第2章 室内声学原理1-4.
- 格式:ppt
- 大小:2.49 MB
- 文档页数:43
室内声学基础第一章声音的基本性质一、声音的产生与传播声音是人耳通过听觉神经对空气振动的主观感受。
声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。
这些振动的物体称之为声源。
声源发声后,必须经过一定的介质才能向外传播。
这种介质可以是气体,也可以是液体和固体。
在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。
但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。
介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。
例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。
这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。
可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。
扬声器纸盒就相当于上图中的活塞。
在空气中,声音就是振动在空气中的传播,我们称这为声波。
声波可以在气体、固体、液体中传播,但不能在真空中传播。
二、声波的频率、波长与速度当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。
质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。
质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即:f=1/T介质质点振动的频率即声源振动的频率。
频率决定了声音的音调。
高频声音是高音调,低频声音是低音调。
人耳能够听到的声波的频率范围约在20—20000Hz之间。
低于20Hz的声波称为次声波,高于20000Hz的称为超声波。
次声波与超声波都不能使人产生听感觉。
声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。
或者说,波长是声波在每一次完全振动周期中所传播的距离。
声波在弹性介质中传播的速度称为声速,记为v,单位是米/秒(m/s)。
声速不是介质质点振动的速度,而是质点振动状态的传播速度。
第一篇室内声环境第一章室内声学原理一、填空题:1、声音是在气体、液体或固体等弹性介质中以波动形式传播的机械振动。
2、声音在空气中的传播速度当空气为22℃时,等于344m/s,在常温条件下,空气中的声速为340m/s.3、声音是由声源的振动引起的。
声源在1s内完成的全振动次数称为频率。
它决定了声音的主调,符号为f,单位是赫兹。
4、在声波传播途径上,两相邻同位相质点之间的距离称为波长。
5、在室内声学中感兴趣的声音频率通常从63~10000Hz,相应的波长为5.4~0.034m。
6、单位时间通过垂直于声音传播方向上单位面积的平均声能通量称为声强,符号是I。
7、声强(I)与离开声源的距离(r)的平方成反比地衰减。
这称为几何衰减。
8、声波在空气中传播时,空气媒质某点(体积元)由于受声波扰动后压强超过原先大气静压强的值,称为声压。
9、由于人耳对中高频声音较敏感,对低频声音较不敏感,为了得到比声压级能更好地与人耳响度判别密切相关的升级值,在声级计中加进了“频率计权网络”。
10、对声源方位的辨别,正常人可辨别1°~3°水平方位的变化.在水平方位角0°~60°范围内,人耳有良好的方位辨别力,超过60°就变差。
对竖直方位,可能要在声源变化达10°~15°以上时才能辨别。
11、响度是人对声音强弱的主管评价指标。
人耳对2000~4000Hz的声音最敏感,频率越低,灵敏度越差;而频率很高时,灵敏度也会变差。
12、音高又称音调,是人耳对声音调子高低的主观感觉。
13、声源在自由空间传播时,人们听到的只有来自声源的直达声。
14、颤动回声——会引起声压分布不均,还会发生某些频率声音被增强,某些频率声音被减弱的现象,使声音产生失真,所以在室内设计中应加以避免。
二、名词解释:1、掩蔽效应——人耳在倾听一个声音的同时,如果存在另外一个声音,就会影响到人耳对所听声音的听闻效果。
室内声学原理xx年xx月xx日contents •引言•室内声学原理概述•室内声学设计原则•室内声学效果的影响因素•室内声学设计技巧•实际应用案例分析目录01引言室内声学是研究室内声音传播、音质、降噪和声源定位等问题的学科领域。
室内声学涉及建筑声学、声学、心理声学等多个学科领域。
室内声学的定义良好的室内声学可以提高人们的生活品质和工作效率。
优秀的室内声学设计可以创造出舒适、优美、真实的声音环境,满足人们对于声音品质的需求。
室内声学的重要性室内声学的发展历程室内声学作为一门独立的学科领域,始于20世纪初。
随着科技的发展和人们生活水平的提高,室内声学逐渐应用于家庭、办公室、商场等各类建筑和场所中。
早期的室内声学研究主要集中在音乐厅、剧院等演艺场所。
目前,室内声学已经成为了建筑、电子、通信等多个领域的重要研究方向之一。
02室内声学原理概述1声波传播原理23声波在空气中的传播速度约为340m/s。
声波传播速度声波遇到不同的介质会折射和反射,产生音色和音量的变化。
声波的折射和反射声波在传播过程中会被空气、墙壁等物质吸收,导致声音逐渐减弱。
声波的吸收吸声材料使用具有吸声性能的材料,如海绵、泡沫、纤维板等,可以减少室内回声和噪音。
吸声结构利用吸声结构,如穿孔板、共振腔等,可以吸收不同频率的声波,提高声音清晰度。
吸声原理声反射原理声反射现象声波遇到障碍物时会反射回来,形成回声和混响。
声反射损失通过控制室内表面的反射系数和布局,可以减少反射声波造成的干扰。
声反射和吸声的平衡为了获得最佳的语言清晰度和音乐表现力,需要合理平衡室内声反射和吸声的设计。
03室内声学设计原则响度是室内声学设计的重要因素之一,合适的响度能够让人们更好地听到声音内容,同时避免噪声和回声等干扰。
室内声学设计时需要根据空间大小、容积和用途等因素来综合考虑响度,通常使用声压级和语言传输指数等指标来进行评估和设计。
均匀的声场是指室内各个位置听到的声音大小和音质都应该相对一致,避免出现声聚焦、声盲区和回声等声学问题。
声学基础声学基础1绪论2声波的基本性质3管道声学4声波的辐射5声波的接收与散射6室内声学声学基础第1章绪论1.1 声与噪声的概念1.2 声学发展历史131.3 声学研究范畴1.4 课程内容1.5 参考书目第1章绪论1.1 声与噪声的概念声:声音的世界:自然界中的声音, 音乐,语言,噪声波动现象,曾发生过波动说和粒子说的争论声波:在弹性媒质中传播的扰动声音:人耳可听声声源——媒质——受者物体振动——媒质传播——听觉器官或传感器产生反应一种物质波,需要媒质(光波,无线电波为电磁波)噪声的定义:生理学:不需要的声音。
(与时、人、环境、目的有关)物理学:不协调音为噪声,协调音为乐音。
噪声:频率、声强不同声波的无规则组合。
噪声:对人起作用的不愉快声。
人——声噪声对人起作用的不愉快声第1章绪论 1.1 声与噪声的概念声学(Acoustic)研究声波的产生、传播、接收和效应的科学, 关于声音的学问应用声学科学原理改造人类的物质环境1.2声学发展历史第1章绪论1.2 声学发展历史灿烂的古代声学最早的声音研究:自然声音、人类声音、语言、音乐、乐器,房间声学特性声波和水波的类比,共振、天坛古代乐器,编钟,调音乐律:三分损益法第1章绪论 1.2 声学发展历史经典声学发展史人们常将18,19世纪欧洲的声学发展称之为经典声学这里主要从经典声学对声音的产生,传播和接收三方面的研究分别来介绍18,19世纪这近200方面的研究分别来介绍世纪这近多年的历史中,这些伟大的科学家们对声音的探索和认识第1章绪论 1.2 声学发展历史声音的产生通常认为最早研究乐器声音起源的人是希腊哲学家彼得y g格拉斯Pythagoras他发现当把两根拉直的弦底部扎牢时,高音是从短的那根弦发出的第1章绪论 1.2 声学发展历史声音的产生意大利的伽利略(Galileo Galilei) 在17世纪初作了单摆及弦的研究,得到单摆的周期及弦的振动发声特性。
发现钟摆的周期与振幅无关,而只依赖于决定振动频率的悬线长度,强调了频率的重要性。
室内声学原理室内声学设计的主要目的就是设置房间的形状、容积以及吸声、反射材料的分布等,以获取室内良好的声环境和听音环境并避免形成声缺陷。
室内声学的原理包括几何声学原理、扩散声场的假定以及室内声音的增长、稳态和衰减。
剧院观众厅、体育馆、会议厅、礼堂、播音室、教室等封闭空间内,不同于室外自由声场,声波在传播时受到室内各个界面的反射与吸收,声波相互重叠形成复杂的声场,如图 3-2所示,这种室内声场的特征主要有:(1)距离声源有一定距离的接收点上,声能密度比在自由声场中要大,不随距离的平方衰减。
(2)声源在停止发声后,一定的时间里,声场中还存在着来自各个界面的迟到的反射声,产生所谓“混响现象”。
(3)声波与房间产生共振,引起室内声音某些频率的加强或减弱。
(4)由于房间的形状和内装修材料的布置,形成回声、颤动回声及其他各种特殊现象,使得室内声场情况更加复杂,如图 3-1所示。
图 3-1 室内声音传播示意图图 3-2 室内声音反射的几种典型情况A,B—平面反射;C--凸曲面的发散作用;D--凹曲面的聚焦作用1音质设计1.1音质的主观评价和客观参量室内音质的好坏是以听众或演奏者们等使用者能否得到满意的主观感受为判断标准的,涉及人们对语言声和音乐声两种声信号的主观感受。
这种主观感受从五个音质评价标准出发,包括合适的响度、较高的清晰度和明晰度、足够的丰满度、良好的空间感及有无声缺陷和噪声干扰。
每一项音质要求又与一定的客观声场参量相对应。
室内音质设计则是通过建筑设计与构造设计保证各项客观物理指标符合主要的使用功能,以满足人们对良好音质的主观感受的要求。
表2-1给出了不同演场用途房间的声学设计与问题解决。
客观参量主要包含声压级与混响时间、反射声的时间分布与空间分布、两耳互相关函数、初始时延间隙、低音比和温暖感等。
1.2混响设计一般的考虑因素:(1)尺寸——当要求短混响时(语言用厅堂),宜将房间体积减至最小;当要求中等或长混响时(音乐用大厅),则要选择大一些的房间体积。