热力学定律与热力学判据
- 格式:pdf
- 大小:831.61 KB
- 文档页数:38
热力学第一定律基本概念体系(system ):作为研究对象的部分物质及其空间环境(surrounding ):体系以外且与体系密切相关的物质及其所在空间 敞开体系,封闭体系,绝热体系,孤立体系 状态:体系宏观性质的总和状态性质:描述体系状态的宏观物理量。
广度性质,强度性质 状态函数:依赖其他状态变量的状态性质称为状态函数 状态函数的数学性质:单值,连续,可微的函数;在状态图上是连续变化的单值平滑曲线 若 Z = f (x, y) 为状态函数,则有全微分:Z Z dZ dx dy x y ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 0dZ =⎰ 22Z Zx y y x ∂∂=∂∂∂∂1y xZ Z x y x y Z ⎛⎫∂∂∂⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 过程:发生状态变化的方式 途径:完成某一变化的具体步骤等温过程,等压过程,等容过程,绝热过程,节流过程,循环过程,卡诺循环 热力学平衡:力平衡,热平衡,相平衡,化学平衡 反应进度热力学第一定律U Q W ∆=+ 或 dU Q W δδ=+U 热力学能(内能):是体系的广度性质,它是体系中一切形式能量的总和。
如分子,原子的平动能、转动能、振动能,分子,原子,电子及原子核等相互作用的势能;但不包括力场中整体运动的动能、势能;绝对值不可知。
Q 热:体系与环境由于温度的差别所交换的能量。
是以分子无序运动相互碰撞传递能量的方式。
体系从环境吸热为正值,反之为负值。
W 功:体系与环境之间除热的形式以外所交换的能量,是体系和环境间以物质分子宏观有序运动传递能量的方式。
环境对体系作功为正值,反之为负值。
W 的计算:W p dV p dV δ=-≠-外体反抗恒外压:Wp V =-∆外理想气体等温可逆过程:W = nRTln(V 2/V 1) = nRTln(p 1/p 2)理想气体绝热可逆过程:W = nC v,m (T 2 -T 1) = (p 2 V 2-p 1V 1)/(γ-1)理想气体绝热不可逆过程:W = nC v,m (T 2 -T 1) = p 外(V 2-V 1)=nRp 外(T 2/p 2-T 1/p 1)Q 的计算:显热(封闭体系,无相变化,无化学反应),21()V V m Q nC T T =-,,21()p p m Q nC T T =-潜热(相变过程)恒压可逆相变:Q Qp H ==∆相变不可逆相变:Q U W =∆-化学反应热Hess 定律, 生成热, 燃烧热, 离子生成热,键焓 Kirchhoff 定律 p v Q Q nRT =+∆ 焓定义式: H = U + pV ∆H = ∆U + ∆(pV) 理想气体等温过程:∆H = ∆U =0 Joule — Thomson 效应1HT T H p Cp p μ⎛⎫⎛⎫∂∂==-⎪ ⎪∂∂⎝⎭⎝⎭卡诺热机效率:122122Q Q T T Q T η+-==热力学第二定律概念自发过程:不需外力帮助就能进行的过程,其显著特点就是它具有热力学的不可逆性。
热力学中的四大定律与应用热力学是研究热能和物质转移的科学,是物理学中的一个重要分支。
在热力学中,有四大定律,它们是热力学理论体系的基础,是研究物质在热力学过程中的基本规律。
这四大定律不仅在科学研究中有着广泛的应用,同时也对我们的生活产生着重要影响。
第一定律:能量守恒定律热力学第一定律也称能量守恒定律,它是热力学的基本定律之一。
该定律表明,在一个系统内,能量不会被创建,也不会被破坏,只会从一种形式转换为另一种形式。
换句话说,系统内的能量总量是不变的。
该定律的应用比较广泛,例如在能源的利用和管理上,我们常常需要设计一些能量转换装置,如汽车引擎、火力发电厂、核电站等。
在设计这些设备时,必须保证能量输入等于输出,以符合热力学第一定律的要求。
第二定律:熵增定律热力学第二定律也称熵增定律,它是热力学的重要定律之一。
该定律排除了一切永动机和技术上不可行的热能转换过程。
它规定了热量只能从高温向低温流动。
热流只能由低温物体吸收高温物体的热量,随后再向低温物体散发热量。
因此,热能转换过程中总是会有些热量被浪费掉。
应用方面,热力学第二定律对我们的生活也产生了重要的影响。
例如,在节能环保方面,我们需要像冰箱、空调等家电的设计上增加密封措施和制冷技术的改进,以提高能源利用效率、减少能源的浪费。
第三定律:绝对零度定律热力学第三定律也称绝对零度定律,它是热力学的一个基本定律,规定在绝对零度时,正常的物质将处于绝对静止状态。
根据热力学第三定律,即使是最彻底的制冷,也不能将物体降到绝对零度。
因此,在物理制冷技术方面,我们需要通过其他技术手段来实现低温条件下的物理实验或应用。
例如,在超导材料的应用中,超导材料需要在低于一定的温度下才能实现零电阻。
因此,在超导材料的制备和应用方面,我们需要采用更加先进的低温制冷技术。
第四定律:热力学基本关系式热力学第四定律是一种调和行为,在热学中通常被称为热力学基本关系式。
该定律在热力学的数学表述中提供了一个统一的基础,以便于我们理解和应用热力学基础理论。
第三章 热力学第二定律与热力学基本函数一、基本概念1、热力学第二定律热力学第二定律的Kelvin 说法为:不可能从单一热源取出热使之完全变为功而不发生其他变化。
这一说法揭示了热功交换的不可逆性。
Kelvin 说法的另一种表达形式为:第二类永动机是不可能造成的。
热力学第二定律的Clausius 说法为:不可能把热从低温物体传到高温物体而不引起其他变化。
这一说法揭示了热量传递的不可逆性。
若从能量的品味角度论述热力学第二定律还可说成一切自发过程都是向着能量品位降低的过程进行。
人们在研究热功交换规律的基础上,抓住了事物的共性,提出了具有普遍意义的熵函数。
根据函数以及由此导出的其他热力学函数,可以解决化学反应的方向和限度问题。
这就是热力学第二定律的重要作用。
2、Carnot 定理热力学第二定律证明,所有工作于同温热源于同温冷源之间的热机,其效率都不可能超过可逆机,这便是Carnot 定理。
由Carnot 定理得到一个重要推论:所有工作于同温热源于同温冷源之间的可逆机,其热机效率都相等,即可逆机的效率与工作物质无关。
这一重要推论使理想气体Carnot 循环的结论可以推广到任意工作物质的可逆机了。
自发过程的共同特征——不可逆性,都可以归结到热功交换的不可逆性。
Carnot 定理引出了不等式I R ηη≤,不仅解决了热机效率的极限问题,而且也是所有不可逆过程共同的判别准则。
就是这个不等式,解决了化学反应的方向问题,所以Carnot 定理具有非常重大的意义。
3、熵函数和熵增加原理熵是系统的状态函数、容量性质,是一个宏观物理量,它与微观物理量——热力学概率Ω的关系为ln S k =Ω。
依据Clausius 不等式:BA 0QS Tδ∆-≥∑,可用来判别过程的可逆性,等号表示可逆,不等号表示不可逆。
系统若经历一个微小的变化,其熵变为可逆过程中的热温商:Rd Q S Tδ=。
在绝热条件下,若系统发生一个可逆变化,则0S ∆=,若系统发生一个不可逆变化,则0S ∆>,所以在绝热系统中熵值永不减少。
第三章热力学第二定律基本公式卡诺定理:ηI≤ηR热力学第二定律数学表达式,Clausius不等式:ΔS A→B = ∑BATQδ≥ 0熵函数:dS = δQ R/T S = klnΩ亥姆霍兹自由能定义:F = U - TS吉布斯自由能定义:G = H -TS热力学判据:(1) 熵判据 (dS)U,V≥ 0(2) 亥姆霍兹自由能判据(dF)T,v,Wf=0 ≤ 0(3) 吉布斯自由能判据(dG)T,P,Wf=0≤ 0热力学基本关系式:dU = TdS - pdV dH = TdS + VdpdF = - SdT - pdV dG = - SdT + Vdp(∂S/∂V)T = (∂p/∂T)V(∂S/∂p)T = (∂V/∂T)pC v = T(∂S/∂T)v C p = T(∂S/∂T)p吉布斯自由能与温度的关系:Gibbs-Helmholtz公式:[∂(ΔG/T)/∂T]p = -ΔH/T2一些基本过程的ΔS、ΔG、ΔF的运算公式(W例题例1 一个理想卡诺热机在温差为100K的两个热源之间工作,若热机效率为25%,计算T1、T2和功,已知每一循环中T1热源吸热1000J,假定所作的功W以摩擦热的形式完全消失在T2热源上,求该热机每一循环后熵变和环境的熵变。
解:卡诺热机效率η = (T2 - T1)/T225% =100K/T2, T2=400K, T1 = 300K热机效率定义:η = W/Q2η = W/(Q1+ W), 25% =W/(1000J + W), W =333.3JQ2 = W/η = 333.3J/25% = 1333JΔS体 =0(热机循环一周回到原态)由题意知,热机对环境所作的功完全以摩擦热的形式释放在T2热源上。
故T2热源得到了W的热量。
放出了Q2的热量。
ΔS环 =Q环,1/T1 + Q环,2/T2 = Q1/T1 + (Q2+W)/T2=1000J/300K + (-1333+333.3)J/400K =0.83J.K -1例2 有一绝热体系,中间隔板为导热壁,右边容积为左边容积的2倍,已知气体的C V,m = 28.03 J.mol-1,试求:1mol O2 273K 2mol N2 298K(a)不抽掉隔板达平衡后的ΔS ;(b) 抽去隔板达平衡后的ΔS。
热力学共有四大定律第零定律:热平衡定律(zeroth law of thermodynamics )第一定律:能量守恒定律,“热”是一种能量。
第二定律:熵函数的引出及过程变化方向的熵判据在一个封闭系统(closed system)里操作,总熵量有增无减:只能不变或增加,不能减少。
第三定律:决对零度达不到,在绝对温度0K(相当于-273.15摄氏度)下,所有物质的熵都等于0。
热力学第零定律如果两个热力系的每一个都与第三个热力系处于热平衡,则它们彼此也处于热平衡。
热力学第零定律于1930年由福勒(R.H.Fowler)正式提出,比热力学第一定律和热力学第二定律晚了80余年。
虽然这么晚才建立热力学第零定律,但实际上之前人们已经开始应用它了。
因为它是后面几个定律的基础,在逻辑上应该排在最前面,所以叫做热力学第零定律。
如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
这一结论称做“热力学第零定律”。
热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。
定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。
它为建立温度概念提供了实验基础。
这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
而温度相等是热平衡之必要的条件。
热力学中以热平衡概念为基础对温度作出定义的定律。
通常表述为:与第三个系统处于热平衡状态的两个系统之间,必定处于热平衡状态。
图中A热力学第零定律示意图、B热力学第零定律示意图、C 热力学第零定律示意图为3个质量和组成固定,且与外界完全隔绝的热力系统。
将其中的B、C用绝热壁隔开,同时使它们分别与A发生热接触。
待A与B和A与C都达到热平衡时,再使B与C发生热接触。
这时B和C的热力状态不再变化,这表明它们之间在热性质方面也已达到平衡。
经验 总结总结 归纳提高 引出或定义出 解决的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律§1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法 1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。
⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等); 热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。
2、热力学方法——状态函数法⇨ 热力学方法的特点:①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc )②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
⇨ 局限性:不知道反应的机理、速率和微观性质。
只讲可能性,不讲现实性。
3、热力学研究內容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。
热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。
1.1.2 热力学的基本概念生活实践 生产实践 科学实验 热力学第一定律 热力学第二定律 热力学第三定律 热力学第零定律 热力学理论基础 热力学能U 焓H 熵S 亥姆霍茨函数A 吉布斯函数G压力p 体积V 温度T 实验测得p ,V ,T 变化过程 相变化过程 化学变化过程1、系统与环境 ⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。
第⼆章热⼒学第⼆定律第⼆章热⼒学第⼆定律引⾔⼀、热⼒学第⼀定律的局限性:凡是违背第⼀定律的过程⼀定不能实现,但是不违背第⼀定律的过程并不是都能⾃动实现的。
例如: 1.两块不同温度的铁相接触,究竟热从哪⼀块流向哪⼀块呢?按热⼒学第⼀定律,只要⼀块铁流出的热量等于另⼀块铁吸收的热量就可以了,但实际上,热必须温度从较⾼的⼀块流向温度较低的那块,最后两块温度相等,⾄于反过来的情况,热从较冷的⼀块流向热的⼀块,永远不会⾃动发⽣。
2.对于化学反应:以上化学反应计量⽅程告诉我们,在上述条件下,反应⽣成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ ,均未违反热⼒学第⼀定律,但热⼒学第⼀定律不能告诉我们,在上述条件下的混合物中,究竟是发⽣NO 2的分解反应,还是NO 2的⽣成反应?假定是⽣成NO 2的反应能⾃动进⾏,那么进⾏到什么程度呢?这些就是过程进⾏的⽅向和限度问题,第⼀定律⽆法解决,要由第⼆定律解决。
⼆、热⼒学第⼆定律的研究对象及其意义:1.研究对象:在指定条件下,过程⾃发进⾏的⽅向和限度:当条件改变后,⽅向和限度有何变化。
2.意义:过程⾃发进⾏的⽅向和限度是⽣产和科研中所关⼼和要解决的重要问题。
例如:在化⼯及制药⽣产中,不断提出新⼯艺,或使⽤新材料,或合成新药品这⼀类的科学研究课题,有的为了综合利⽤,减少环境污染,有的为了改善劳动条件不使⽤剧毒药品,……等。
这些⽅法能否成功?也就是在指定条件下,所需要的化学反应能否⾃动进⾏?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进⾏各种实验来解决这⼀问题,但若能事先通过计算作出正确判断,就可以⼤⼤节省⼈⼒,物⼒。
理论计算认为某条件下根本不可能进⾏的反应,就不要在该条件下去进⾏实验了。
NO(g)+12O 2(g)2(g)KJH m r 0.57298..=?KJ H m r 0.57298..-=?NO(g)+12O 2(g)NO 2(g)§2–1 ⾃发过程的共同特征⼀、⾃发过程举例:1.理想⽓体⾃由膨胀2.热量由⾼温物体传向低温物体3.锌投⼊硫酸铜溶液中发⽣置换反应:Zn + CnSO4→ Cu + ZnSO4⼆、⾃发过程的共同特征:由上述例⼦可以分析,所有⾃发变化是否可逆的问题,最终都可归结为“热能否全部转变为功⽽没有其他变化”这样⼀个问题。
本章内容:介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学.第一节热力学概论⏹热力学研究的目的、内容⏹热力学的方法及局限性⏹热力学基本概念一.热力学研究的目的和内容目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。
内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。
其中第一、第二定律是热力学的主要基础。
把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。
化学热力学的主要内容是:1.利用热力学第一定律解决化学变化的热效应问题;2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论;3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题二、热力学的方法及局限性方法:以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。
而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。
优点:⏹研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义.⏹只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。
局限性:1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。
例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。
2.只讲可能性,不讲现实性,不知道反应的机理、速率。
三、热力学中的一些基本概念1.系统与环境系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统(system).环境:系统以外与系统密切相关的其它部分称环境(surrounding注意:1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或随过程而变。