⎪-⎝⎭120311,1=⎛⎫-⎪⎪ ⎪⎝⎭71423201B , 求矩阵T ()AB . 解法一 因为AB =⎛⎫ ⎪-⎝⎭1203111⎛⎫- ⎪ ⎪ ⎪⎝⎭71423201=⎛⎫ ⎪-⎝⎭91151195,所以T ()AB =⎛⎫ ⎪ ⎪ ⎪-⎝⎭91111955. 解法二T ()AB =T T B A =1⎛⎫ ⎪ ⎪ ⎪-⎝⎭42720131⎛⎫ ⎪- ⎪ ⎪⎝⎭132101=⎛⎫⎪ ⎪ ⎪-⎝⎭91111955.第二节 特殊矩阵矩阵的元素可以是实数,也可以是复数,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明外,都指实矩阵.一 零矩阵定义1元素都是零的矩阵称为零矩阵,记作0.零矩阵的性质:+=+=00A A A ; =0-A A ;==0000A ,A . 注意:(1)不同型的零矩阵是不相同的. (2)若有两个矩阵A 与B 满足=0AB ,不能得出=0A 或=0B 的结论;若≠0A 而()=0-A X Y ,也不能得出=X Y 的结论.二 特殊形状的矩阵 (一)行矩阵定义2只有一行的矩阵称为行矩阵,又称行向量,即=(n a a a 12)a .为了避免元素间的混淆,行矩阵也记为=(n a a a 12,,,)a .(二)列矩阵定义3只有一列的矩阵称为列矩阵,又称列向量,即b =m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12. 列矩阵也常记为 b =T (m b b b 12,,,).例1 对于线性方程组n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 11112211211222221122.........................., 若记i j m na ⨯()A =,n x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 12x ,m b b b ⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭ 12b ,n n m m m mn a a a b a a a b b a a a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭11121121222212B , 其中A 是系数矩阵,x 称为未知数向量,b 称为常数项向量,B 称为増广矩阵,利用矩阵的乘法,方程组可记为=Ax b .例2 线性变换n n n nmm m mn n y a x a x a x y a x a x a x y a x a x a x⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ 11111221221122221122.........................., 利用矩阵的乘法,可记为=y Ax . 其中(ij m n a ⨯)A =, n x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 12x , m y y y ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭12y .例3 设平面上的点x y ''(,)到x y (,)的坐标变换公式为x a x a y y a x a y ''⎧=+⎪⎨''=+⎪⎩11122122, (1)而点x y ''''(,)到x y ''(,)的坐标变换公式为x b x b y y b x b y '''''⎧=+⎪⎨'''''=+⎪⎩11122122, (2)求x y ''''(,)到x y (,)的坐标变换公式.解(1)式可写作a a x x y y a a ⎛⎫'⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭11122122, (2)式可写作b b x x y y b b ⎛⎫'''⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪'''⎝⎭⎝⎭⎝⎭11122122, 则a a x x y y a a ⎛⎫'⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭11122122=a a b b x y a a b b ⎛⎫⎛⎫⎛⎫''⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪''⎝⎭⎝⎭⎝⎭⎝⎭1112111221222122=a a b b x y a a b b ⎛⎫⎛⎫''⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪''⎝⎭⎝⎭⎝⎭1112111221222122 =a b a b a b a b x y a b a b a b a b ⎛⎫++''⎛⎫⎪ ⎪ ⎪''++⎝⎭⎝⎭11111221111212222111222121122222. 故x y ''''(,)到x y (,)的坐标变换公式是x a b a b x a b a b y y a b a b x a b a b y ''''⎧=+++⎪⎨''''=+++⎪⎩11111221111212222111222121122222()()()(). (三)单元素矩阵定义4只含一个元素的矩阵称为单元素矩阵,记为a (),也常记为a .例4 =(n nn i i i i i i n b b a a a a b a b b ==⎛⎫⎪ ⎪==⎪ ⎪ ⎪⎝⎭∑∑ 121211,,,)()A .(四)n n N ∈()阶方阵定义5行数与列数都等于n 的矩阵称为n 阶矩阵或n 阶方阵,记作n A . 设A 是n 阶方阵,称k A 是n 阶方阵A 的幂,规定:1=A A ,2=A 1A 1A , ,11k+k =A A A .由于矩阵乘法满足结合律,所以方阵的幂满足以下运算律: k l k+l =A A A , k l kl =()A A , 其中,k l 为正整数.注意:一般说来kkk≠()AB A B ,只有当A 与B 可交换时,才有kkk=()AB A B . 同样也只有当A 与B 可交换时,公式 +=++222()2A B A AB B 和(+)(A B A )-B2=A 2-B 等,才成立.例5 证明nn n n n ϕϕϕϕϕϕϕϕ⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭cos sin cos sin sin cos sin cos .证明 用数学归纳法.当n =1时,等式显然成立,设当n k =时,等式成立,即cos sin cos sin sin cos sin cos kk k k k ϕϕϕϕϕϕϕϕ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭,那么当n k =+1时,有1cos sin sin cos cos sin cos sin sin cos sin cos cos cos sin sin cos sin sin cos sin cos cos sin sin sin cos cos cos(1)sin(1)sin(1)cos(1)k k k k k k k k k k k k k k k k k k ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ+-⎛⎫ ⎪⎝⎭--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭---⎛⎫= ⎪+-+⎝⎭+-+=++.ϕ⎛⎫ ⎪⎝⎭于是等式得证.例6 设A =122001001⎛⎫⎪- ⎪ ⎪⎝⎭,求2A .解 2A =122001001⎛⎫⎪- ⎪ ⎪⎝⎭122001001⎛⎫⎪- ⎪ ⎪⎝⎭122001001⎛⎫⎪=- ⎪ ⎪⎝⎭=A 一般说来,一个n 阶方阵A ,若2A =A ,则称A 为幂等矩阵,如例6的矩阵A 便是一个幂等矩阵.例7 设A =1213142324340000000000a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭,求4A . 解 2A =1213142324340000000000a a a a a a ⎛⎫⎪ ⎪ ⎪⎪⎝⎭121314232434000000000a a a a a a ⎛⎫⎪ ⎪ ⎪⎪⎝⎭12231224133423340000000000000a a a a a a a a +⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 4A =2A 2A =12231224133423340000000000000a a a a a a a a +⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭1223122413342334000000000000a a a a a a a a +⎛⎫⎪⎪ ⎪⎪⎝⎭=0000000000000000⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭=0. 一般说来,一个n 阶方阵A ,若存在一个正整数p 使得 pA =0,则称A 为幂零矩阵. 如例7的矩阵A 便是一个幂零矩阵.三 几个常用的方阵 (一) 对角矩阵 定义6形如12000000n λλλ⎛⎫⎪ ⎪⎪⎪⎝⎭的方阵称为对角矩阵,简称对角阵,其中i λ(i =1,2,….,n )是实数,对角阵用符号记作Λ=n diag λλλ 12(,,,).例如线性变换111222........n n ny x y x y x λλλ=⎧⎪=⎪⎨⎪⎪=⎩对应n 阶对角阵n Λ=n diag λλλ 12(,,,).在对角阵n Λ中,当12n λλλλ==== ,即n Λ=n diag λλλ 12(,,,)时,称n Λ为纯量阵.在纯量阵n Λ=diag λλλ (,,,)中,当λ=1时,称n Λ为单位阵,记为n E 或E . 纯量阵n Λ=diag λλλ (,,,)可表示为n λE 或λE .例如线性变换1122........n ny x y x y x =⎧⎪=⎪⎨⎪⎪=⎩叫做恒等变换,它对应的变换矩阵是n 阶单位阵n E . 单位阵的运算性质:(1)m m n m n m n n m n ⨯⨯⨯⨯=E A =A ,A E A ; (2)n n n n n =E A =A E A ; (3)p n n =E E (p 是正整数).由性质(3)可得:()ppp p pn n diag λλλλλ== (),,,E E .由单位阵的性质可知,单位阵在矩阵乘法中的作用类似于数1.(二)上三角形矩阵与下三角形矩阵定义7 一个n 阶方阵,在对角线以下(上)的元素都是零时,称为上(下)三角形矩阵,它的形式是:11121222n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭0 .与11212212n n nn a a a a a a ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭其中0表示矩阵对角线右上角与左下角的元素全为零. (三)对称矩阵定义8 设A 为一个n 阶方阵,如果满足T=AA ,即i j ji a a i j == (,1,2,,n ,)则称A 为对称矩阵,简称对称阵.对称阵的性质:(1) 它的元素以对角线为对称轴对应相等. (2) 若A ,B 是对称阵,λ为常数,则 (ⅰ)A ±B ,λA 为对称矩阵;(ⅱ)AB 是对称矩阵的充要条件为AB =BA . 对角阵Λ是对称阵,即TΛ=Λ,从而T=EE ,λλT =()E E .定义9 设A 是一个n 阶方阵,如果满足=T-A A ,即ij ji a a i j =-(,n = 1,2,,),则称A 为反对称矩阵,简称反对称阵.反对称阵的性质: (1) 对角线元素均为零;(2) 设A 为奇数阶反对称阵,则=0A ; (3) 设A ,B 为反对称阵,λ为常数,则 (ⅰ)A ±B ,λA 为反对称矩阵;(ⅱ)AB 为反对称矩阵的充要条件为AB =-BA . (4) 设A 是任意阶方阵,则A T-A 必为反对称矩阵.四 行阶梯形矩阵与行最简形矩阵定义10 在矩阵的行下可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数是非零行的行数,阶梯的竖线(每段竖线的长度为一行)右边的第一个元素为非零元,也就是非零行的首个非零元,则称该矩阵为行阶梯形矩阵. 例如11214011100001300000-⎛⎫⎪- ⎪⎪- ⎪⎝⎭是一个行阶梯形矩阵.定义11若行阶梯形矩阵的非零行的首个非零元素为1,且这些首个非零元素所在列的其他位置上的元素都是0,则称这样的行阶梯形矩阵为行最简形矩阵.例如10104011030001300000-⎛⎫⎪- ⎪ ⎪ ⎪⎝⎭与100634010423001946⎛⎫ ⎪ ⎪ ⎪⎝⎭ 都是行最简形矩阵.五 共轭矩阵定义12当()ij =a A 为复矩阵时,用ij a 表示ij a 的共轭复数,记()ij =a A ,称A 为A 的共轭矩阵.共轭矩阵的运算性质(设A ,B 为复共轭矩阵,λ为复数,且运算都是可行的):(1)+=+A B A B ; (2)λλ=A A ;(3)A =AB B .第三节 逆矩阵一 方阵的行列式定义1 由n 阶方阵A 的元素构成的行列式(各元素的位置不变),称为方阵A 的行列式,记作A 或det A .注意:方阵与行列式是两个不同的概念,n 阶方阵是2n 个数按一定方式排成的数表,而n 阶行列式则是这些数(也就是数表)按一定的运算法则所确定的一个数. 方阵的行列式满足下列运算规律(设A,B 为n 阶方阵,λ为实数):(1)T=A A (行列式的性质1);(2)n λλ=A A ;(3)=AB A B . 下面仅证(3).证明 设(),()ij ij a b ==A B .记2n 阶行列式1111111111nn nn n n nna a a a Db b b b =---OA O =E B,由第一章第二节的例12可知D =A B .在D 中以1j b 乘第1列,2j b 乘第2列,,nj b 乘第n 列都加到第(1,2,,)n j j n += 上有D =-0A CE ,其中:ij ij 1122=(),j i j i nj in c c b a b a b a =+++ C ,故=C AB ,再对D 的行作j n j r r +↔(1,2,,)j n = ,有(1)nD -=-0E A C,再由第一章第二节的例12,可知(1)(1)(1)n n n D =--=--==E C C C AB ,于是=AB A B . 证毕.由方阵行列式运算规律(3)可知,对于n 阶方阵A 、B ,一般说来≠AB BA ,但总有=AB A B .二 逆矩阵的概念定义2 设A 是n 阶方阵,若0≠A ,则A 称为非奇异矩阵. 若A =0,则A 称为奇异矩阵.例1 线性方程组n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 11112211211222221122.........................., (1)若其系数矩阵A =()ij a 是非奇异矩阵,则由克莱姆法则,方程组(1)有唯一解.例2 线性变换n nn nnn n nn n y a x a x a x y a x a x a x y a x a x a x⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ 11111221221122221122..........................,…………………(2) 若其系数矩阵A =()ij a 是非奇异矩阵,我们也可以用克拉默法则将(2)中的12,,,nx x x 解出,得n nn nnn n nn n x b y b y b y x b y b y b y x b y b y b y⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ 11111221221122221122..........................,…………………(3) 称变换(3)为变换(2)的逆变换.若记(3)的系数矩阵为B =()ij b ,记1122,n n x y x yx y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x y ,那么(2)式与(3)式可写成矩阵的形式=y Ax ,....................................(4) =x By , (5)用(5)式代人(4)式,可得()=()=y A By AB y ,可见AB 为恒等变换所对应的矩阵,即有AB =E . 将(4)式代入(5)式得到 ()=()=x B Ax BA x ,即有BA =E ,于是AB =BA =E .由此引入逆矩阵的定义.定义3 对于n 阶方阵A ,如果存在一个n 阶方阵B ,使 AB =BA =E ,则称矩阵A 是可逆的,矩阵B 称为A 的逆矩阵,简称逆阵.A 的逆矩阵记作1-A ,若AB =BA =E ,则B =1-A .定理1 矩阵A 可逆的充分必要条件是0≠A . 证明 先证“A 可逆0⇒≠A ”.因为A 存在逆矩阵,所以1-=AA E ,故111--==AAA A =E ,即0≠A .再证“0≠⇒A A 可逆”.设1122,n n x y x yx y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x y ,构造线性变换=y Ax ,由例2知:存在逆变换=x By ,这里A 与B 满足AB =BA =E ,这说明B 是A 的逆矩阵,故A 可逆.推论1 若0=A ,则A 不存在逆矩阵. 推论2 若AB =E (或BA =E ),则B =1-A . 证明 1==A B E ,故0≠A ,则1-A 存在,于是1111()()----=====B EB A A B A AB A E A .例3 设12n a a a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭A 为n 阶对角阵,且120na a a ≠ ,验证1-A 12111n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 证明 由120n a a a ≠ ,知0(1,2,,)i a i n ≠= ,故12n a a a ⎛⎫⎪⎪ ⎪ ⎪⎝⎭12111n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ , 即 1-=A A E .12111n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ =111⎛⎫⎪⎪ ⎪ ⎪⎝⎭,即 1-=A A E .故1-=A 12111n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.三 逆矩阵的性质定理2 若A 可逆,则A 的逆矩阵是唯一的.证明 设矩阵B 和C 都是A 的逆矩阵,则AB =BA =E ,AC =CA =E ,可得==()=()==B E B C A B C A B C E C ,故A 的逆矩阵是唯一的.逆矩阵的运算性质:(1)若A 可逆,则1-A 亦可逆,且11()--=A A .(2)若A 可逆,数0λ≠,则λA 可逆,且111()λλ--=A A .(3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且 111()---=AB B A .(4)若A 可逆,则TA 亦可逆,且T 11T ()()--=A A .下面只证明性质(3)与(4). 证明 先证(3)11111()()()-----====AB B A A BB A AEA AA E ,由定理1的推论2可得111()---=AB B A .再证(4)T 1T 1T T ()()--===A A A A E E ,故 T 11T ()()--=A A .例4 设A 、B 为同阶矩阵且均可逆,且+E AB 也是可逆矩阵,求111()---+E A B .解 因为A 、B 均可逆,所以1-A 与1-B 存在,从而+E AB =1111()()----+==AA AB A A +B A A +B B B =111()---A A B +BB B =1111()()----A A B +E B =A E +A B B ,故1111111()()--------=A E +A B B=A A E +A B B BE +A B , 从而1111111()(())()-------=+E +A B A E +AB B =B E AB A .四 逆矩阵的求法(利用伴随阵)定义4(伴随阵) 设A 是n 方阵,行列式A 的各元素的代数余子式i j A 所构成的如下矩阵112111222212n n *n nnn A A A A A A A A A ⎛⎫⎪⎪= ⎪⎪⎝⎭A称为矩阵A 的伴随矩阵,简称为伴随阵.例5 求二阶矩阵a b =c d ⎛⎫⎪⎝⎭A 的伴随矩阵. 解 计算A 余子式:11M d =,12M c =,21M b =,22M a =,故1121112112221222*A A M M db A A M Mc a --⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭A . 例6 求三阶方阵123221343=⎛⎫ ⎪⎪ ⎪⎝⎭A 的伴随矩阵.解 计算A 余子式:112M =,123M =,132M =,216M =-,226M =-,232M =-,314M =-,325M =-,332M =-,故112131122232132333264365222*M M M M M M MM M --⎛⎫⎛⎫⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A .定理3 设*A 是A 的伴随阵,则==**AA A A A E .证明 设A =()i j n a ,记*AA =()i j n b ,*A A =()i j n c ,11220i j i j i j i n j n i j b a A a A a A i j ⎧=⎪=+++=⎨≠⎪⎩ 当时当时A ,1,2,,i j n =故*AA =⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭AAA E A . 1122i j i j i j ni n jc A a A a A a =+++ 1122j i j i n j ni a A a A a A =+++ 0i j i j ⎧=⎪=⎨≠⎪⎩当时当时A,1,2,,i j n = .从而=*A A A E , 所以==**AA A A A E . 推论3 设A 是n 阶方阵,0≠A ,则11=*-A A A. 推论3是求逆矩阵的一种方法. 例如,例5的方阵A ,当0a bc d=≠A 时,A 的逆矩阵 11=*-A A A =11d b d b a b c a c a ad bc c d--⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭. 例6的方阵A 的行列式20=≠A ,故A 存在逆矩阵,其逆矩阵为11=*-A A A =13226426411353653653123222222222111221343-⎛⎫--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=--=--=-- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭-⎝⎭.定义5 若0≠A ,规定:0=A E ,1()k k--=A A ,其中k 为正整数.由定义5可知,若0≠A ,对于任意整数,λμ,有λμλμ+=A A A ,()λμλμ=A A .五 逆矩阵的应用(一) 利用逆矩阵求线性变换的逆变换在例2中,若已知线性变换=y Ax 且0≠A ,其逆变换=x By 中的系数矩阵B 就是系数矩阵A 的逆矩阵, 即1-B =A .(二) 利用逆矩阵求矩阵方程的解例7 设123221343=⎛⎫ ⎪ ⎪ ⎪⎝⎭A ,2153=⎛⎫ ⎪⎝⎭B ,132031=⎛⎫⎪⎪ ⎪⎝⎭C ,求矩阵X 使其满足=AXB C . 解 因为20=≠A ,10=≠B ,故1-A 与1-B 存在,有 1111----=A A X B B A C B,即 11--=X A CB ,其中1-A =13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭,1-B =3152-⎛⎫ ⎪-⎝⎭,于是11--=X A CB =132********-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭132031⎛⎫ ⎪ ⎪ ⎪⎝⎭3152-⎛⎫ ⎪-⎝⎭=110202⎛⎫ ⎪- ⎪ ⎪⎝⎭3152-⎛⎫ ⎪-⎝⎭21104104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭. (三)利用逆矩阵求方阵A 的正整数幂与方阵A 的多项式命题:若1=-P P A Λ,则1=n n -P P A Λ.用数学归纳法直接证得上述命题.例8 设1214=⎛⎫⎪⎝⎭P ,1002=⎛⎫ ⎪⎝⎭Λ,=P P A Λ,求nA . 解 由已知可得2=P , 1-P =421112-⎛⎫ ⎪-⎝⎭.由 10,02=⎛⎫⎪⎝⎭Λ得到2210101010,,02020202nn ==⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ΛΛ, 故1112221112104242124222111140211112221242222221.2221n n n n n n n n n nn n =++++++++--⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--= ⎪--⎝⎭A定义6 设01()m m x a a x a x ϕ=+++ 为x 的m 次多项式,A 为n 阶方阵,记01()m m a a a ϕ=+++ A E A A ,称()ϕA 为矩阵A 的m 次多项式.因为矩阵,k l A A 和E 都是可交换的,所以矩阵A 的两个多项式()ϕA 和()f A 总是可交换的,即总有()ϕA ()f A =()f A ()ϕA , 从而A 的n 次多项式可以像数x 的多项式一样相乘或分解因式. 例如 2(+)(2)=2+--E A E AE A A ,323()=3+3---E A E A A A .例9 设方阵A 满足22=0--A A E ,证明A 及+2A E 都可逆,并求1-A 及1(+2)-A E .证明 先证明A 可逆,并计算出1-A .由 22=0--A A E 可得2=2-A A E ,即()=2-A A E E ,也就是1[()]2-A A E=E . 由定理1的推论2知:1-A 存在,且1-A =1()2-A E .再证明+2A E 可逆,并求出1(+2)-A E .由22=0--A A E ,得2=+2A A E ,所以有2=+2A A E ,即2=+2A A E .因为A 可逆,所以0≠A ,从而+20≠A E ,故+2A E 可逆.因为2=+2A A E ,所以有121122211(+2)()()()(2)4411(22)(3).44---===-=-+=+-+=-A E A A A E A A E A E A E E A即11(+2)(3).4-=-A E E A第四节 矩阵的初等变换及其应用矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组、求矩阵的秩、求逆矩阵、求解矩阵方程以及在矩阵理论的探究中都起着重要的作用.一 初等变换 (一) 初等行变换为了引进矩阵的初等行变换,先来分析用消元法解线性方程组的例子. 引例 用消元法解线性方程组123412341234123422(1)24(2)46224(3)36979.(4)x x x x x x x x x x x x x x x x --+=⎧⎪+-+=⎪⎨-+-=⎪⎪+-+=⎩……………………...(B )解(B )(1)(2)1(3)2↔⨯−−−−→123412341234123424(1)22(2)232(3)36979(4)x x x x x x x x x x x x x x x x +-+=⎧⎪--+=⎪⎨-+-=⎪⎪+-+=⎩……………………..(1B )(2)(3)(3)2(1)(4)3(1)--⨯-⨯−−−−→123423423423424(1)2220(2)5536(3)3343(4)x x x x x x x x x x x x x +-+=⎧⎪-+=⎪⎨-+-=-⎪⎪-+=-⎩……………………….(2B ) 1(2)2(3)5(2)(4)3(2)⨯+⨯-⨯−−−−→12342344424(1)0(2)26(3)3(4)x x x x x x x x x +-+=⎧⎪-+=⎪⎨=-⎪⎪=-⎩………………………..(3B )(3)(4)(4)2(3)↔-⨯−−−−→1234234424(1)0(2)3(3)00(4)x x x x x x x x +-+=⎧⎪-+=⎪⎨=-⎪⎪=⎩………………………..(4B )(1)(2)(2)(3)--−−−→132344(1)3(2),3(3)00(4)x x x x x -=⎧⎪-=⎪⎨=-⎪⎪=⎩…………………………(5B )于是解得13234433x x x x x =+⎧⎪=+⎨⎪=-⎩.……………………………………….…(6B )在上述消元的过程中,始终把方程组看作一个整体,即不是着眼于某个方程的变形而是着眼于整个方程组变成另一个方程组. 这里一共用到三种变换,即:①交换方程次序(()i()j ↔);②以不等于0的数乘以某个方程(()k i ⨯);③一个方程加上另一个方程的k 倍(以()()i k j +⨯替换()i ).由于这三种变换都是可逆的,因此变换前的方程组与变换后的方程组是同解的,这三种变换都是方程组的同解变换,所以最后求得的解(6B )是方程组(B )的全部解.在上述变换过程中,实际上只需要对方程组的系数和常数进行运算,未知数并未参与运算.因此若记方程组(B )的增广矩阵为2111211214()4622436979⎛--⎫ ⎪-⎪== ⎪-- ⎪ ⎪-⎝⎭B A b , 那么上述对方程组的变换完全可以转化为对矩阵B 的变换.把方程组的上述变换过程移植到矩阵B 上,得到下列过程:B 12312r r r ↔⨯−−−→111214211122311236979⎛-⎫⎪-- ⎪= ⎪-- ⎪ ⎪-⎝⎭B 233141(1)(2)(3)r r r r r r +-+-⨯+-⨯−−−−→211214022200553603343⎛-⎫⎪- ⎪= ⎪--- ⎪ ⎪--⎝⎭B23242125(3)r r r r r ⨯+⨯+-⨯−−−−→311214011100002600013⎛-⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭B 3443(2)r r r r ↔+-⨯−−−−→4112140111000013000⎛-⎫⎪- ⎪= ⎪- ⎪ ⎪⎝⎭B 1223(1)(1)r r r r +-⨯+-⨯−−−−→510104011030001300000⎛-⎫ ⎪- ⎪= ⎪- ⎪ ⎪⎝⎭B , 其中(1,2,3,4)i r i =表示第i 行.矩阵4B 是行阶梯形,5B 是行最简形. 由5B 可得出方程组的解6B ,反之由方程组的解6B ,也可写出矩阵5B . 由此可猜想到一个矩阵的行最简形矩阵是唯一确定的(行阶梯形矩阵中的非零行数也是唯一确定的).定义1 下面三种变换称为矩阵的初等行变换:①互换两行(对调,i j 两行,记作i j r r ↔);②以数0k ≠乘以某一行中的所有元素(k 乘以第i 行,记作i k r ⨯);③把一行所有元素的k 倍加到另一行对应元素上去(第j 行的k 倍加到第i 行上,记作i j r k r +⨯).显然,三种变换都是可逆的,且其逆变换是同一类型的初等变换;变换i j r r ↔的逆变换就是其本身;变换i k r ⨯的逆变换为1i r k⨯(或记作i r k ÷);变换i j r k r +⨯的逆变换为()i j r k r +-⨯(或记作i j r k r -⨯).定义2 如果矩阵A 经有限次初等行变换变成矩阵B ,就称矩阵A 与B 行等价,记作~rA B .矩阵之间的行等价关系具有下列性质: (1)反身性 ~rA A ;(2)对称性 若~r A B ,则~rB A ; (3)传递性 ~rA B ,~rB C , 则~rA C .例1 设021302230=-⎛⎫ ⎪- ⎪ ⎪-⎝⎭A ,把(,)A E 化成行最简形. 解(,)A E =021100302010230001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭3321232r r r r r ⨯+⨯↔−−−→302010021100094023-⎛⎫ ⎪- ⎪ ⎪-⎝⎭33229rr r ⨯+⨯−−−→302010021100001946-⎛⎫ ⎪- ⎪ ⎪⎝⎭13232(1)r r r r +⨯+-⨯−−−−→30018912020846001946⎛⎫ ⎪---- ⎪ ⎪⎝⎭12131()2r r ⨯-⨯−−−→100634010423001946⎛⎫ ⎪ ⎪ ⎪⎝⎭. 定理1 对于任何矩阵m n ⨯A ,总可以经过有限次初等行变换把它变为行阶梯形和行最简形矩阵.利用数学归纳法可以证明定理1. (二)初等列变换与初等变换把定义1中的“行”变换成“列”,即得矩阵的初等列变换的定义(所用记号是把“r ”换成“c ”).如果矩阵A 经有限次初等列变换变成矩阵B ,就称矩阵A 与B 列等价,记作~cA B . 矩阵之间的列等价关系也具有反身性、对称性与传递性. 矩阵的初等行变换与初等列变换,统称为初等变换.如果矩阵A 经有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价,记作~A B .矩阵之间的等价关系也具有反身性、对称性与传递性.对行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵,称为标准形,例如344125123115433101041000011030100000013001000000000000c c c c c c c c c ↔+⨯+⨯-⨯-⨯+⨯-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=−−−−−−→= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭B F , 矩阵F 称为矩阵B 的标准形,其特点是:F 的左上角是一个单位矩阵,其余元素全为0.对于m n ⨯矩阵A ,总可以经过有限次初等变换(初等行变换和初等列变换)把它化为标准形. 1001~=1000000000000r⎛⎫⎪⎪ ⎪⎛⎫⎪= ⎪⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭000 EA F , 此标准形由,,m n r 三个数完全确定,其中r 就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个等价类中的最简形式.二 初等矩阵(一) 初等矩阵的概念定义3 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 单位矩阵的三种初等变换对应着三种初等矩阵: (1)对调两行或对调两列.把单位阵中的第,i j 两行对调(或第,i j 两列对调),得初等矩阵11011(,)11011i i j j i j ↑↑⎛⎫⎪⎪ ⎪ ⎪← ⎪ ⎪ ⎪= ⎪⎪ ⎪⎪⎪← ⎪ ⎪ ⎪⎝⎭ 第行第行第列第列E , 用m 阶初等矩阵(,)m i j E 左乘矩阵A =()i j m n a ⨯,得(,)m i j E A =11121121212n j j jn i i in m m mn a a a a a a i a a a j a a a ⎛⎫⎪ ⎪⎪← ⎪⎪ ⎪← ⎪ ⎪ ⎪⎝⎭第行第行,其结果相当于对矩阵A 实行一次初等行变换:把A 的第i 行与第j 行对调(i j r r ↔).类似地,以n 阶初等矩阵(,)n i j E 右乘矩阵A =()i j m n a ⨯,其结果相当于对矩阵A 施行一次初等列变换:把A 的第i 列与第j 列对调(i j c c ↔).(2)以数0k ≠乘某行或某列.以数0k ≠乘单位阵的第i 行(或第j 列),得到初等矩阵(())i k E =1111k i ⎛⎫⎪⎪ ⎪ ⎪← ⎪ ⎪ ⎪⎪⎪⎝⎭第行,可以验证:以(())m i k E 左乘矩阵A ,其结果相当于以数k 乘A 的第i 行(i k r ⨯);以(())n i k E 右乘矩阵A ,其结果相当于以数k 乘A 的第i 列(i k c ⨯).(3) 以数k 乘某行(列)加到另一行(列)上去.以k 乘E 的第j 行加到第i 行上或以k 乘E 的第i 列加到第j 列上,得到初等矩阵(())ij k E =1111k i i j ↑↑⎛⎫ ⎪⎪ ⎪← ⎪⎪⎪← ⎪⎪ ⎪⎝⎭第行第j 行第列第列,由此可以验证:以(())m ij k E 左乘矩阵A ,其结果相当于把A 的第j 行乘数k 加到第i 行(i j r k r +⨯);以(())n ij k E 右乘矩阵A ,其结果相当于把A 的第i 列乘数k 加到第j 列上(j i c k c +⨯).综上所述,可以得到下述定理2.定理2 设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.(二) 初等矩阵的性质由初等变换可逆可知初等矩阵可逆,且此初等变换的逆变换也就对应此初等矩阵的逆矩阵,因此有定理3.定理3 初等矩阵均可逆,且其逆矩阵也是初等矩阵,并且1(,)(,)i j i j -=E E ,11(())(())i k i k-=E E ,1(())(())ij k ij k -=-E E .定理4 方阵A 可逆的充分必要条件是存在有限个初等矩阵12,,,l P P P ,使12l = A P P P .证明 先证充分性.设12l = A P P P ,因为初等矩阵可逆,故有限个可逆矩阵的乘积12l P P P 也可逆,从而A 可逆.再证必要性.设n 阶方阵A 可逆,且A 的标准形矩阵为F ,由于~A F ,知F 经有限次初等变换可化为A ,即存在初等矩阵121,,,,,,s s l + P P P P P , 使A =121s s l + P P P F P P ,因为A 可逆,12,,,l P P P 也可逆,故标准形F 可逆,即0≠F . 因为F 有下列形式 r n⎛⎫=⎪⎝⎭000E F , 故F =E (读者考虑为什么?),从而12l = A P P P . 证毕.由定理4的证明可知,可逆矩阵的标准形是单位阵,其实可逆矩阵的行最简形矩阵也是单位阵,即有下面的推论1.推论1 方阵A 可逆的充分必要条件是~rA E .定理5 m n ⨯矩阵A 与B 等价的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使=PAQ B (此定理请读者证明之).三 利用初等行变换求矩阵的秩矩阵的秩是在后继章节中用于判断向量组线性相关性的重要指标,下面给出矩阵秩的概念.(一) 矩阵的秩定义4 在m n ⨯矩阵A 中,任取k 行与k 列(1k m ≤≤,1k n ≤≤),位于这些行列交叉处的2k 个元素,不改变它们在A 中所处的位置次序而得的k 阶行列式,称为矩阵A 的k 阶子式.m n ⨯矩阵A 的k 阶子式共有k kmn C C ⋅个. 定义5 设在矩阵A 中有一个不等于0的r 阶子式D ,且所有1r +阶子式(如果存在的话)全等于0,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记作()R A .规定零矩阵的秩等于0.由定义5及行列式的性质可得:(1) 在A 中当所有1r +阶子式全为0时,所有高于1r +阶的子式也全为0,因此把r 阶非零子式称为最高阶非零子式,而A 的秩()R A 就是A 中不等于0 的子式的最高阶数. (2) 由于()R A 是A 的非零子式的最高阶数,因此,若矩阵A 中有某个s 阶子式不为0,则()R s ≥A ;若A 中所有t 阶子式全为0,则()<t R A .(3) 由于行列式与其转置行列式相等,因此TA 的子式与A 的子式对应相等,从而T ()=()R R A A .对于n 阶矩阵A ,由于A 的n 阶子式只有一个A ,若当0≠A 时,()=R n A ,当A =0时()<R n A . 可见可逆矩阵的秩等于矩阵的阶数,因此有定义6.定义6可逆矩阵又称为满秩矩阵,不可逆矩阵(奇异矩阵)又称为降秩矩阵.例2 求矩阵A 和B 的秩,其中123235471=⎛⎫ ⎪⎪ ⎪⎝⎭A ,B =21032031250004300000--⎛⎫⎪-⎪⎪- ⎪⎝⎭.解 在A 中,容易看出一个2 阶子式12023≠,A 的3阶子式只有一个A ,A =0,故()=2R A .B 是一个行阶梯形矩阵,其非零行有3行,即知B 的所有4阶子式全为零. 而以三个非零行的第一个非零元为对角元的3 阶行列式213032004--≠, 故()=3R B .从本例可知,对于一般矩阵,当行数与列数较高时,按定义求秩是很麻烦的. 然而对于行阶梯形矩阵,它的秩就等于非零行的行数,一看便知,因此,自然想到用初等变换把矩阵化为行阶梯形矩阵,但两个行等价矩阵的秩是否相等呢?下面定理6将回答这个问题.(二)利用初等变换求矩阵的秩定理6 若~rA B ,则()R A =()R B .证明 只需证明矩阵A 经过一次初等行变换成为矩阵B 时,能成立()R A ()R ≤B即可.事实上,此时由初等变换的逆变换亦为同类型的初等变换,就可推知亦成立()R ≤B ()R A ,于是有()R A =()R B .既然每一次初等行变换都不会改变矩阵的秩,则定理得证. 下面分别对三类初等行变换证明()R A ()R ≤B ,设()=R r A .对第1类初等行变换i j r r ↔. 此时A 必有一非零r 阶子式r M . 显然,在B 中可得一个相应的子式r N ,使r N 与r M 全同或只是对r M 作一行交换的结果,于是r N =0r M ±≠,即在B 中找到一个非零r 阶子式r N ,这说明()R r ≥B =()R A .对第2类初等行变换i kr . 当A 的非零r 阶子式r M 含有第i 行元时,可找到B 的对应r 阶子式r N ,有r N =0r kM ≠,而在r M 并不包含A 的第i 行元时,可得B 的对应子式r N ,有r N 0r M =≠,总之,得()R r ≥B =()R A .对第3类初等行变换i j r kr +. 对A 的任一r 阶非零子式有四种可能:①同时含有A 的第i 行与第j 行的元;②含有第i 行但不含有第j 行的元;③含有第j 行但不含有第i 行的元; ④既不含有第i 行的元也不含有第j 行的元.如果A 取到①、③、④三种情况的非零子式r M ,则在B 中以同序号的行和列构成的r阶子式r N 有r N 0r M =≠.如果A 只有第②种情况的非零子式r M ,则可得到B 的对应的r 阶子式r N ,对r N 的第i 行运用行列式加法定理,有r N 00r r M k M =+⋅=≠, 于是()R r ≥B =()R A .综上所述,定理得证.推论2 (1)若~cA B ,则()R A =()R B ;(2)若~A B ,则()R A =()R B .例3 设32050323612015316414=⎛⎫ ⎪--⎪ ⎪- ⎪--⎝⎭A , 求矩阵A 的秩,并求A 的一个最高阶非零子式.解 先求A 的秩,为此对A 作初等行变换变成行阶梯形矩阵32050323612015316414=⎛⎫ ⎪-- ⎪ ⎪- ⎪--⎝⎭A 14243141123r r r r r r r r ↔-⨯-⨯-⨯−−−→1641404311012971101612812--⎛⎫ ⎪-- ⎪ ⎪-- ⎪--⎝⎭324234r r r r -⨯-⨯−−−→16414043110004800048--⎛⎫ ⎪-- ⎪ ⎪- ⎪-⎝⎭431r r -⨯−−−→16414043110004800000--⎛⎫ ⎪-- ⎪ ⎪- ⎪⎝⎭. 因为行阶梯形矩阵有3个非零行,所以()=3R A .再求A 的一个最高阶非零子式. 因()=3R A ,知A 的最高阶非零子式为3阶. 由上述变换过程知325161326041~205004161000-⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 因为右边矩阵的秩为3,故左边矩阵的秩也是3,也就是左边矩阵必有3阶非零子式,而在左边的4个3阶子式中,找一个非零子式比较方便.计算左边矩阵的前三行构成的子式3253256113266011216025205205-==-=-≠,因此这个式子便是A 的一个最高阶非零子式.例4 设1221124802,2423336064==--⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪ ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭A b , 求矩阵A 及矩阵=()B A,b 的秩.解 对B 作初等行变换变成行阶梯形矩阵=()B A,b 12211248022423336064=⎛--⎫⎪-⎪ ⎪-- ⎪ ⎪--⎝⎭213141223r r r r r r -⨯+⨯-⨯−−−→12211004200021500631⎛--⎫⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭232421213r r r r r ⨯-⨯+⨯−−−→1221100210000050001⎛--⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭34315(1)r r r ⨯+-⨯−−−−→1221100210000010000⎛--⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭, 由此可知()=2R A ,()=3R B .从矩阵B 的行阶梯形可知,本例中的A 与b 对应的线性方程组=Ax b 是无解的, 这是因为行阶梯形矩阵的第3行表示矛盾方程0=1.例5 设1112312,536=λμ-⎛⎫ ⎪- ⎪ ⎪⎝⎭A已知()=2R A ,求λ与μ的值.解 1112312536=λμ-⎛⎫⎪- ⎪ ⎪⎝⎭A 213135r r r r -⨯-⨯−−−→111203440854λμ-⎛⎫ ⎪+-- ⎪ ⎪--⎝⎭321r r -⨯−−−→ 111203440510λλμ-⎛⎫ ⎪+-- ⎪ ⎪--⎝⎭. 因()=2R A ,故 5010λμ-=⎧⎨-=⎩ , 即51λμ=⎧⎨=⎩. (三)矩阵秩的性质矩阵的秩有以下几个常用的性质: (1)0()min(,)m n R m n ⨯≤≤A ; (2)T ()=()R R A A ;(3)若~A B ,则()R A =()R B ; (4)若P ,Q 可逆,则()=()R R PAQ A ;(5)max{(),()}()()+()R R R R R ≤≤A B A,B A B , 特别地,当=B b 为列向量,且≠0b 时,有()(,)()+1R R R ≤≤A A b A ;(6)()()+()R R R +≤A B A B ; (7)()min{(),()}R R R ≤AB A B ; (8)若=m n n l ⨯⨯0A B ,则()+()R R n ≤A B .例6 设A 为n 阶矩阵,证明(+)+()R R n -≥A E A E . 证明 因(+)+(-)2=A E E A E ,由性质6有(+)+()(2)=R R R n -≥A E E A E ,而 ()=()R R --E A A E ,故(+)+()R R n -≥A E A E .四 利用初等行变换求逆矩阵在本章第三节中曾给出求可逆矩阵A 的逆矩阵1-A 的一种方法,即先求出A 的伴随矩。
矩阵的基本概念与运算一、矩阵的基本概念矩阵是线性代数中的一种基本工具,它是由一组数按照矩形排列而成的表格结构。
矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。
一个m行n列的矩阵可记作A = [aij],其中i代表行号,j代表列号,aij表示矩阵A在第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法给定两个相同大小的矩阵A和B,它们的和矩阵C可以通过循环计算得到。
对应元素相加即可,即Ci,j = Ai,j + Bi,j。
2. 矩阵的数乘给定一个矩阵A和一个实数k,实数k与矩阵A的乘积矩阵B可以通过循环计算得到。
每个元素都乘以k,即Bi,j = k * Ai,j。
3. 矩阵的乘法矩阵的乘法涉及到两个矩阵A和B,前提是A的列数等于B的行数。
它们的乘积矩阵C可以通过循环计算得到。
行乘以列的规则是Ci,j = Σ(Ai,k * Bk,j),其中k代表循环的次数,Σ表示累加求和。
三、矩阵的特殊类型1. 零矩阵全为零的矩阵称为零矩阵,记作0。
2. 单位矩阵主对角线上元素全为1,其余元素全为0的矩阵称为单位矩阵,记作I。
3. 对角矩阵除了主对角线上的元素外,其余元素都为零的矩阵称为对角矩阵。
4. 转置矩阵将矩阵A的行变成列,列变成行得到的新矩阵称为A的转置矩阵,记作A^T。
四、矩阵的性质与应用1. 可逆矩阵如果一个方阵A存在一个方阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵。
可逆矩阵的逆矩阵记作A^-1。
2. 矩阵的秩一个矩阵的秩是指矩阵中非零行的最小数目。
秩反映了矩阵所包含的独立行或列的数量。
3. 矩阵的应用矩阵在许多科学和工程领域中都有广泛的应用,例如线性方程组的解法、图像处理、数据压缩、网络分析等。
五、总结矩阵是线性代数中重要的数学工具,由行和列组成。
矩阵的基本运算包括加法、数乘和乘法,可以通过循环计算得到。
矩阵的特殊类型包括零矩阵、单位矩阵、对角矩阵和转置矩阵。
可逆矩阵和秩是矩阵的重要性质。