数量关系公式1-3
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
一至四年级公式:算术公式1、加法交换律:a + b = b + a2、加法结合律:a + b + c =a + ( b + c)3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a ×( b + c )6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、有余数的除法:被除数=商×除数+余数数学图形计算公式:1、正方形 C周长 S面积 a边长周长=边长×4 C=4a面积=边长×边长S=a×a2、长方形 C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab3、三角形 s面积 a底 h高面积=底×高÷2 s=ah÷24、平行四边形 s面积 a底 h高面积=底×高 s=ah5、梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b) × h÷2常用数量关系:1、加数+加数=和一个加数=和+另一个加数2、被减数-减数=差减数=被减数-差被减数=减数+差3、因数×因数=积一个因数=积÷另一个因数4、被除数÷除数=商除数=被除数÷商被除数=商×除数5、路程=速度×时间速度=路程÷时间时间=路程÷速度6、工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率7、总价=单价×数量单价=总价÷数量数量=总价÷单价单位换算:长度单位:(一般是10倍关系)1公里=1千米=1000米 1米=10分米 =100厘米 =1000毫米面积单位:(一般是100倍关系)1平方千米=100公顷 1公顷=10000平方米1平方千米=1000000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体积单位:1立方千米=1000000000立方米 1立方米=1000立方分米1立方分米=1000立方厘米 1立方厘米=1000立方毫米1立方分米=1升 1立方厘米=1毫升 1升=1000毫升重量单位:1吨=1000千克 1千克=1000克时间单位:一世纪=100年一年=四季度一年=12月一年=365天(平年)一年=366天(闰年)一季度=3个月一个月=30天(小月)一个月=31天(大月)一星期=7天一天=24小时一小时=60分一分=60秒一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)一年中的小月:四月、六月、九月、十一月(四个月)货币单位:1元=10角 1角=10分。
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形 (C:周长 S:面积 a:边长 )周长=边长×4 C=4a面积=边长×边长 S=a×a2、正方体 (V:体积 a:棱长 )表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形 (s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形 (s:面积 a:底 h:高)面积=底×高 s=ah7、梯形 (s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形 (S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高 (4)体积=侧面积÷2×半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。
通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。
小学数学常用公式大全(单位换算表)长度单位换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒* 1世纪=100年;* 1年=365天平年;*一年=366天闰年*一、三、五、七、八、十、十二是大月大月有31天*四、六、九、十一是小月小月小月有30天*平年2月有28天闰年2月有29天* 1天= 24小时* 1小时=60分*一分=60秒小学数学常用公式大全(几何体计算公式)小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径小学数学常用公式大全(数量关系计算公式)1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数13、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学数学常用的数量关系式常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长 S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16追及问题路程差=速度差×追及时间速度差=路程差÷追及时间追及时间=路程差÷速度差17、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量18、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-利息税率)19,流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷220、植树问题非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数植树问题中的主要数量关系是:间隔数×每个间隔的米数=一共的米数;锯木头问题的主要数量关系是:锯的次数×锯一次用的时间=一共要的时间;爬楼梯问题中的数量关系式是:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
小学1-6年级必须掌握的数量关系计算公式1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和-另一个加数被减数——减数=差减数=被减数——差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
小学数学常用公式大全(单位换算表)长度单位换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒* 1世纪=100年;* 1年=365天平年;*一年=366天闰年*一、三、五、七、八、十、十二是大月大月有31天*四、六、九、十一是小月小月小月有30天*平年2月有28天闰年2月有29天* 1天= 24小时* 1小时=60分*一分=60秒小学数学常用公式大全(几何体计算公式)小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径小学数学常用公式大全(数量关系计算公式)1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
小学数学常见数量关系和计算公式数量关系是数学中的一个基本概念,它涉及到物体或事物之间的数量的大小和变化。
在小学数学中,常见的数量关系有等量关系、比例关系和代数关系等。
下面将介绍一些常见的数量关系和计算公式。
1.等量关系:等量关系是指两个物体或事物具有相等的数量。
在小学数学中,加法和减法是最常见的表达等量关系的运算。
(1)加法:加法是指将两个或多个数或量相加,得到它们的总和。
它的计算公式是:a+b=c,其中a、b是被加数,c是和。
(2)减法:减法是指将一个数或量从另一个数或量中相减,得到它们的差。
它的计算公式是:a-b=c,其中a是被减数,b是减数,c是差。
2.比例关系:比例是指两个或多个数之间的相对大小关系。
在小学数学中,常见的比例关系有比例、百分比和倍数。
(1)比例:比例是指两个或多个数之间的相对大小关系。
它的计算公式是:a:b=c:d,其中a、c是比例的前项,b、d是比例的后项。
(2)百分比:百分比是指一部分与整体之间的比例关系。
它的计算公式是:百分比=(一部分÷整体)×100%。
(3)倍数:倍数是指一个数可以被另一个数整除。
它的计算公式是:a×b=c,其中a是倍数,b是乘数,c是积。
3.代数关系:代数关系是指通过字母符号和运算符号表示数与量之间的关系。
在小学数学中,常见的代数关系有等式、不等式和方程等。
(1)等式:等式是指两个数或量之间相等的关系。
它的计算公式是:a=b,其中a、b是等式的两边。
(2)不等式:不等式是指两个数或量之间不等的关系。
它的计算公式可以是:a>b (大于)、a<b(小于)或a≥b(大于等于)、a≤b(小于等于)。
(3)方程:方程是指含有未知数的等式。
它的计算公式是:a+b=c,其中a、b是已知数,c是未知数。
总结起来,小学数学常见的数量关系和计算公式包括等量关系的加法和减法、比例关系的比例、百分比和倍数,以及代数关系的等式、不等式和方程等。
二年级数量关系公式大全
1. 加法公式,加法是指将两个或多个数值相加的运算。
在二年级,学生会学习简单的加法公式,例如,2+3=5,4+6=10等。
2. 减法公式,减法是指将一个数值从另一个数值中减去的运算。
在二年级,学生会学习简单的减法公式,例如,5-2=3,8-4=4等。
3. 乘法公式,乘法是指将两个数相乘的运算。
在二年级,学生
会学习简单的乘法公式,例如,2×3=6,4×5=20等。
4. 除法公式,除法是指将一个数值除以另一个数值的运算。
在
二年级,学生会学习简单的除法公式,例如,6÷2=3,8÷4=2等。
除了以上基本的数量关系公式,二年级的学生还会学习一些与
数量关系相关的问题,例如,找规律、数形结合等。
这些内容有助
于培养学生的逻辑思维能力和数学解决问题的能力。
总的来说,二年级数量关系公式大全主要包括加法、减法、乘法、除法等基本的数学运算公式,以及相关的问题解决方法和思维
能力培养。
这些内容是数学学习的基础,对学生的数学能力发展具有重要意义。
小学数学基础知识整理(数量关系篇)数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
小学数学数量关系式及公式总汇数量关系式和公式是数学中用于描述和计算数量关系的基本工具。
在小学阶段,学生主要学习到一些基本的数量关系式和公式,这些内容包括数的读法、数的大小比较、数的四则运算等。
下面是小学数学数量关系式和公式的总汇。
1.数的读法和大小比较-数字的读法:根据数字的位数和数字的读法规则,将数字读出来。
-数字的大小比较:利用大小比较符号(例如“>”、“<”、“=”)比较数字的大小关系。
2.基本的数量关系式-加法关系式:a+b=c,表示两个数相加等于另一个数。
-减法关系式:c-b=a,表示一个数减去另一个数等于第三个数。
-乘法关系式:a×b=c,表示两个数相乘等于另一个数。
-除法关系式:c÷b=a,表示一个数除以另一个数等于第三个数。
3.运算法则和公式-加法法则:a+b=b+a,两个数相加的结果与两个数的顺序无关。
-乘法法则:a×b=b×a,两个数相乘的结果与两个数的顺序无关。
-结合律:(a+b)+c=a+(b+c),三个数相加的结果与加法的顺序无关。
-分配律:a×(b+c)=a×b+a×c,一个数与两个数之和相乘的结果等于这个数分别与两个数相乘的结果之和。
4.等式和不等式-等式:两个表达式之间用等号连接的关系,例如2+3=5,表示等式两边的值相等。
-不等式:两个表达式之间用不等号(例如“>”、“<”、“≥”、“≤”)连接的关系,例如5>2,表示不等式左边的值大于右边的值。
5.平均数的计算- 平均数:若给定 n 个数 a1、a2、..、an,则平均数就是这 n 个数之和除以 n,即(a1 + a2 + ... + an) ÷ n。
-例如,求2、3、4的平均数:(2+3+4)÷3=36.实际问题的数量关系式和公式-比例关系式:a:b=c:d,表示两个比例的比值相等。
-百分数关系式:a%=a÷100,表示一个数的百分之几即是这个数除以100的结果。
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商8、总数÷总份数=平均数9、相遇问题相遇路程=速度和×相遇时间相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间10、利息=本金×利率×时间11、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时3.5时=()分0.7时=()分2.3平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 .5吨=()吨()千克()元=50元8角1分(2).1米∶10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶()(3).填上适当的计量单位名称。
01数量关系计算公式1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工作效率×时间=工作总量5、加数+加数=和6、一个加数=和-另一个加数7、被减数-减数=差8、减数=被减数-差9、被减数=减数+差10、因数×因数=积11、一个因数=积÷另一个因数12、被除数÷除数=商13、除数=被除数÷商14、被除数=商×除数15、有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)长度单位:1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:1平方米=100平方分米1平方分米=100平方厘米1平方千米=1000000平方米1平方千米=100公顷1公顷=10000平方米1立方米=1000立方分米重量单位:1吨=1000千克1000克=1千克体积容积单位:1立方米=1000立方分米1立方分米=1000立方厘米1升=1立方分米1毫升=1立方厘米02几何公式1.正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a2.长方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3.三角形三角形的面积=底×高÷2 公式:S= a×h÷24.平行四边形平行四边形的面积=底×高公式:S= a×h5.梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷26.圆直径=半径×2 公式:d=2r半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π 公式:S=πr²7.圆柱圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高+两头的圆的面积:S=ch+2s=πd h+2πr²圆柱的总体积=底面积×高公式:V=Sh=πr²h8.圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh=1/3πr²h9.三角形内角和=180度03算术概念1.加法交换律:两数相加交换加数的位置,和不变。
四年级数量关系公式大全
【原创实用版】
目录
1.四年级数量关系公式的重要性
2.四年级数量关系公式的分类
3.四年级数量关系公式的运用
4.如何掌握四年级数量关系公式
正文
1.四年级数量关系公式的重要性
四年级数量关系公式是数学学习中的一个重要部分,它是解决许多实际问题的关键工具。
掌握这些公式,不仅能够帮助学生更好地理解数学知识,而且能够提高他们解决实际问题的能力。
2.四年级数量关系公式的分类
四年级数量关系公式主要包括以下几类:
(1)速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间。
(2)单价、数量和总价的关系:单价×数量=总价,总价÷数量=单价,总价÷单价=数量。
(3)工作量、工作效率和工作时间的关系:工作量÷工作效率=工作时间,工作量÷工作时间=工作效率,工作效率×工作时间=工作量。
3.四年级数量关系公式的运用
这些公式在日常生活和学习中都有广泛的应用。
比如,如果我们需要计算从一个地方到另一个地方需要多长时间,我们可以运用速度、时间和路程的关系公式来解决。
如果我们需要计算购买某种商品需要多少钱,我
们可以运用单价、数量和总价的关系公式来解决。
4.如何掌握四年级数量关系公式
要掌握四年级数量关系公式,首先需要理解这些公式的意义,然后通过大量的练习来熟悉和掌握这些公式。
此外,还需要注意总结和归纳,将这些公式纳入自己的知识体系中。
数量关系公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数量关系公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数量关系公式的全部内容。
数量关系常用公式总结:(可可整理)1。
行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法解析:设扶梯为s级,速度为v,根据公式带入S=30×1×(1+v÷1)解得 v=1S=20×2×(1+v÷2) s=60,所以选择B。
五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则:600=(v—u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N—1)第N次追上相遇,路程差=全程×(2N—1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟).推导原型:设每隔t1分钟就遇到迎面开来的一辆公共汽车,每隔t2分钟就有辆公共汽车从后面超过该人,有方程组:S=(V车+V人)×t1→ V车=(S/t1 +S/t2)÷2→S=(V车-V人)×t2 V人=(S/t1 —S/t2)÷2T=S/V车=2t1t2/(t1+t2)N=V车/V人=(t2+t1)/(t2-t1)(S表示发车间距,T为发车间隔时间,V车为车速,V人为人速,N为车速与人速的比)不间歇多次相遇:单岸型:S=(3S1+S2)/2(S表示两岸的距离)推导原型:设第一次相遇地点距离A地S1,第二次相遇地点距离A地S2,则 V甲/V乙=S1/(S-S1)=(2S—S2)/(S+S2)→S=(3S1+S2)/2(注:单岸指的是S1、S2都是距离同一出发地的距离)解析:假设AB两地相距S,第一次相遇时,甲、乙各走了80 、(S—80),根据时间相同,速度和路程成正比可得,V甲/V乙=80/(S—80),第二次相遇时,甲、乙各走了(2S-60)、(S+60),同理可得,V甲/V乙=(2S—60) /(S+60),综上80/(S—80)= (2S-60)/(S+60),解得S=150。
一、常用数量关系计算公式:1、加数+加数=和和-一个加数=另一个加数2、被减数-减数=差被减数-差=减数差+减数=被减数3、因数×因数=积积÷一个因数=另一个因数4、被除数÷除数=商被除数÷商=除数商×除数=被除数5、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数6、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数7、速度×时间=路程路程÷速度=时间路程÷时间=速度8、单价×数量=总价总价÷单价=数量总价÷数量=单价9、单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量10、工作效率×工作时间=工作总量工作总量÷工效=时间工作总量÷时间=工效二、图形计算公式和线:直线:没有端点,可以向两端无限延长。
射线:只有一个端点。
可以向一端无限延长。
线段:有两个端点。
射线和线段都是直线的一部分。
两点之间,线段最短。
垂线、垂足两条直线相交,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,其交点叫垂足。
从直线外一点到直线所画的线段中,垂线最短。
角:锐角(小于90度的角)、直角(等于90度的角)、钝角(大于90度而小于180度的角)、平角(等于180度的角)、周角(等于360度的角)平行线:在同一平面内的两条不相交的直线,叫做平行线。
面积和地积:面积是用来表示一个物体的表面或者平面的大小。
地积就是土地的面积。
体积和容积(容量)体积:用来表示物体所占空间的大小,叫做体积。
容积:一个容器所能容纳物体的体积,叫做容积或容量。
三角形的面积=底×高÷2公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。
总结一些华图宝典数量关系公式(解题加速100%)
1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。
到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。
这两艘船在距离乙岸400 米处又重新相遇。
问:该河的宽度是多少?
A. 1120 米
B. 1280 米
C. 1520 米
D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
A、3天
B、21天
C、24天
D、木筏无法自己漂到B城
解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3
B.4
C. 5
D.6
解:车速/人速=(10+6)/(10-6)=4 选B
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()
A.24
B.24.5
C.25
D.25.5
解:代入公式得2*30*20/(30+20)=24选A
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦
糖,那么这种什锦糖每千克成本多少元?
A.4.8 元B.5 元C.5.3 元D.5.5 元
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是:
析:男生平均分X,女生1.2X
1.2X 75-X 1
75 =
X 1.2X-75 1.8
得X=70 女生为84
8.N人传接球M次公式:次数=(N-1)的M次方/N ,最接近的整数为末次传他人次数,第
二接近的整数为末次传给自己的次数
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种
B. 65种
C. 70种
D. 75种
公式解题:(4-1)的5次方/ 4=60.75 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数
9.一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方N排N列最外层有4N-4人
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625
11.过河问题:M个人过河,船能载N个人。
需要A个人划船,共需过河(M-A)/ (N-A)次
例题(广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()
A.7
B. 8
C.9
D.10
解:(37-1)/(5-1)=9
12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28
日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算
例:2002年9月1号是星期日 2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。
例:2004年2月28日是星期六,那么2008年2月28日是星期几?
4+1=5,即是过5天,为星期四。
(08年2 月29日没到)
13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数
例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?()
A.10.32
B.10.44
C.10.50 D10.61
两年利息为(1+2%)的平方*10-10=0.404 税后的利息为0.404*(1-20%)约等于0.323,则提取出的本金合计约为10.32万元
14.牛吃草问题:草场原有草量=(牛数-每天长草量)*天数
例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?
A、16
B、20
C、24
D、28
解:(10-X)*8=(8-X)*12 求得X=4 (10-4)*8=(6-4)*Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来
15.植树问题:线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1
例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树?
A 93
B 95
C 96
D 99
16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1 淘汰赛需决前四名场次=N
单循环赛场次为组合N人中取2 双循环赛场次为排列N人中排2
1. 100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?()
A. 95
B. 97
C. 98
D. 99
【解析】答案为C。
在此完全不必考虑男女运动员各自的人数,只需考虑把除男女冠军以外的人淘汰掉就可以了,因此比赛场次是100-2=98(场)。
2. 某机关打算在系统内举办篮球比赛,采用单循环赛制,根据时间安排,只能进行21场比赛,请问最多能有几个代表队参赛?()
A. 6
B. 7
C. 12
D. 14
【解析】答案为B。
根据公式,采用单循环赛的比赛场次=参赛选手数×(参赛选手数-1 )/2,因此在21场比赛的限制下,参赛代表队最多只能是7队。
3. 某次比赛共有32名选手参加,先被平均分成8组,以单循环的方式进行小组赛;每组前2名队员再进行淘汰赛,直到决出冠军。
请问,共需安排几场比赛?() A. 48 B. 63 C. 64 D. 65
【解析】答案为B。
根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。
最后,总的比赛场次是48+15=63(场)。
4. 某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。
如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?()
A. 23
B. 24
C. 41
D. 42
【解析】答案为A。
根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。
又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=2 3(天)。