熵的起源历史和发展
- 格式:docx
- 大小:26.67 KB
- 文档页数:6
1 熵概念的产生约150年前,科学家在发现热力学第一定律(能量守恒定律)之后不久,又在研究热机效率的理论时发现,在卡诺热机完成一个循环时,它不仅遵守能量守恒定律,而且工作物质吸收的热量Q 与当时的绝对温度T (T= t+273.16℃, t 为摄氏温标)的比值之和∑(Q/T)为零(Q, T 均不为零)。
鉴于以上物理量有这一特性,1865年德国科学家克劳修斯就把可逆过程中工质吸收的热量Q 与绝对温度T 之比值称为Entropy (即熵)。
从此,一个新概念伴随着热力学第二定律就在欧洲诞生了,Entropy 很快在热力学和统计力学领域内占据了重要地位。
1923年德国科学家普朗克来我国讲学用时,在我国字典里还找不到与之对应的汉字,胡刚复教授翻译时就在商字的上加了个火字(表示与热有关)来代表Entropy ,从而在我国的汉字库里出现了“熵”字。
11978年改革开放以后,钱三强率领我国科学家访问欧洲,带回了红极一时的耗散结构理论(比利时科学家普里高津((LPrigogine)创立,并因此获得物理诺贝尔奖),此理论对热力学问题、熵概念和热寂论多有涉及。
从此以后,“熵”成为我国学术界的热门议题,各领域的学者也就“熵”概念与熵原理发表了意见。
1987年上海译文出版社出版了美国学者里夫金(J.Rifkin)和霍华德2(THoward)著的书《Entropy, A New World View))(《熵,一种新的世界观》),于是熵这个概念在中国大地上流行起来,大学教授、改革家、哲学家以及许多学者就“熵”概念和理论发表的见解也多了起来,从此熵在我国开始了广泛的研究。
1986年新疆气象研究所的张学文建议各行业都设法把熵概念和熵原理引入到自己的领域,提出了组织跨学科研究熵的想法,并在1987年组织召开了第一届“熵与交叉科学研讨会”,该研讨会每2年开一次,一直延续至今。
国内对熵概念和熵理论的深入研究,极大的推动了熵在气象学、信息科学、股票投资、管理决策以及基础理论等各个领域的拓展,活跃了我国的科学与社会思想。
熵及熵变熵(entropy)指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。
一、熵的历史:1850年,德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。
一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。
在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。
让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。
克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意可逆循环过程都适用的一个公式:dS=dQ/T。
对于绝热过程Q=0,故S≥0,(因为Q无变化,系统处于无限趋于平衡状态,熵会无限增大,因为平衡状态是理想状态,永远达不到,为ds>0。
)即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。
这就是熵增加原理。
由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。
它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。
熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
二、熵的特点:1.熵是体系的状态函数,其值与达到状态的过程无关;2.熵的定义式是:dS=dQ/T,因此计算某一过程的熵变时,必须用与这个过程的始态和终态相同的过程的热效应dQ来计算。
(注:如果这里dQ写为dQ R则表示可逆过程热效应,R为reversible;dQ写为dQ I为不可逆过程的热效应,I为Irreversible。
)3.TdS的量纲是能量,而T是强度性质,因此S是广度性质。
热力学中的熵概念解析熵是热力学中一个重要而又神秘的概念,它描述了系统的混乱程度和不可逆性。
本文将对热力学中的熵概念进行解析,探讨其来历、定义以及应用。
一、熵的来历熵最早由德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)于1850年提出,这是他对热力学第二定律的一个重要推论。
熵的引入使得热力学能够描述系统的不可逆性和热的传递过程。
二、熵的定义根据热力学第二定律,总是以熵增加的形式发生的过程是不可逆的。
熵的定义可以通过宏观和微观两个角度来理解。
从宏观角度来看,熵可以理解为对系统混乱程度和无序性的度量。
一个有序的系统具有较低的熵值,而一个无序的系统则具有较高的熵值。
当系统发生变化时,如果由有序状态转变为无序状态,熵将增加;相反,如果由无序状态转变为有序状态,熵将减少。
从微观角度来看,熵可以通过统计力学的方法来定义。
在微观层面,系统中的分子或原子具有不同的状态和运动方式。
当系统处于均衡时,分子或原子的状态和位置是随机的,无法确定。
熵是描述这种随机性的度量,可以通过统计系统的状态数来计算。
三、熵的计算在实际应用中,可以通过熵的计算来分析系统的性质和过程。
根据定义,熵的计算需要知道系统的状态数和能量分布。
对于一个离散的系统,熵的计算可以使用以下公式:S = -kΣPi lnPi其中,S表示系统的熵,k是玻尔兹曼常数,Pi表示系统处于第i个状态的概率。
对于一个连续的系统,熵的计算可以使用积分来表示:S = -k∫p(x) ln p(x)dx其中,p(x)是系统处于状态x的概率密度函数。
四、熵的应用熵的概念在物理学、化学、生物学等领域都有广泛的应用。
以下是其中一些典型的应用:1. 热力学系统的研究:熵可以用于分析热力学系统的平衡态和非平衡态,以及系统的稳定性和不可逆性。
2. 信息理论:熵可以用来度量信息的不确定性和随机性。
在信息传输和编码中,熵被用来衡量信息的容量和效率。
3. 统计力学:熵可以用来解释热力学中的平衡态和非平衡态之间的关系,并推导出热力学规律和统计力学的基本原理。
熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius, 1822 – 1888)在提出了热力学第二定律后不久,首次从宏观上提出了熵(Entropy)的概念。
Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”(另有一说译为“转变”,表示热转变为功的能力)。
在中国被胡刚复教授(一说为清华刘先洲教授)译为“熵”,因为熵是Q除以T(温度)的商数。
他发表了《力学的热理论的主要方程之便于应用的形式》一文,在文中明确表达了“熵”的概念式——dS=(dQ/T)。
熵是物质的状态函数,即状态一定时,物质的熵值也一定。
也可以说熵变只和物质的初末状态有关。
克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少(For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.),此即熵增加原理。
克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0。
在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少。
但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态。
热寂说至今仍引发了大量争论,没有得到证明。
二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究。
1872年奥地利科学家玻尔兹曼(L. E. Boltzmann)首次对熵给予微观的解释,他认为:在大量微粒(分子、原子、离子等)所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度(The degree of randomness or disorder in a thermodynamic system.)。
熵熵,指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
熵最早是由鲁道夫·克劳修斯提出,并应用在热力学中,在密闭条件下,系统有从“有序”自发地转变为无序的倾向,所以用熵(S)来量度这种混乱或无序的程度。
在与外界隔离的体系中,自发过程导致体系的熵增大,即熵变大于零。
这个原理即为熵增原理。
由此可以得出克劳修斯和开尔文的热力学第二定律,即:(1)热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的,是克劳修斯对热力学第二定律的表述);(2)不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的,是开尔文对热力学第二定律的表述)。
两种表述相辅相成,具有等价性,假设开尔文的说法不成立,则存在某热机处于状态A,从一低温热源吸热后对外做功,然后即回到状态A,而环境并无变化。
所对外做的功全部用于摩擦生热传给某高温热源(可以设计该热机作功处为绝热材料,与高温热源摩擦)。
则这一过程由低温热源向高温热源传热而无其他变化。
即证明克劳修斯的说法有误了。
要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。
当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度)时,它就做了功。
更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。
比如河水越过水坝流入湖泊。
当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。
然而水一旦落到坝底,就处于不能再做功的状态了。
在水平面上没有任何势能的水是连最小的轮子也带不动的。
那么,如果把整个世界看做一个系统,就可以说整个世界就是处于熵增的状态的,也就是说从这方面可以说明时间的不可逆,因为世界是不断地熵增的。
熵知识点总结一、熵的概念1.1 熵的起源熵最初是由克劳德·香农在其著名的《通信的数学理论》中提出的,用于描述信息的不确定性度量。
这一概念的提出对于信息论的发展起到了非常重要的作用。
1.2 熵的概念与性质熵是一种描述系统混乱程度或者随机性的指标,通常用H来表示。
在信息论中,熵被定义为一个系统中所包含的信息量的度量。
熵的性质包括:(1)熵是一个对数量,通常以比特或者纳特为单位。
(2)熵是非负的,即H≥0,当且仅当系统完全确定时,熵为0。
(3)熵的增加表示系统的不确定性增加,而熵的减少表示系统的不确定性减少。
1.3 熵的应用熵的概念在信息论、热力学、统计力学、化学、生物学等多个领域都有着重要的应用。
在信息论中,熵用来度量信息的不确定性;在热力学中,熵用来描述系统的混乱程度;在统计力学中,熵被用来描述系统的微观状态数目;在化学中,熵则被用来描述化学反应的进行方向和速率;在生物学中,熵被用来描述生物系统的稳态和动态平衡。
二、热力学熵2.1 热力学熵的概念热力学熵最早由克劳修斯在19世纪初提出,他将熵定义为系统的一种状态函数,用来描绘系统的混乱程度和不可逆性。
热力学熵的概念是热力学中一个非常重要的概念,它被广泛应用于热力学系统的描述和分析。
2.2 热力学熵的性质热力学熵的性质包括:(1)熵是一个状态函数,与系统的路径无关。
(2)熵增加原理:孤立系统的熵不会减少,如果系统经历一个不可逆过程,系统的总熵将增加。
(3)熵的增加反映了系统的不可逆过程和混乱程度的增加。
2.3 热力学熵的应用热力学熵在热力学系统的分析中有着重要的应用,它可以用来描述系统的混乱程度和不可逆性,从而揭示系统的运行规律和性质。
同时,熵还被用来描述系统的稳定性和平衡状态,是热力学研究中不可或缺的重要概念。
三、信息熵3.1 信息熵的概念信息熵是信息论中一个重要的概念,它被用来度量信息的不确定性和随机性。
信息熵最初由克劳德·香农在其著名的《通信的数学理论》中提出,用来描述信息的不确定性度量。
热力学中的熵的定义与应用熵(Entropy)是热力学中的一个重要概念,是描述物质的无序程度的物理量。
熵的定义很多人都已经听说过,“熵是系统的无序程度”,但是对于它的具体含义以及应用却不太清楚。
本文将就熵的定义与应用进行深入探讨。
一、熵的定义熵最初是由德国物理学家克劳修斯(Rudolf Clausius)在1850年左右提出的,在他的研究中,他发现了许多热力学中的定律,并提出了熵的概念。
熵的定义比较复杂,但是可以简单概括为:系统的熵是系统的无序程度的度量。
其实,熵也可以理解为一种热力学状态函数,它可以描述系统各个微观状态的概率分布,即熵越大,系统的状态越不确定,无序程度越高;反之,熵越小,系统的状态越趋于有序,无序程度越低。
二、熵的应用1. 熵与热力学第二定律熵与热力学第二定律紧密相关。
热力学第二定律指出,任何一个孤立系统都不可能在不受外界影响下自发地从无序状态转化为有序状态,也就是说,系统总是朝着无序状态的方向演化。
而熵就是描述系统从有序状态向无序状态转化的过程中所增加的状态函数。
具体来说,考虑一个孤立的系统,它可以分为两部分:热源和热机,热机可以从热源中提取热能来产生功,但是会产生热量。
热力学第二定律描述了这样一个事实:在这个过程中,热量总是从高温体流向低温体,而不会反向流动。
这个流动的过程导致了热源和热机之间的温差不断减小,最终热机将无法继续产生功。
根据热力学第二定律,这个过程中熵不断增加,最终趋于最大值,也就是系统的无序程度达到了最高点。
2. 熵与信息论除了在热力学中的应用,熵也被广泛运用在信息论、通信等领域。
在信息论中,熵用于描述信息的不确定性。
一个随机事件发生的概率越低,给人的信息量就越大,它所包含的不确定性就越高,对应的熵也就越大。
在通信中,信息的传输速率受到信道的限制,信道的容量取决于其噪声特性、信号强度和带宽等因素,但是对于一个给定的信道,信息传输速率的上限就是信道的熵,这个上限被称为香农公式,它对于无线通信、数据压缩等领域都有着重要的意义。
化学中的熵的名词解释熵是一种物理量,它在热力学和统计物理中扮演着重要的角色。
它可以用来描述物质的有序程度或混乱程度。
熵的概念最初是由克劳修斯于19世纪提出,并由玻尔兹曼进一步发展和解释。
在化学中,熵是一个关键的概念,用于描述化学反应、相变和化学平衡等过程。
熵的直观理解可以用房间的状态来类比。
当房间整齐有序时,我们可以轻松地找到物体,这时房间的熵较低。
但当房间里杂乱无章,物体随意分布时,我们需要花费更多的时间和精力来找到所需物体,这时房间的熵较高。
类似地,在化学反应中,当反应物完全混合在一起时,反应系统的熵较高,反应物和产物之间的状态更加杂乱。
熵的数学定义是基于统计物理理论的。
根据玻尔兹曼,系统的熵可以通过以下公式计算:S = k ln W其中,S表示系统的熵,k是玻尔兹曼常数,W是系统的微观状态数。
熵与微观状态数成正比,微观状态数越大,系统的熵越高。
这个公式揭示了熵与系统的无序程度之间的关系。
微观状态数指的是描述系统的粒子的位置和动量的不同排列方式。
如果有更多的方式可以排列粒子,那么系统的微观状态数就越大,熵就越高。
因此,熵可以看作是系统的信息量或无序度。
在化学反应中,熵的变化可以帮助我们预测反应的方向和趋势。
根据熵的定义,当化学反应中的产物的微观状态数比反应物的微观状态数更大时,反应的熵变是正的,反之是负的。
正的熵变意味着反应系统的无序度增加,化学反应更有可能发生。
例如,考虑一个溶解反应。
当固体溶解到溶液中时,固体的微观状态数减少,而溶液的微观状态数增加。
因此,固体溶解反应的熵变是正的。
另一方面,当两种气体混合在一起时,气体的微观状态数增加,气体混合的熵变也是正的。
然而,需要注意的是,熵并不是决定化学反应是否发生的唯一因素。
还有其他因素,如焓变、温度和化学平衡等,也需要考虑。
综合考虑这些因素,我们可以得到熵的定义对于化学反应的影响。
除了在化学反应中,熵在相变和化学平衡等方面也起着重要的作用。
在相变中,物质的熵在不同相之间可能有差异。
热力学中的熵的概念在热力学中,熵是一个重要的概念。
它是描述系统无序程度的物理量,也是热力学第二定律的核心概念之一。
熵的概念源于热力学的发展历程,经过了长期的探索和发展,逐渐形成了今天我们所熟知的概念。
熵最早是由德国物理学家鲁道夫·克劳修斯于1865年提出的。
他将熵定义为热力学系统的无序程度,即系统的混乱程度。
熵的概念在当时引起了物理学界的广泛关注和讨论。
然而,由于熵的概念比较抽象,难以直观理解,因此在当时的物理学界并没有得到普遍的认可。
随着时间的推移,熵的概念逐渐得到了深入的研究和发展。
熵被认为是描述系统无序程度的量,它与系统的状态有关。
当系统的无序程度增加时,熵的值也会增加;相反,当系统的有序程度增加时,熵的值会减小。
这与我们日常生活中的经验相符。
例如,一个房间里的东西堆积如山,看起来非常凌乱,这时系统的熵就比较高;而当我们将房间整理得井井有条时,系统的熵就会减小。
熵的概念在热力学中起着重要的作用。
根据热力学第二定律,任何一个孤立系统的熵都不会减小,而只会增加或保持不变。
这意味着自然界中的过程总是朝着更高的熵方向进行的。
例如,一杯热水放置在室温环境中,水的温度会逐渐降低,而室温则会逐渐升高。
这是因为热量会从高温的物体传递到低温的物体,使得系统的熵增加。
熵的增加与能量的耗散有密切的关系。
能量在系统中的转化和传递过程中,总会伴随着一定程度的熵的增加。
例如,摩擦力会使得机械能转化为热能,并伴随着一定的熵的增加。
这也是为什么摩擦会产生热量的原因。
熵的增加还与系统的微观状态数有关。
当系统的微观状态数增加时,熵的值也会增加。
这可以解释为什么系统的无序程度越高,熵的值就越大。
熵的概念在许多领域都有应用。
在化学反应中,熵的变化可以用来描述反应的进行方向和速率。
在信息论中,熵被用来度量信息的不确定性和无序程度。
在生态学中,熵被用来描述生态系统的稳定性和可持续性。
熵的概念在这些领域的应用为我们理解和解释自然界中的各种现象提供了重要的工具。
熵的起源、历史和发展
一、熵的起源
1865年,德国物理学家鲁道夫·克劳修斯Rudolf Clausius, 1822 –1888在提出了热力学第二定律后不久,首次从宏观上提出了熵Entropy的概念.Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”另有一说译为“转变”,表示热转变为功的能力.在中国被胡刚复教授一说为清华刘先洲教授译为“熵”,因为熵是Q除以T温度的商数.
他发表了力学的热理论的主要方程之便于应用的形式一文,在文中明确表达了“熵”的概念式——dS=dQ/T.熵是物质的状态函数,即状态一定时,物质的熵值也一定.也可以说熵变只和物质的初末状态有关.克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.,此即熵增加原理.
克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0.在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少.
但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态.热寂说至今
仍引发了大量争论,没有得到证明.
二、熵的发展
在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究.1872年奥地利科学家玻尔兹曼L. E. Boltzmann首次对熵给予微观的解释,他认为:在大量微粒分子、原子、离子等所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度The degree of randomness or disorder in a thermodynamic system..这也称为是熵的统计学定义.
玻尔兹曼提出了着名的玻尔兹曼熵公式S=klnΩ,k=×10^-23 J/K,被称为玻尔兹曼常数;Ω则为该宏观状态中所包含之微观状态数量,或者说是宏观态出现的概率,一般叫做热力学概率.玻尔兹曼原理指出系统中的微观特性Ω与其热力学特性S的关系,后来这个伟大的等式被刻在他的墓碑上.
三、熵的应用
自从Clausius提出熵的概念以来,它在热学界发挥的作用有目共睹.提及这个概念,我们往往把它与热力学定律,熵增原理,卡诺循环等联系在一起,除了热学之外,从它的宏观、微观意义出发,它还被抽象地应用到信息、生物、农业、工业、经济等领域,提出了广义熵的概念.熵在其他领域中的应用在此不再赘述,下面仅在热学领域对熵进行一个基本的探讨.
一、熵的定义Definition
1.宏观:宏观上来说,熵是系统热量变化与系统温度的商.A
macroscopic relationship between heat flow into a system and the system's change in temperature.这个定义写成数学关系是:
dS是系统的熵变, δq是系统增加的热量,仅在可逆过程成立,T是温度.
注:对于可逆过程,等号成立;对于不可逆过程,大于号成立;
所有自发过程都是不可逆过程.
2.微观:微观上说,熵是一个系统宏观态对应的相应微观态的数目热力学概率的自然对数与玻尔兹曼常量的乘积.On a microscopic level, as the natural logarithm of the number of microstates of a system.数学表达如下:
S是熵,kB是玻尔兹曼常量, Ω微观态的数目热力学概率.
二熵的相关定义
1.比熵:在工程热力学中,单位质量工质的熵,称为比熵.表达式为δq=Tds, s称为比熵,单位为J/ kg·K 或 kJ/ kg·K.
2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变.定义式
为:.熵流可正可负,视热流方向而定.
3.熵产:纯粹由不可逆因素引起的熵的增加,定义式为:.熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程.熵产是不可逆程度的度量.
三熵和热力学第二定律
1.热力学第二定律的三种表述:
1克劳修斯描述Clausius statement:不可能将热从低温物体传至高温物体而不引起其它变化.It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body.
2开尔文描述Kelvin statement:不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响.It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.
3熵增原理principle of entropy increase:孤立热力系所发生的不可逆微变化过程中,熵的变化量永远大于系统从热源吸收的热量与热源的热力学温度之比;也可以说成,一个孤立的系统的熵永远不会减少.The second law of thermodynamics states that the entropy of an isolated system never decreases, because isolated systems always evolve toward thermodynamic equilibrium— a state depending on the maximum entropy.
2.熵增原理:
根据这一原理,我们得到了对于孤立体系的熵判据:
ΔS 孤>0 自发
ΔS 孤=0 平衡
ΔS 孤<0 非自发
利用熵判据能够对孤立体系中发生的过程的方向和限度进行判别.如:把氮气和氧气于一个容器内进行混合,体系的混乱程度增大,熵值增加即ΔS>0,是一个自发进行的过程;相反,欲使该气体混合物再分离为N2 和O2,则混乱度要降低,熵值减小ΔS<0,在孤立体系中是不可能的.当然,若环境对体系做功,如利用加压降温液化分离的方法可把此混合气体再分离为O2 和N2,但此时体系与环境之间发生了能量交换,故已不是孤立体系了.
四熵的性质
1.非负性:SnP1,P2,…,Pn
≥0;
2.可加性:熵是一个状态函数,对于相互独立的状态,其熵的和等于和的熵;
3.极值性:当状态为等概率的时候,即pi=1/n,i==1,2,…,n其熵最大,有SnP1,P2,…,Pn
≤Sn1/n,1/n,…,1/n=㏑n;
4.影响熵值的因素:
①同一物质:S高温>S低温,S低压>S高压;Sg>Sl>Ss;
②相同条件下的不同物质:分子结构越复杂,熵值越大;
③S混合物>MS纯净物;
④对于化学反应,由固态物质变成液态物质或由液态物质变成气态物
质或气体物质的量增加的反应,熵值增加.
5.对于纯物质的晶体,在热力学零度时,熵为零.热力学第三定律
6.系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可
供利用或者是转化的能量却是越来越少.In a physical system, entropy provides a measure of the amount of thermal energy that cannot be used to do work.
四、参考资料Reference
工程热力学第三版高等教育出版社;
现代化学基础清华大学出版社;
薛凤佳熵概念的建立和发展;
李嘉亮,刘静玻尔兹曼熵和克劳修斯熵的关系;
顾豪爽熵及其物理意义;
熵——百度百科;
Introduction to entropy, From Wikipedia, the free encyclopedia;
A History of Thermodynamics——Springer。