初二数学下学期期中考试
- 格式:docx
- 大小:11.58 KB
- 文档页数:5
2022-2023 学年度第二学期初二级数学科期中考试试卷命题人:徐昊平审题人:赖清华本试卷分选择题和非选择题两部分,共4页,满分为120分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封内相应的位置上,用2B铅笔将自己的学号填涂在答题卡上.2、选择题每小题选出答案后,用2B铅笔把答题卡上对应题号的答案标号涂黑:如改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3、选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁和平整.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列式子是最简二次根式的是()A. B. C. D.【答案】C【解析】【分析】根据最简二次根式的定义即可判定答案.【详解】解:A=,因此不是最简二次根式,不合题意;B=C是最简二次根式,符合题意;D,因此不是最简二次根式,不合题意;故选C.【点睛】本题考查了最简二次根式的识别,能熟记最简二次根式的定义是解题的关键,满足下列两个条件的二次根式,叫最简二次根式:①被开方数中的每个因数都是整数,因式都是整式,②被开方数中不含有能开得尽方的因数或因式.2. 下列运算正确的是( )A. (23=B.C. −D. 【答案】A【解析】 【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【详解】解:A 、(23=,故选项正确,符合题意;B +不能合并,故选项错误,不符合题意;C 、−不能合并,故选项错误,不符合题意;D 、18=,故选项错误,不符合题意;故选:A .【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.3. 如图,点A 表示的数为x ,则x =( )A. 1−B. 1−C. 1−D.【答案】D【解析】【分析】根据图示(见详解)得,点C 在原点处,点B 表示的数是1−,则1BC =,且1BD =,则有等腰直角三角形BCD ,由此可知CD 的长,且弧 AD 是以CD 长为半径的圆的一部分,所以CA CD =,由此即可求解.【详解】解:根据题意得,如图所示,∵Rt BCD 是等腰直角三角形,且1BC BD ==,∴CD ,又∵弧 AD 是以CD 长为半径的圆的一部分,∴CA CD ==∵是在数轴上原点的坐标,∴点A 表示的数是,即x =,故选:D .【点睛】本题主要考查数轴表示无理数,理解腰为1,由此圆的半径是,则在数轴上即可表示出无理数,解题的关键的解等腰直角三角形的斜边的长.4. 如图,由边长为1的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在网格的格点上,则下列结论错误的是( )A. AB =B. 5AC =C. BC =D. 30ACB ∠=°【答案】D【解析】 【分析】首先根据勾股定理求出,,AB AC BC 的长度即可判断A ,B ,C 选项,然后利用勾股定理逆定理得到90ABC ∠=°,最后根据30°度角直角三角形的性质即可判断D 选项.【详解】根据勾股定理可得,AB ==,故A 选项正确,不符合题意;根据勾股定理可得,5AC ,故B 选项正确,不符合题意;根据勾股定理可得,BC,故C 选项正确,不符合题意;∵222AB BC AC +=,∴90ABC ∠=°,∵2AC AB ≠, ∴30ACB ∠≠°,故D 选项错误,符合题意.故选:D .【点睛】此题考查了勾股定理和网格的性质,勾股定理的逆定理,解题的关键是熟练掌握以上知识点. 5. 下列四个命题中,假命题是( )A. 有三个角是直角的四边形是矩形B. 对角线互相垂直平分且相等的四边形是正方形C. 四条边都相等的四边形是菱形D. 顺次连接对角线相等的四边形各边中点,得到一个矩形【答案】D【解析】【分析】根据矩形、菱形、正方形的判定方法逐项分析即可.【详解】A .有三个角是直角的四边形是矩形,是真命题,故不符合题意;B .对角线互相垂直平分且相等四边形是正方形,是真命题,故不符合题意;C .四条边都相等的四边形是菱形,是真命题,故不符合题意;D .顺次连接对角线相等的四边形各边中点,得到一个菱形,原命题是假命题,故符合题意;故选D .【点睛】此题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.6.是整数,则正整数n 的最小值是( )A. 1B. 2C. 3D. 18 【答案】B【解析】是整数,则18n 是平方数求解即可.是整数,∴18n 是平方数, 的∴2n=.故选B.(0)(0)a aaa a≥=−<是解答本题的关键.7. 如图,在四边形ABCD中,∠D=90°,AD=,CD=2,BC=3,AB=5,求四边形ABCD的面积为( ).A.B. 12+C. 6+D. 10+【答案】C【解析】【分析】先根据勾股定理求出AC的长,再由勾股定理的逆定理判断出△ABC的形状,根据三角形的面积公式即可得出结论.【详解】解:∵连接AC,如图所示:∵∠D=90°,AD=,CD=2,∴AC=4.∵BC=3,AB=5,32+42=52,∴△ABC直角三角形,∠ACB=90°,∴S四边形ABCD=S△ACD+S△ABC=12××2+12×4×3=.故答案选C【点睛】本题考查的是勾股定理和勾股定理的逆定理以及三角形面积的计算.8. 如图,将一个圆柱形无盖小烧杯的杯底固定在圆柱形大烧杯的杯底中央,现沿着大烧杯内壁匀速注水,注满后停止注水.则大烧杯水面的高度()cmy与注水时间()s x之间的函数图象大致是()是A. B.C. D.【答案】D【解析】【分析】根据题意判断出大烧杯的液面高度()cm y 随时间()s x 的变化情况即可.【详解】解:先大烧杯的液面高度y 随时间x 的增加而增大,当大烧杯的液面高度达到小烧杯的高度时,大烧杯的液面高度y 保持不变,所以B 选择项不符合题意;当小烧杯水注满后,大烧杯的液面高度y 随时间x 的增加而增大,所以A C 选择项不符合题意,D 项符合题意.故选:D .【点睛】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,函数值是增大还是减小是解题的关键.9. 如图,ABCD 的对角线AC BD ,相交于点O ,点E 是AD 中点,若8AC =,AOE △的周长为10,则ABCD 的周长为( )A. 20B. 24C. 28D. 32【答案】B【解析】【分析】根据平行四边形的对角线互相平分,得到O 是AC 的中点,进而得到OE 为ACD 的中位线,得到ACD 的周长是AOE △的周长的2倍,用ACD 的周长减去AC 的长,得到AD CD +的长,即可得解. 【详解】解:∵ABCD 的对角线AC BD ,相交于点O , ∴12AO OC AC ==, ∵点E 是AD 中点, ∴11,22AE ED AD OE CD ===, ∴ACD 的周长()2AC AD CD AO OE AE =++=++,∵AOE △的周长10AO OE AE =++=,∴20AC AD CD ++=,∴20812AD CD +−,∴ABCD 的周长()224AD CD =+=;故选B .【点睛】本题考查平行四边形的性质,三角形的中位线定理.熟练掌握平行四边形的对角线互相平分,是解题的关键.10. 如图,在矩形ABCD 中,1210AB AD ==,,点P 在AD 上,点Q 在BC 上,且AP CQ =,连接CP QD 、,则PC QD +的最小值为( )A. 22B. 24C. 25D. 26【答案】D【解析】 【分析】连接BP ,则PC QD +的最小值转化为PC PB +的最小值,在BA 的延长线上截取12AE AB ==,连接PE CE 、,则PC QD PC PB PC PE CE +=+=+≥,再根据勾股定理求解即可.【详解】解:如图,连接BP ,在矩形ABCD 中,10AD BC AD BC ==,∥,∵AP CQ =,∴AD AP BC CQ −=−,∴DP QB DP BQ =,∥,∴四边形DPBQ 是平行四边形,∴PB DQ PB DQ =∥,,则PC QD PC PB +=+,则的最小值转化为PC PB +的最小值,在BA 的延长线上截取12AE AB ==,连接PE ,则224BE AB ==,∵PA BE ⊥,∴PA 是BE 的垂直平分线,∴PB PE =,∴PC PB PC PE +=+,连接CE ,则PC QD PC PB PC PE CE +=+=+≥,∴26CE =,∴PC PB +的最小值为26,即PC QD +的最小值为26,故选:D .【点睛】本题考查的是矩形的性质、平行四边形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和平行四边形的判定与性质,证出PC QD PC PB PC PE CE +=+=+≥是解题的关键.第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,共18分)11. 函数54=−y x 中自变量x 的取值范围是________. 【答案】4x ≠【解析】【分析】根据分式分母不为0列出不等式,解不等式即可.【详解】解:由题意得,x-4≠0,解得,x≠4,故答案为x≠4.【点睛】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.12. 如果一直角三角形的两条直角边的长分别是3cm和4cm,那么这个直角三角形斜边上的中线等于________cm.【答案】5 2【解析】【分析】先根据勾股定理列式求出斜边的长,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵两条直角边的长分别是3cm和4cm,∴斜边,∴斜边上的中线=52 cm,故答案为:52.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,是基础题,熟记性质是解题的关键.13.与最简二次根式=a___________.【答案】4【解析】化为最简根式,然后根据同类次根式的定义列出方程求解即可.与最简二次根式=,∴13a−=,解得:4a=.故答案为:4【点睛】本题主要考查同类二次根式的概念,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.14. 如图,一个梯子斜靠在一竖直的墙AO上,测得4mAO=,若梯子的顶端沿墙下滑1m,这时梯子的底端也向右滑1m,则梯子AB的长度为________.【答案】5m ##5米【解析】【分析】设m BO x =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,然后由勾股定理求出AB 的长度.【详解】解:设m BO x =,由题意得:1m =AC ,1m BD =,4m AO =,在Rt AOB △中,根据勾股定理得:222224AB AO OB x =+=+,在Rt COD 中,根据勾股定理得:()()22222411CD CO OD x =+=−++,∴()()22224411x x +=−++,解得:3x =,∴()5m AB == ,即梯子AB 的长为5m .故答案:5m .【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,由勾股定理得出方程是解题的关键. 15. 如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C 、E 为圆心,大于12CE 的长为半径作弧,两弧交于点P ,作射线BP 交AD 的延长线于点F ,60CBE ∠=°,4BC =,则BF 的长为______.【答案】【解析】为【分析】连接CE 交BF 于G ,连接CF .根据平行四边形的性质,平行线的性质确定EFB CBF ∠=∠,根据题目中作图过程确定BP 是CBE ∠的平分线,根据等角对等边和等价代换思想确定BC BE =,根据菱形的判定定理和性质确定BF CE ⊥,2BF BG =,根据角平分线的定义,30°所对的直角边是斜边的一半,勾股定理求出BG 的长度,进而即可求出BF 的长度.【详解】解:如图所示,连接CE 交BF 于G ,连接CF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即EF BC ∥.∴EFB CBF ∠=∠.∵以点B 为圆心,BC 的长为半径作弧交AD 于点E ,∴BC BE =.根据作图过程可知BP 是CBE ∠平分线.∴CBF EBF ∠=∠.∴EBF EFB ∠=∠.∴BE EF =.∴BC EF =.∴四边形BCFE 是平行四边形.∴平行四边形BCFE 是菱形.∴BF CE ⊥,2BF BG =.∵60CBE ∠=°,∴30CBF ∠=°.∵4BC =, ∴122CG BC ==.∴BG .∴2BF BG ==.故答案为:的【点睛】本题考查平行四边形的判定定理和性质,平行线的性质,角平分线作图,等角对等边,菱形的判定定理和性质,30°所对的直角边是斜边的一半,勾股定理,综合应用这些知识点是解题关键. 16. 如图,点E 在正方形ABCD 外,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点F,若AE AF ==10BF =,则下列结论:①AFD AEB ≌ ;②EB ED ⊥;③点B 到直线AE的距离为④40ABF ADF S S ∆∆+=其中正确的结论是___.(填写所有正确结论的序号)【答案】①②④【解析】【分析】由正方形性质可知AB AD =,90BAD ∠=°,得出90BAF DAF ∠+∠=°,结合题意可得出90EAB BAF ∠+∠=°,即证明EAB FAD ∠=∠,从而可用“SAS ”证明AFD AEB ≌,故①正确;根据等腰直角三角形的性质得出45AEF AFE ∠=∠=°,结合全等的性质可得135AFD AEB ∠=∠=°,进而即可求出90BEF ∠=°,故②正确;过点B 作BG AE ⊥,交AE 延长线于点G ,则BG 的长即为点B 到直线AE 的距离.根据勾股定理可求出8EF =,从而可求出6BE.又易证GBE为等腰直角三角形,即得出BG EG ===AFD AEB S S = ,即得出ABF ADF ABF AEB AEF BEF S S S S S S +==++ ,结合三角形的面积公式即可求出162440ABF ADF S S +=+= ,故④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90BAD ∠=°,∴90BAF DAF ∠+∠=°,的∵EA AF ⊥,∴90EAB BAF ∠+∠=°,∴EAB FAD ∠=∠,又∵AE AF =,∴(SAS)AEB AFD ≌,故①正确;∵AFD AEB ≌,∴AFD AEB ∠=∠,∵90EAF ∠=°,AE AF =,∴45AEF AFE ∠=∠=°,∴180135AEB AFD AFE ∠=∠=°−∠=°,∴1354590BEF AEB AEF ∠=∠−∠=°−°=°,∴EB ED ⊥,故②正确;如图,过点B 作BG AE ⊥,交AE 延长线于点G ,则BG 的长即为点B 到直线AE 的距离.∵90EAF ∠=°,AE AF ==∴8EF =,∵10BF =,90BEF ∠=°,∴6BE ,∵135AEB ∠=°,∴45GBE GEB ∠=∠=°,∴BG EG BE ===,故③错误; ∵AFD AEB ≌,∴AFD AEB S S = ,∴ABF ADF ABF AEB AEF BEF S S S S S S +==++ .∵111622AEF AE AF S =⋅=×=,11682422BEF BE E S F =⋅=××= , ∴162440ABF ADF S S +=+= ,故④正确.综上分析可知,正确的结论有①②④.故答案为:①②④.【点睛】本题考查正方形的性质,勾股定理,三角形全等的判定和性质,等腰直角三角形的判定和性质等知识.熟练掌握上述知识,并能够正确作出辅助线是解题关键. 三、解答题(本题共9小题,满分72分,解答题需写出文字说明,推理过程和演算步骤)17.【答案】−【解析】【分析】先进行二次根式的乘除运算,再化简合并,即可求解.−−=−−=−【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混和运算的顺序,并注意二次根式的化简是解题的关键.18. 已知1x =+,1y =,求下列各式的值:(1)222x xy y ++;(2)22x y −.【答案】(1)8 (2)【解析】【分析】(1)将x 、y 的值代入原式2()x y =+计算即可;(2)将x 、y 的值代入原式()()x y x y =+−计算即可. 【小问1详解】解:当1x =,1y =时,原式2()x y =+211)=++−2=8=;【小问2详解】当1x =+,1y =−时,原式()()x y x y =+−111)=++−2=【点睛】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则. 19. 8米,一阵强风将竹子从C 处吹折,竹子的顶端A 刚好触地,且与竹子底端的距离AB 是4米.求竹子折断处与根部的距离CB .【答案】3米【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x 米,则斜边为(8-x )米.利用勾股定理解题即可.【详解】解:由题意知BC +AC =8,∠CBA =90°,∴设BC 长为x 米,则AC 长为(8x −)米,∴在Rt △CBA 中,有222BC AB AC +=,即:2216(8)x x +=−,解得:3x =,∴竹子折断处C 与根部的距离CB 为3米.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.20. 在ABCD 中.(1)尺规作图:作B ∠的平分线BE ,E 为AD 与BE 的交点(保留痕迹,不写作法); (2)在(1)的条件下,若2,3AB BC ==,求DE 【答案】(1)见解析 (2)1【解析】【分析】(1)根据角平分线的尺规作图方法作图即可;(2)证明ABE CBE ∠=∠AE =,进而可求出DE 的长.【小问1详解】如图所示,【小问2详解】∵BE 平分ABC ∠,∴ABE CBE ∠=∠.∵四边形ABCD 是平行四边形,∴AD BC ∥,3AD BC ==,∴CBE AEB ∠=∠,∴ABE AEB ∠=∠,∴2AB AE ==.∴1DE AD AE =−=.【点睛】本题考查了尺规作图-作角的平分线,平行四边形的性质,角平分线的定义,以及等腰三角形的判定,证明ABE AEB ∠=∠是解(2)的关键.21. 在正方形ABCD 中,P 为对角线AC 上一点,且CB CP =.(1)求证:PB PD =;(2)求BPD ∠的度数.【答案】(1)见解析 (2)135BPD ∠=°【解析】【分析】(1)根据正方形性质,证明()SAS BCP DCP ≌△△,得出PB PD =即可;(2)根据等腰三角形性质求出()11804567.52BPC PBC ∠=∠=°−°=°,根据全等三角形性质求出67.5DPC BPC ∠=∠=°,即可得出答案.【小问1详解】证明:∵四边形ABCD 为正方形,∴CD CB =,1452BCP DCP BCD ∠=∠=∠=°, ∵PC PC =,∴()SAS BCP DCP≌△△,∴PB PD =;【小问2详解】解:∵CB CP =,45BCP ∠=°, ∴()11804567.52BPC PBC ∠=∠=°−°=°, ∵BCP DCP ≌△△,∴67.5DPC BPC ∠=∠=°,∴135DPC B BPD PC ∠+∠=°∠=.【点睛】本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,三角形全等的判定和性质,证明BCP DCP ≌△△是解题的关键.22. 如图,把矩形ABCD 沿AE 所在的直线对折后点D 落在BC 边的点F 处,10,8BC AB ==.求:(1)CF 的长;(2)EF 的长.【答案】(1)4 (2)5【解析】【分析】(1)首先求出BF 的长度,进而求出CF 的长度;(2)根据勾股定理列出关于线段EF 的方程,即可解决问题.【小问1详解】解:∵四边形ABCD 是长方形,∴8,10,90AD AB AD BC B C °====∠=∠=, ∵长方形沿AE 对折后点D 落在BC 边的F 处,∴ADE AFE △≌△,∴,5DEEF AF AD ===, 在Rt ABC △中,有222AB BF AF +=,6BF =,∴4CF BC BF =−=;【小问2详解】由(1)知:10,BCAD DE EF ===, 在Rt CEF △中,设EF x =,则(8)CEx =−, 由勾股定理得:222+=CF CE EF ,2224(8)x x +−=,解得5x =,即:5EF =.【点睛】此题主要考查了翻折变换以及勾股定理,解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;根据有关定理灵活分析、正确判断、准确求解.23. 在Rt ABC 中,90ACB ∠=°.点D 是边AB 上的一点,连接C D .作AE DC ∥,CE AB ∥,连接E D .(1)如图1,当CD AB ⊥时,求证:AC ED =;(2)如图2,当D 是边AB 的中点时,若10AB =,8ED =,求四边形ADCE 的面积.【答案】(1)证明见解析(2)24【解析】【分析】(1)根据AE ∥DC ,CE ∥AB ,可以得到四边形AECD 是平行四边形,再根据CD ⊥AB ,即可得到结论成立;(2)根据题意,先判断四边形AECD 是菱形,然后求出AC 的长,再计算四边形ADCE 的面积即可.【小问1详解】证明:∵AE ∥DC ,CE ∥AB ,∴四边形AECD 是平行四边形,∵CD ⊥AB ,∴∠CDA =90°,∴四边形AECD 是矩形,∴AC =ED ;【小问2详解】解:∵D 是边AB 的中点,∠ACB =90°,AB =10,∴CD =AD =5,∵AE ∥DC ,CE ∥AB ,∴四边形AECD 是平行四边形,∴四边形AECD 是菱形, ∴12DE =4,∴12AC 3=,∴AC =6,∴四边形ADCE 的面积是12AC •DE =12×6×8=24,即四边形ADCE 的面积是24.【点睛】本题考查勾股定理、矩形的判定与性质、菱形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.24. 如图,在矩形ABCD 中,E 是AD 的中点,将ABE 沿BE 折叠,点A 的对应点为点G .(1)如图1,当点G 恰好在BC 边上时,求证:四边形ABGE 为正方形;(2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+;②若AD =,试探索线段DF 与FC 的数量关系.【答案】(1)正方形 (2)①见解析;②3CF DF =【解析】【分析】(1)先根据有三个角直角的四边形是直角得四边形ABGE 是矩形,再由角平分线性质定理可知:AE EG =,从而得四边形ABGE 是正方形;(2)①如图2,连接EF ,由ABCD 为矩形,得到两组对边相等,四个角为直角,再由E 为AD 中点,得到AE DE =,由折叠的性质得到BG AB EG AE ED ===,,且90EGB A ∠=∠=°,利用HL 得到直角三角形EFG 与直角EDF 全等,利用全等三角形对应边相等得到DF FG =,由BF BG GF =+,等量代换即可得证;②CF DF =,理由为:不妨假设AB DC a DF b ===,,表示出AD BC =,由①得:BF AB DF =+,进而表示出BF CF ,,在直角BCF △中,利用勾股定理列出关系式,整理得到2a b =,由CD DF FC −=,代换即可得证.【小问1详解】证明:∵四边形ABCD 是矩形,90A ABC ∴∠=∠=°,由折叠得:90BGE A ∠=∠=°,45ABE EBG ∠=∠=°,∴四边形ABGE 是矩形,ABE EBG AE AB EG BG ∠=∠⊥⊥ ,,,AE EG ∴=,∴矩形ABGE 是正方形;故答案为:正方形;【小问2详解】①如图2,连接EF ,在矩形ABCD 中,90AB DC AD BC A C D ==∠=∠=∠=°,,,∵E 是AD 的中点,AE DE ∴=,ABE 沿BE 折叠后得到GBE ,90BG AB EG AE ED A BGE ∴===∠=∠=°,,90EGF D ∴∠=∠=°,在Rt EGF 和Rt EDF 中,EG ED EF EF == ,,Rt EGF Rt EDF ∴ ≌,DF FG ∴=,BF BG GF AB DF ∴=+=+;②不妨假设AB DC a ==, DF b =,AD BC ∴==,由①得:BF AB DF =+BF a b ∴=+, CF a b =−,在Rt BCF 中,由勾股定理得:222BC B F F C =+∴())()222a b a b +=+−, ∴243ab a =,∵0a ≠, ∴43a b =,即: 43CD DF =, 43CF DF DF =− , 3.CF DF ∴=【点睛】此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握图形的判定与性质是解本题的关键.25. 已知矩形ABCD 中,5cm,10cm AB BC ==,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE ,求证:四边形AFCE 为菱形;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB △和DE △各边匀速运动一周.即点P 自A F B A →→→停止,点Q 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值;②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)见解析 (2)①53;② 【解析】【分析】(1)利用SAS 证明AOE COF △≌△,得OE OF =,可知四边形AFCE 是平行四边形,再说明AC EF ⊥即可证明是菱形;(2)①设菱形的边长cm AF CF x ==,在Rt ABF 中,利用勾股定理求出x 的值.通过判断可知因此只有当点P 在BF 上,Q 点在ED 上,才能构成平行四边形,根据QA PC =,从而得出答案;②由题意得:四边形APCQ 是平行四边形时,点P ,Q 在互相平行的对应边上,分三种情况分别画出图形,从而解决问题.【小问1详解】∵四边形ABCD 是矩形,∴AD BC ∥,∴,CAD ACB AEF CFE ∠=∠∠=∠, ∵O 为AC 中点,∴OA OC =,∴(AAS)△≌△AOE COF ,∴OE OF =,∴四边形AFCE 是平行四边形,又∵AC 平分EAF ∠,∴AC EF ⊥,∴四边形AFCE 为菱形;【小问2详解】①设菱形的边长cm AF CF x ==,则(16)cm BFx =−, 在Rt ABF 中,由勾股定理得:2228(16)x x +−=,解得10x =,∴10AF ;如图,显然当点P 在AF 上时,Q 点在CD 上,此时A ,C ,P ,Q 的四点不可能构成平行四边形,同理P 点在AB 上时,Q 点在DE 或CE 上也不能构成平行四边形,因此只有当点P 在BF 上,Q 点在ED 上,才能构成平行四边形,∴以A ,C ,P ,Q 的四点为顶点的四边形是平行四边形时,PC QA =,∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,∴5,4154PC t QA CD AD t t ==+−=−,即QA =24-4t ,∴5t =15-4t , ∴53t =, ∴当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,t 的值为53; ②由题意得:四边形APCQ 是平行四边形时,点P ,Q 在互相平行的对应边上.∵四边形AFCE 为菱形,∴AF CF CE AE ===.如图,当P 点在AF 上,Q 点在CE 上时,∵AP CQ =,∴15a b =−,∴15a b +=;如图,当P 点在BF 上,Q 点在DE 上时,∵AQ CP =,即15b a −=,∴15a b +=;如图,当P 点在AB 上,Q 点在CD 上时,∵AP CQ =,∴.15a b −=,∴15a b +=,综上所述,a 与b 满足的数量关系为15(0)a b ab +=≠. 【点睛】本题考查了矩形的性质,菱形的判定与性质,平行四边形的判定与性质,勾股定理等知识,运用分类讨论思想是解(2)的关键.。
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
2024年春期期中质量评估检测八年级数学试题卷注意事项:1. 本试卷共8页, 三个大题, 23个小题, 满分120分, 考试时间100分钟.2.答题前考生务必将自己的姓名、考号、学校等填写在试题卷和答题卡相应的位置.3.考生作答时,将答案涂、写在答题卡上,在本试题卷上答题无效........... 4. 考试结束,将答题卡交回.一、选择题:(每小题3分,共30分.)(下列各小题中只有一个答案是正确的.) 1.若分式 1x+1有意义,则x 的取值范围是A. x≠-1B. x≠0C. x≠1D. x≠22.在平面直角坐标系中,点 M(-1,2)在A. 第一象限B. 第二象限C.第三象限D.第四象限 3. 2024年3月 14日是第5个国际数学日, 主题是 Playing with Math(玩数学).我国古代数学家祖冲之推算出无理数π的近似值为 355113,,它与π的误差小于 0.0000003. 将0.0000003 用科学记数法可以表示为A.3×10⁻⁶B.0.3×10⁻⁶C.3×10⁻⁷D.3×10⁷ 4. 化简m−1m +1m的结果是 A. 0 B. 1 C. m D. m-15.将直线y=2x+1向下平移2个单位长度,所得直线对应的函数表达式是A. y=2x-3B. y=2x+3C. y=2x-1D. y=2x+56.将分式 2xyx+y 中的x 、y 的值都变为原来的3倍,则该分式的值 A.扩大为原来的3倍 B.扩大为原来的9倍 C.保持不变 D.缩小为原来的 16 7.若函数 y =kx 的图象位于第一、三象限, 则直线y=kx-k 一定不经过A. 第一象限B.第二象限C. 第三象限D. 第四象限 8. 分式的最简公分母是A. 3xyB.6x³y²C.6x⁶y⁶D.x³y³八年级数学试题卷 第1页 (共 8 页)9.汽车油箱中有汽油50L ,如果不再加油,那么油箱中的油量 y(L)随行驶路程x(km)的增加而减少, 平均耗油量为10L/100km. 当0≤x<500时, y 与x 的函数关系式是A. y=0.1xB. y=50-0.1xC.y =500xD. y=50-10x10.在平面直角坐标系中,按如图所示方式放置正方形OABC ,点A 的坐标为(1, 2), 将正方形OABC 绕坐标原点 O 逆时针旋转, 每秒旋转90°, 第2024秒旋转结束时点 C 的对应点 C'的坐标为A. (-2, 1)B. (1, 2)C. (2, -1)D. (-1, 2)二、填空题(每小题3分,共15 分)11.一个函数图象过点(0,2),且y 随x 增大而增大,请写出一个符合上述条件的函数解析式: .12. 若分式 x 2−1x−1的值为0,则x 的值是 . 13.如图,过反比例函数 y =kx的图象上任意一点 P 作 PM⊥x 轴于点 M ,若△POM 的面积等于5, 则k= .14.如图,在平面直角坐标系中,根据尺规作图痕迹可知,当( OA =√2时,点M 的坐标是 .15. 如图, 直线 y =−34x −3与x 轴、y 轴分别交于点 A 、B, 点 C 是 x 轴上的一个动点,将直线BA 沿直线 BC 翻折,当点 A 的对应点 D 恰好落在y轴上时,点 C 的横坐标...为 .八年级数学试题卷 第2页 (共 8页)三、解答题(共8个小题,满分75分)16.(10分)(1)计算:−12024+(π−3)0+√4+(−12)−2;(2)化简:(4a+5a+1+a−1)÷a+2a+1.17.(9分)如图,平面直角坐标系中,反比例函数y=kx的图象经过点A.(1)求k的值;(2)若一次函数y=2x+b的图象经过点 A, 求b的值;(3)当x>3时,都有一次函数y=2x+b的值大于反比例函数y=kx的值,请直接写出b的取值范围.八年级数学试题卷第3页 (共8页)18.(9分)赛龙舟是传统节日端午节的主要习俗.某市在端午节期间举行赛龙舟比赛,已知甲、乙两队参加比赛时的路程s(米)与时间t(分钟)之间的关系如图所示,请观察图象,回答下列问题:(1)这次龙舟比赛全程为米;(2)龙舟比赛先到达终点的是队;(填“甲”或“乙”)(3)比赛时甲队龙舟的平均速度是米/分钟;(4)甲队和乙队相遇时,乙队龙舟的速度是米/分钟;(5)直接写出相遇之前甲队和乙队龙舟何时相距10米.19.(9分)已知关于x的分式方程2x−ax−1−11−x=3.(1)当a=1时,求该分式方程的解;(2)若该分式方程的解为非负数,求a的取值范围.20. (9 分) 如图,已知直线 l₁:y =2x +3与x 轴、y 轴的交点分别为A 、B ,请在图中作出直线 l₂:y =−x.(1)直接写出二元一次方程组 {2x −y =−3,x +y =0的解: ;(2)直线 l₂上是否存在点 C ,使 △AOC 与 △AOB 的面积相等,若存在,求出C 点坐标;否则,说明理由.21.(9分)春节过后,我市又降大雪给交通带来了一定影响.为保证市民第二天的正常出行,某社区计划调用甲、乙两个工程队合作清扫1800平方米的积雪.已知甲工程队每小时能清雪的面积是乙工程队每小时能清雪的面积的2倍,并且在独立清扫面积为300 平方米的积雪时,甲工程队比乙工程队少用3 小时.(1)求甲、乙两个工程队每小时能独立清雪多少平方米;(2)已知甲工程队清雪的费用是 6 元/平方米,乙工程队清雪的费用是 5元/平方米.在合作完成这1800 平方米的清雪任务中,如果乙工程队的施工时间为t(小时),两个工程队的总费用为w(元),求w关于t的函数关系式.22.(10 分) 【发现问题】我国是世界上水资源最缺乏的国家之一,同时又有很多水龙头由于漏水造成大量的浪费,某校园内有一个漏水的水龙头,数学活动小组要探究其漏水造成的浪费情况.【提出问题】小明用一个带有刻度的量筒放在水龙头下面接水,探究量筒中的总水量y(毫升)是否为时间 t(分钟)的函数?【分析问题】小明每隔1分钟记录量筒中的总水量,但因操作延误,开始计时.............(1)请在下图的平面直角坐标系内描出上表中数据对应的点;(2)根据上表中的数据和所描的点,判断 y =kt和y=kt+b(k 、b 为常数)哪一个能正确反映总水量y 与时间t 的函数关系?求出这个关系式; 【解决问题】(3)小明继续实验,当量筒中的水刚好有60毫升时,所需时间为 分钟;(4)按此漏水速度,半小时会浪费..毫升水.(5)若一个人一天大约饮用1500 毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一个人饮用多少天.八年级数学试题卷 第7页 (共8页)23.(10分)如图,在一段长为660km的高速公路上,规定汽车行驶速度最低为60km/h, 最高为110km/h.(1)直接填空:①当行驶速度为100km/h, 需要 h走完这段路;②行驶完这段路恰好用了8.8h,行驶速度是 km/h.(2)请你根据以上背景,设定变量建立一个合理的函数关系,这个函数关系式中要把数据“660km”用上,并写出自变量的取值范围.(3)请你先提出一个问题,然后再回答它.要求:这个问题的解决要把“(2)中的函数关系式”、“60km/h”和“110km/h”都用上.八年级数学试题卷第8页 (共8页)。
OABCD初二第二学期数学期中试卷一、选择题(本题共24分,每小题2分) 1.点A(6,-5)所在象限是( )A .第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,点P (2,-3)关于x 轴对称的点的坐标是() A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3)3.下列有序实数对表示的各点在.函数42y x =-的图象上的是( ) A .(0,4) B .(1,-2) C .(1, 2) D .(2, 0) 4.如图,E 、F 是DABCD 对角线AC 上两点.且AE=CF , 连结DE 、BF ,则图中共有全等三角形的对数是( ) A .1对 B. 2对 C .3对 D .4对5.关于函数x y 21=,下列结论正确的是()A .函数图像必经过点(1,2)B .函数图象经过二、四象限C .y 随x 的增大而增大D .y 随x 的增大而减小 6.矩形具有而平行四边形不.具有的性质是(). A. 对角线相等 B. 对角相等 C . 对角线互相平分 D. 两组对边分别相等7.已知一次函数b kx y +=中,0>k ,0<b ,则这个一次函数的图象大致是( )8.已知函数()265y k x =-+是关于x 的一次函数,且y 随x 增大而增大,那么k 的取值范围是 A .k ≠0B .k ≥3C .k >3D .k <39.已知点(1,y 1),(-2,y 2)都在直线y=3x +2上,则y 1、y 2大小关系是() A . y 1> y 2 B . y 1 = y 2 C .y 1< y 2 D .不能比较10.如图,矩形ABCD ,对角线AC 、BD 交于点O ,∠AOB =60°,AB=4,则 AD 的长是().A. 8B. 4C. 34D.2411.将一张正方形纸沿对角线对折再对折(如图),然后沿着图中的虚线剪下,剪下的三角形展开后得到的平面图形是().A .三角形B .菱形C .矩形D .梯形BD AEF C(1)(2)12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的速度注水,下面能大致表示水的最大深度h (水不注满水池)与时间t 之间的关系的图像是()二、填空题(本题共24分,每小题2分) 1.函数y=2xx +中,自变量x 的取值范围是__________________. 2.八边形内角和是°3.在□ABCD 中, AE ⊥CD 于点E ,∠B =70°,则∠DAE=.4.一次函数31y x =+的图象与x 轴的交点坐标为 ,与y 轴的交点坐标为 . 5.在直角三角形中两直角边分别为3、4,则斜边上的中线为 __________. 6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm 2. 7.如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你添上一个适当的条件: _____________________,使四边形AECF 为平行四边形。
初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。
每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
试验教化集团2024-2025学年其次学期初二年级期中考试数学试卷A 卷一、选择题(每题3分,共30分.每小题只有唯一正确答案,请将正确答案的选项填在下表里)1.下列二次根式是最简二次根式的是( )2.下列计算错误..的是( )= ÷==D.3=3.下列各组数中,以它们为边长的线段能构成直角三角形的是 ( )A.13,14,15B.2,3C.13,14,15D.2,3,44.顺次连接四边形各边中点得到一个平行四边形,则原四边形肯定是( )A.对角线相等的四边形B.对角线相互垂直的四边形C.对角线相互平分的四边形D.随意四边形5.直角三角形的周长为30cm ,斜边长为13cm ,则其面积为( )A.362cmB.302cmC.242cmD.602cm6.如图,有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )A.2C.74 D.946题图7题图8题图7.已知,如图,△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB=4,AC=6,则ED 的长为( )A.1B.2C.3D.48.如图,网格中的小正方形边长均为1,△ABC 的三个顶点在格点上,则△ABC 中BC 边上的高为( )9.若平面直角坐标系中,已知点P 的坐标为(0,2),以点P 为圆心,3个单位长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标介于( )A.1和1.5之间.B.1.5和2之间.C.2和2.5之间.D.2.5和3之间.10.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB=CD ,AD=BC ;②AC=BD ,AO=CO ;③AO=CO ,BO=DO ;④AB//CD ,AD=BC ;⑤∠A=∠C ,∠B=∠D ;⑥∠A+∠B=180°,∠B=∠D.其中肯定能判定这个四边形是平行四边形的条件共有( )A.3组B.4组C.5组D.6组二、填空题(本题共6小题,每小题3分,共18分)11.化简22a +-的结果是___________.12.x 的取值范围是_____________. 13.在平面直角坐标系中,点A (-1,-1)与点B (2,4)的距离是____________. 14.如图,ABCD 中,EF 过对角线的交点O ,AB=5,AD=4,OF=1.5,则四边形BCEF 的周长为___________.15.直角三角形ABC 的两边a ,b 30b -=,则第三边c=____________.14题图16题图16.如图,在ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中肯定成立的是_____________.(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF=CF ;③BEC CEF S S ∆∆=;④∠DFE=3∠AEF. 三.解答题:(共7道题,共52分) 17.计算:(每小题4分共8分)(1(22-;(2(112--.18.(本题6分)已知:2a =,2b =,求代数式22a b ab -的值.19.(本题6分)如图,P 是△ABC 边BC 上的动点,PE//AB ,PF//AC ,且PE+PF=AB. 求证:△ABC 是等腰三角形.20.(本题7分)如图,有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根7cm 的细木棍,请你算一算,这根细木棍能不能放入木箱里.21.(本题8分)如图,在△ABC 中,BD 、CE 分别是边AC 、AB 上的中线,BD 与CE 相交于点O ,试猜想OB 与OD 的长度有什么关系?并说明理由.22.(本题8分)如图①,用硬板纸做成的两个全等的直角三角形,两直角边的长分别是a 和b ,斜边长为c ,如图②是以c 为直角边的等腰直角三角形.请你将他们拼成一个梯形. (1)画出拼成的这个图形的示意图;(3分) (2)利用(1)中画出的图形证明勾股定理.(5分)图①图②23.(本题9分)如图,将ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D '处,折痕l 交CD 边于点E ,连接BE.(1)求证:四边形BCED '是平行四边形;(4分)(2)若点D '恰好是AB 的中点,求证:222DC AE BE =+.(5分)。
浙教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 102.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,103.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−24.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b5.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√56.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,167.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 78.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√39.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.10.①若a+b+c=0,则b2−4ac≥0;11.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;12.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;13.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)214.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③15.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,每小题3分,共21分)16.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.17.已知a=√5+1,则代数式a2−2a+7的值为______.18.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.19.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.20.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.21.22.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.23.24.25.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)26.解方程:27.(1)x(x+2)=2x+4;(2)3x2−x−2=0.)−2;28.(1)√9+(−1)2019+(6−π)0−(−1229.(2)|√3−3|−(2−√3)2−√27.30.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:31.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.32.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接33.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,34.CF.35.(1)求证:四边形AFCD是平行四边形.,求AB的长.36.(2)若GB=3,BC=6,BF=3237.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.38.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.39.40.(1)求证:四边形AEFD是平行四边形;41.(2)当t为何值时,△DEF为直角三角形?请说明理由.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)43.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 10[答案]C[解析]解:设这个多边形的边数为n,(n−2)180°=360°,依题意得:27解得n=9,故选:C.设这个多边形的边数为n,由n边形的内角和是(n−2)⋅180°,多边形的外角和是360°列出方程,解方程求出n的值即可.本题考查了多边形内角与外角,掌握n边形的内角和是(n−2)⋅180°,多边形的外角和是360°是解题的关键.44.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,10[答案]B×(5×6+10×17+20×14+50×8+100×5)= [解析]解:这组数的平均数是15027.6;=20,把这些数从小到大排列,最中间两个数的平均数20+202这组数据中,10出现次数17次,故众数为10.故选:B.根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.本题考查了平均数和中位数、平均数和众数,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).45.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−2[答案]C[解析]解:∵x2=2x,∴x2−2x=0,则x(x−2)=0,∴x=0或x−2=0,解得x1=0,x2=2,故选:C.移项后利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.46.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b[答案]D[解析]解:∵ab<0,−a2b≥0,∴a>0,∴b<0∴原式=|a|√−b,=a√−b,故选:D.根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.47.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√5[答案]A[解析]解:当x=√5+1,y=√5−1时,x2+2xy+y2=(x+y)2=(√5+1+√5−1)2=(2√5)2=20,故选:A.原式利用完全平方公式化简,将x与y的值代入计算即可求出值.此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.48.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,16[答案]A[解析][分析]本题考查了中位数和众数,解答本题的关键是掌握众数和中位数的定义,属于基础题.根据中位数和众数的定义求解.[解答]解:这组数据的中位数为:8,众数为:16.故选:A.49.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 7[答案]C[解析][分析]本题考查了根的判别式、一元二次方程的解、等腰三角形的性质、三角形三边关系以及根与系数的关系,分3为腰长及3为底边长两种情况,求出k值是解题的关键.当3为腰长时,将x=3代入原一元二次方程可求出k的值;当3为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出k值,利用根与系数的关系可得出两腰之和,将其与3比较后可得知该结论符合题意.[解答]解:当3为腰长时,将x=3代入x2−4x+k=0,得:32−4×3+k=0,解得:k=3;当3为底边长时,关于x的方程x2−4x+k=0有两个相等的实数根,∴△=(−4)2−4×1×k=0,解得:k=4,此时两腰之和为4,4>3,符合题意.∴k的值为3或4.故选:C.50.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√3[答案]A[解析]解:过G作GH⊥AD于点H,交BC于点I.则HI=AB⋅sinB=6×√32=3√3,S平行四边形ABCD=8×3√3=24√3.∵四边形ABCD是平行四边形, ∴AD//BC,∴∠DAE=∠AEB,又∵∠DAE=∠BAE,∴∠BAE=∠AEB,∴BE=AB=6,同理,CF=CD=AB=6,∴EF=BE+CF−BC=6+6−8=4, ∵AD//BC,∴△ADG∽△EFG,∴HGGI =ADEF=2,∴HG=2√3,GI=√3,则S△ADG=12AD⋅HG=12×8×2√3=8√3,S△EFG=12EF⋅GI=12×4×√3=2√3,∴S阴影=S平行四边形ABCD−S△ADG−S△EFG=24√3−8√3−2√3=14√3.故选:A.首先过G作GH⊥AD于点H,交BC于点I,则HI是平行四边形的高,求得平行四边形的面积,然后根据平行线的性质,以及角平分线的定义证得∠BAE=∠AEB,则BE=AB,同理求得CF的长,则EF即可求得,根据△ADG∽△EFG,相似三角形对应边上的高的比等于相似比,即可求得HG和GI,求得△ADG和△EFG的面积,根据S阴影=S平行四边形ABCD−S△ADG−S△EFG求解.本题考查了平行线的性质,等腰三角形的判定方法,等角对等边,以及相似三角形的判定与性质,求得HG和GI的长是关键.51.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.52.①若a+b+c=0,则b2−4ac≥0;53.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;54.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;55.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)256.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③[答案]B[解析]解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2−4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=0−4ac>0∴−4ac>0则方程ax2+bx+c=0的判别式△=b2−4ac>0∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0∴c(ac+b+1)=0若c=0,等式仍然成立但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=−b+√b2−4ac2a 或x0=−b−√b2−4ac2a∴2ax0+b=√b2−4ac或2ax0+b=−√b2−4ac∴b2−4ac=(2ax0+b)2故④正确.故选:B.按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案.本题主要考查了一元二次方程的实数根与判别式的关系,牢固掌握二者的关系并灵活运用,是解题的关键.57.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个[答案]C[解析]解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD//BC,∠ABC=∠ADC=60°,OB=OD,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB ∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵AB=12BC,∴EC=AE,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;∵∠BAD=120°,∠CAD=30°,∴∠BAC=90°,∴BO>AB,∴OD>AB,故②错误;∴S▱ABCD=AB⋅AC=AC⋅CD,故③正确;∵∠BAC=90°,BC=2AB,∴E是BC的中点,∴S△BEO:S△BCD=1:4,∴S四边形OECD:S△BCD=3:4,∴S四边形OECD:S▱ABCD=3:8,∵S△AOD:S▱ABCD=1:4,∴S四边形OECD =32S△AOD,故④正确.故选:C.结合平行四边形的性质可证明△ABE为等边三角形,由AB=12BC可判定①,证明∠BAC=90°,可判定②;由平行四边形的面积公式可判定③;利用三角形中线的性质结合三角形的面积可求解判定④.本题主要考查平行线的性质,直角三角形的性质,三角形的面积,灵活运用三角形的面积解决问题是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分)58.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.[答案]7.2元=7.2(元/千克),[解析]解:根据题意售价应该定为6×5+7×10+8×105+10+10故答案为7.2元.平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.本题考查的是加权平均数的求法.本题易出现的错误是求6、7、8这四个数的平均数,对平均数的理解不正确.59.已知a=√5+1,则代数式a2−2a+7的值为______.[答案]11[解析]解:a2−2a+7=a2−2a+1+6=(a−1)2+6,当a=√5+1时,原式=5+6=11,故答案为:11.首先利用完全完全平方把式子进行变形,然后再代入a的值进行计算即可.此题主要考查了二次根式的化简求值,关键是掌握完全平方公式.60.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.×20×30[答案](30−2x)(20−x)=34×20×30,[解析]解:设花带的宽度为xm,则可列方程为(30−2x)(20−x)=34×20×30.故答案为:(30−2x)(20−x)=34矩形空地的面积可得.根据剩余空白区域的面积=34本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.61.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.[答案]m<3[解析][分析]本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.[解答]解:∵关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,∴△=(−2√3)2−4×1×m>0,∴m<3.故答案为:m<3.62.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.63.[答案]120°[解析]解:∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,∴PF=12BC,PE=12AD,又AD=BC,∴PE=PF,∴∠PFE=∠PEF=30°, ∴∠EPF=120°,故答案为:120°.根据三角形中位线定理得到PF=12BC,PE=12AD,根据题意得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.64.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.65.66.[答案]108°[解析][分析]本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求∠1=24°,再由三角形内角和定理求出∠A,即可得到结果.出∠BDG=∠DBG=12[解答]解:∵AD//BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=48°,∴∠ADB=∠BDG=24°,又∵∠2=48°,∴△ABD中,∠A=108°,∴∠A′=∠A=108°,故答案为108°.67.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.[答案]2或3[解析][分析]本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论.在▱ABCD中,AB<BC,要使△AB′D是直角三角形,有两种情况:∠B′AD=90°或∠AB′D=90°,画出图形,分类讨论即可.[解答]解:当∠B′AD=90°,AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD//BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=√3,∴∠AB′C=30°,∴GC=12B′C=12BC,∴G是BC的中点,在Rt△ABG中,BG=√32AB=√32×√3=32,∴BC=3;当∠AB′D=90°时,如图2,设AD交CB′于O.∵AD=BC,BC=B′C,∴AD=B′C,∵∠1=∠2=∠3,∴OA=OC,∴OB=OD,∴∠4=∠5,∵∠AOC=∠DOB′,∴∠2=∠5,∴AC//B′D,∴四边形ACDB′是等腰梯形, ∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=√3,∴BC=AB÷√32=√3×√3=2,∴当BC的长为2或3时,△AB′D是直角三角形.故答案为2或3.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)68.解方程:69.(1)x(x+2)=2x+4;70.(2)3x2−x−2=0.[答案]解:(1)∵x(x+2)=2(x+2),∴x(x+2)−2(x+2)=0,则(x+2)(x−2)=0,∴x+2=0或x−2=0,解得x1=−2,x2=1;(2)∵3x2−x−2=0,∴(x−1)(3x+2)=0,∴x−1=0或3x+2=0,解得x1=1,x2=−23.[解析]利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.)−2;71.(1)√9+(−1)2019+(6−π)0−(−1272.(2)|√3−3|−(2−√3)2−√27.)−2[答案]解:(1)√9+(−1)2019+(6−π)0−(−12=3+(−1)+1−4=−1;(2)|√3−3|−(2−√3)2−√27=3−√3−(4−4√3+3)−3√3=3−√3−7+4√3−3√3=−4.[解析](1)根据有理数的乘方、零指数幂和负整数指数幂可以解答本题;(2)先化简,然后根据二次根式的加减法可以解答本题.本题考查二次根式的混合运算、有理数的乘方、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.73.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:74.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.[答案]9 9 8 10[解析]解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.(1)设一班C等级的人数为x,列方程求出C等级的人数,再补全统计图即可;(2)根据中位数、众数的概念分别计算即可;(3)先比较一班和二班的平均分,再比较一班和二班的中位数,即可得出答案.此题考查了中位数、平均数、众数,关键是掌握中位数、平均数、众数的概念和有关公式,会用来解决实际问题.75.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接76.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,77.CF.78.(1)求证:四边形AFCD是平行四边形.79.(2)若GB=3,BC=6,BF=3,求AB的长.2[答案]解:(1)∵E是AC的中点, ∴AE=CE,∵AB//CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵{∠AFE=∠CDE ∠AEF=∠CED AE=CE,∴△AEF≌△CED(AAS),∴AF=CD,又AB//CD,即AF//CD,∴四边形AFCD是平行四边形;(2)∵AB//CD,∴△GBF∽△GCD,∴GBGC =BFCD,即33+6=32CD,解得:CD=92,∵四边形AFCD是平行四边形,∴AF=CD=92,∴AB=AF+BF=92+32=6.[解析](1)由E是AC的中点知AE=CE,由AB//CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB//CD即可得证;(2)证△GBF∽△GCD得GBGC =BFCD,据此求得CD=92,由AF=CD及AB=AF+BF可得答案.本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.80.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.[答案]解:(1)将x=2代入方程,得4−2(5+m)+5m=0,解得m=2;(2)由(1)得方程:x2−7x+10=0.∵x2为整数,且2<x2<6,∴可找出x2=5是方程x2−7x+10=0的另一个根.∵这两个根恰好是等腰三角形ABC的两条边长,∴三边长只能为2,5,5,∴△ABC的周长=2+5+5=12.[解析]本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系,等腰三角形的性质.(1)把x=2代入方程x2−(5+m)x+5m=0得4−2(5+m)+5m=0,然后解关于m 的方程即可;(2)方程化为x2−7x+10=0,结合方程的另一根2<x2<6且为整数,可得x2=5,根据三角形三边的关系得到等腰三角形ABC的腰长为5,底边长为2,然后计算△ABC的周长.81.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.82.83.(1)求证:四边形AEFD是平行四边形;84.(2)当t为何值时,△DEF为直角三角形?请说明理由.[答案](1)证明:∵∠B=90°,∠A=60°,∴∠C=30°,AC=30,∴AB=12由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,CD=2t,∴DF=12∴DF=AE,∵DF//AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE//BC,∴∠ADE=∠C=30°,∴AD=2AE,即60−4t=2t×2,,解得,t=152当∠DEF=90°时,如图②,∵AD//EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60−4t),解得,t=12,或12时,△DEF为直角三角形.综上所述,当t=152[解析](1)根据三角形内角和定理得到∠C=30°,根据直角三角形的性质求出DF,得到DF=AE,根据平行四边形的判定定理证明;(2)分∠EDF=90°、∠DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.。
2022-2023学年度第二学期期中考试试题八年级 数学一、单选题(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是( )ABCD2.下列计算正确的是( )A.B .C .D .3同类二次根式的是( )A. B.C. D. 4. 将一个直角三角板和一把直尺按如图所示的方式摆放,若∠2=55°,则∠1的度数为()A. 45°B. 55°C. 25°D. 35°5.实数a化简后为( )A. B. C. 7 D. 无法确定6.在下列长度的各组线段中,能组成直角三角形的是( )A .1,2,3B .5,11,12C .5,12,13D .6,8,97.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )A. AB ∥CD ,AD =BC B. ∠A =∠C ,∠B =∠DC. AB ∥CD ,AD ∥BCD. AB =CD ,AD =BC8.已知a 2,b 2,则a 2+b 2的值为( )A .B .14CD .14+9.如图,在□ABCD 中,AB AC ,若AB =4,AC =6,则BD 的长是( )第9题图 第10题图A .11B .10C .9D .8=625150=⨯=6530=⨯=-215a -7-⊥10.如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,DE =3,∠B =30°,则BC =( )A. 7B. 8C. 9D. 10二、填空题(每小题3分,共24分)11,则它的面积为1213在实数范围内有意义,则的取值范围是.14.一个正方形的对角线长为2,则其面积为.15.已知一个直角三角形的两边长分别为3和4,则另一边长是.16.在中,斜边,则.17.如图,中,,D 为斜边AB 的中点,,则CD 的长为______cm .第17题图 第18题图18. 如图所示,在边长为2的菱形ABCD 中,,点E 为AB 中点,点F 是AC 上一动点.则的最小值为.三、解答题19. 计算:(每小题3分,共6分)(1;(2)(1(+(2.20.(8分)若|x1|0.(1)求x ,y 的值;(2)求的值.21.(8分)实数a,b 互为相反数,c,d 互为倒数,x的值.2cm =Rt ABC ∆10BC =222BC AB AC ++=Rt ABC V 90ACB ∠= 10AB cm =60DAB ∠=︒EF BF +223x x y +-2x22.(8分)如图,已知平行四边形的对角线和交于点,且,,求的周长.23.(8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,过点O 作OM ⊥AD 于点M .求证OM =AB .24.(8分)如图,在菱形中,过点B 作于E ,过点B 作BF ⊥CD 于F .求证:.25.(10分)如图,D 为△ABC 的BC 边上的一点,AB =10,AD =6,DC =2AD ,BD =DC .(1)求BD 的长;(2)求△ABC 的面积.26.(10分) 已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足时(添加一个条件),四边形ADCE 是正方形,并证明.故当时,四边形ADCE 是一个正方形ABCD AC BD O 28AC BD +=12BC =AOD ∆12ABCD BE AD ⊥AE CF =23=90BAC ∠2022-2023学年八年级下学期期中试题数学 答 案一、单选题1.下列二次根式中,属于最简二次根式的是( A )ABCD2.下列计算正确的是( D )A .B .C .D.3同类二次根式的是( B )A. B.C. D. 4. 将一个直角三角板和一把直尺按如图所示的方式摆放,若∠2=55°,则∠1的度数为(D )A. 45°B. 55°C. 25°D. 35°5.实数a化简后为(A )A.B. C. 7 D. 无法确定6.在下列长度的各组线段中,能组成直角三角形的是( C )A .1,2,3B .5,11,12C .5,12,13D .6,8,97.下列给出的条件中,不能判断四边形ABCD 是平行四边形的是( A )A. AB ∥CD ,AD =BCB. ∠A =∠C ,∠B =∠DC. AB ∥CD ,AD ∥BCD. AB =CD ,AD =BC8.已知a 2,b 2,则a 2+b 2的值为( B )A .B .14CD .14+9.如图,在□ABCD 中,AB AC ,若AB =4,AC =6,则BD 的长是( B )==625150=⨯=6530=⨯=-215a -7-⊥A .11B .10C .9D .810.如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,DE =3,∠B =30°,则BC =( C )A. 7B. 8C. 9D. 10二、填空题11,则它的面积为___12__1__.13在实数范围内有意义,则的取值范围是___且___.14.一个正方形的对角线长为2,则其面积为__2___.15.已知一个直角三角形的两边长分别为3和4,则另一边长是或5________.16.在中,斜边,则__200____.17.如图,中,,D 为斜边AB 的中点,,则CD 的长为__5____cm .18. 如图所示,在边长为2的菱形ABCD 中,,点E 为AB 中点,点F 是AC 上一动点.则的最小值为.三、解答题19. 计算:2cm =x 2x ≥-1x ≠Rt ABC ∆10BC =222BC AB AC ++=Rt ABC V 90ACB ∠= 10AB cm =60DAB ∠=︒EF BF +(1(2)(1(+(2.【答案】(1);(2).【解析】【分析】(1)先根据二次根式的除法法则运算,然后化简后合并即可;(2)利用平方差公式和完全平方公式计算.【详解】解:(1)原式=﹣=﹣=;(2)原式=1﹣=20.若|x1|0.(1)求x ,y 的值;(2)求的值.【答案】(1)x1,y =2(2)﹣4【分析】(1)根据绝对值和算术平方根的非负性列式计算即可;(2)把x 、y 的值代入代数式,根据二次根式的运算法则计算即可.(1)解:∵,∴,,∴x1,y=2;(2)∵x 1,y=2,∴.21.实数a,b 互为相反数,c,d 互为倒数,x【答案】【详解】由题意知a +b =0,cd =1,x =则原式=(2=3+2−3223x x y +-0x =10x =20y -=))22231213231264x x y +-=+⨯-⨯=-+-=-2x=2.22.如图,已知平行四边形的对角线和交于点,且,,求的周长.【答案】26解:∵四边形是平行四边形,∴,,∵,∴,∵,∴的周长.23.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,过点O 作OM ⊥AD 于点M .求证OM =AB .【答案】证明:∵四边形ABCD 是矩形,∴BO =OD =AO =CO ,∴O 为BD 中点,∵OM ⊥AD ,OD =AO ,∴AM =DM ,即M 为AD 中点,又∵O 为BD 中点,∴OM 是△ABD 的中位线,∴OM=AB .24.如图,在菱形中,过点B 作于E ,过点B 作BF ⊥CD 于F .求证:.ABCD AC BD O 28AC BD +=12BC =AOD ∆ABCD AO CO =BO DO =28AC BD +=14AO OD +=12AD BC ==AOD ∆141226AO OD AD =++=+=1212ABCD BE AD ⊥AE CF =证明:∵四边形是菱形,∴,∵,∴,在与中,,∴,∴.25.如图,D 为△ABC 的BC 边上的一点,AB =10,AD =6,DC =2AD ,BD=DC .(1)求BD 的长;(2)求△ABC 的面积.【答案】(1)8;(2)60【详解】(1)故BD 的长为8;(2)在中,为直角三角形,即又ABCD BA BC A C ∠∠=,=BE AD BF CD ⊥⊥,90BEA BFC ∠=∠=︒ABE V CBF V BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE CBF AAS ≅V V AE CF =236,2AD DC AD== 12DC ∴=23BD DC =21283BD ∴=⨯=ABD ∆10,6,8AB AD BD ===222AB AD BD ∴+=ABD ∴∆AD BC⊥81220,6BC BD DC AD =+=+==故的面积为60.26. 已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足时(添加一个条件),四边形ADCE 是正方形,并证明.【答案】(1)详见解析(2)∠BAC =90°,详见解析【小问1详解】证明:在△ABC 中,AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD=,∵AN 是∠CAM 的平分线,∴∠MAE =∠CAE=,∴∠DAE=,∵AD ⊥BC ,CE ⊥AN ,∴,∴四边形ADCE 为矩形.【小问2详解】解:当△ABC 满足时,四边形ADCE 是一个正方形,理由如下;∵AB =AC ,∴,∵AD ⊥BC ,∴,∴,∵四边形ADCE 为矩形,112066022ABC BC A S D ∆=⋅=⨯⨯=∴ABC ∆12BAC ∠12CAM ∠()11==180=9022CAD CAE BAC CAM ∠+∠∠+∠⨯o o =90ADC CEA ∠=∠o =90BAC ∠ =45ACB B ∠=∠o =45CAD ACD ∠=∠o DC AD =∴矩形ADCE 是正方形,故当时,四边形ADCE 是一个正方 =90BAC。
初二数学下学期期中考试
一、考试概述
初二数学下学期期中考试是对学生在下学期所学习的数学知识进行综合考察的重要评估。
本次考试旨在检验学生对于初中数学知识的掌握程度、应用能力以及解决问题的能力。
考试内容包括数与式、方程与不等式、几何、函数和统计等相关知识。
二、考试形式
本次考试为闭卷考试,共分为两个部分:选择题和解答题。
选择题占总分的60%,解答题占40%。
考试时间为120分钟。
选择题:本部分共有50个选择题,每题2分,共计100分。
主要考察学生对基础知识的掌握和应用能力。
解答题:本部分包括5道解答题,每题20分,共计100分。
主要考察学生对于数学问题的分析能力和解决问题的能力。
三、考试内容
1. 数与式
1.1. 小数与分数:小数与分数的互化、小数与百分数的互化
1.2. 近似计算:加、减、乘、除四则运算的近似计算
1.3. 平方根与立方根:平方根、立方根及其性质、近似计算
1.4. 指数与幂:指数与幂的计算、幂数的性质、指数的运算
2. 方程与不等式
2.1. 一元一次方程:解一元一次方程的基本步骤、方程的实际应用
2.2. 一元一次不等式:解一元一次不等式的基本步骤、不等式的实际应用
2.3. 二元一次方程组:解二元一次方程组的基本步骤、方程组的实际应用
2.4. 一元二次方程:解一元二次方程的基本步骤、方程的实际应用
3. 几何
3.1. 平面图形的认识:四边形、三角形、正方形、长方形、等腰三角形等
3.2. 几何关系:垂直、平行、相交等几何关系的判定
3.3. 平面图形的计算:面积的计算、周长的计算、体积的计算
3.4. 相似与全等三角形:相似三角形的判定与性质、全等三角形的判定与性质
4. 函数
4.1. 线性函数:线性函数的概念、线性函数的性质、线性函数的应用
4.2. 倒数函数:倒数函数的概念、倒数函数的性质、倒数函数的应用
4.3. 一次函数与二次函数:一次函数的图像与性质、二次函数的图像与性质
5. 统计
5.1. 统计调查:样本与总体、统计图表的应用
5.2. 数据分析:中心位置度量、数据的变异程度、数据分布特征
四、考试评分与反馈
本次考试的评分按照答题纸上分值标准进行评分,选择题按错误不得分计算,解答题按照解题过程和答案的正确性来评分。
考试结束后,我们将及时公布成绩并将评卷结果反馈给每个学生。
学生可以通过反馈了解自己在数学知识掌握、解题能力等方面的不足,并进行针对性的学习和提升。
同时,老师也将根据考试结果进行详细分析,为学生提供个性化的学习指导和辅导。
五、备考建议
1. 夯实基础:对于容易出错的基础知识,如小数与分数、一元一次方程等,需要进行重点复习和巩固,确保自己在考试中的准确性。
2. 掌握解题技巧:熟悉各类题型的解题方法和技巧,例如,在几何题中注意找出几何关系,对于统计题要注意正确读取图表中的数据等。
3. 练习题型:通过大量的练习题来提高解题能力,要注意理解
每道题目的要求,培养良好的解题思路和逻辑分析能力。
4. 合理安排时间:考试时间有限,合理安排每道题的解答时间,避免过多时间花费在难题上,导致其他题目无法完成。
六、总结
初二数学下学期期中考试是对学生数学学习情况的一次全面检验,通过此次考试的工作,将为学生提供一个发现问题、弥补不足
的机会。
同时,学生也应该将此次考试当作一个提升自己的机会,
通过认真备考和巩固基础知识,不断提高解题能力和分析问题的能力。
相信通过努力学习,取得良好的成绩将不再是遥不可及的目标。