2010年高考数学题分类汇编(15)复数
- 格式:doc
- 大小:291.50 KB
- 文档页数:4
2010年高考复数1.【2010·浙江理数】对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( )A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.【2010·全国卷2理数】复数231i i -⎛⎫= ⎪+⎝⎭( ) A.34i -- B.34i -+ C.34i - D.34i +3.【2010·陕西文数】复数z =1i i+在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.【2010·辽宁理数】设a,b 为实数,若复数11+2i i a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b == 5.【2010·江西理数】已知(x+i )(1-i )=y ,则实数x ,y 分别为( )A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=26.【2010·安徽文数】已知21i =-,则i(1)=( )i i C.i D.i7.【2010·浙江文数】设i 为虚数单位,则51i i -=+( ) A.-2-3i B.-2+3i C.2-3i D.2+3i8.【2010·山东文数】已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 39.【2010·北京文数】在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10.【2010·四川理数】i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11.【2010·天津文数】i 是虚数单位,复数31i i+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.【2010·天津理数】i 是虚数单位,复数1312i i -+=+( ) A.1+i B.5+5i C.-5-5i D.-1-i13.【2010·广东理数】若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.314.【2010·福建文数】i 是虚数单位,41i ()1-i +等于 ( ) A .iB .-iC .1D .-1高中数学高考总复习充分必要条件习题及详解一、选择题1.(文)已知a 、b 都是实数,那么“a 2>b 2”是“a >b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. (理)“|x -1|<2成立”是“x (x -3)<0成立”的( )A 充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2010·福建文)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件3.(文)已知数列{a n },“对任意的n ∈N *,点P n (n ,a n )都在直线y =3x +2上”是“{a n }为等差数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 (理)(2010·南充市)等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件4.(09·陕西)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.(文)设集合A ={x |x x -1<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件 (理)(2010·杭州学军中学)已知m ,n ∈R ,则“m ≠0或n ≠0”是“mn ≠0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件6.(文)(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(理)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.(2010·浙江宁波统考)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n复数历届高考试题荟萃2010年高考复数1.【2010·浙江理数】对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( )A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题.2.【2010·全国卷2理数】复数231i i -⎛⎫= ⎪+⎝⎭( ) A.34i -- B.34i -+ C.34i - D.34i +【答案】A【解析】本试题主要考查复数的运算. 231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【2010·陕西文数】复数z =1i i+在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 【答案】A 【解析】本题考查复数的运算及几何意义. 1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【2010·辽宁理数】设a,b 为实数,若复数11+2i i a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b == 【答案】A 【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =选A. 5.【2010·江西理数】已知(x+i )(1-i )=y ,则实数x ,y 分别为( )A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=2【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2.6.【2010·安徽文数】已知21i =-,则i(1)=( )iiC.iD.i【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =+选B. 7.【2010·浙江文数】设i 为虚数单位,则51i i-=+( ) A.-2-3i B.-2+3i C.2-3i D.2+3i【答案】C 【解析】本题主要考察了复数代数形式的四则运算,属容易题.8.【2010·山东文数】已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 【答案】B9.【2010·北京文数】在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i 【答案】C10.【2010·四川理数】i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1.11.【2010·天津文数】i 是虚数单位,复数31i i+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1. 331+24121-(1-)(1+)2i i i i i i i i +++===+()() 12.【2010·天津理数】i 是虚数单位,复数1312i i-+=+( ) A.1+i B.5+5i C.-5-5i D.-1-i 【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
2010年高考数学真题 复数部分(含详细答案)1.【2010·江西理数】已知(x+i )(1-i )=y ,则实数x ,y 分别为( )A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=22.【2010·全国卷2理数】复数231i i -⎛⎫= ⎪+⎝⎭( ) A.34i -- B.34i -+ C.34i - D.34i +3.【2010·陕西文数】复数z =1i i+在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.【2010·辽宁理数】设a,b 为实数,若复数11+2i i a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b == 5.【2010·浙江理数】对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+6.【2010·安徽文数】已知21i =-,则i(1)=( )i i C.i D.i7.【2010·浙江文数】设i 为虚数单位,则51i i -=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i 8.【2010·山东文数】已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 39.【2010·北京文数】在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10.【2010·四川理数】i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11.【2010·天津文数】i 是虚数单位,复数31i i+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i12.【2010·天津理数】i 是虚数单位,复数1312i i-+=+( ) A.1+i B.5+5i C.-5-5i D.-1-i13.【2010·广东理数】若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.314.【2010·福建文数】i 是虚数单位,41i ()1-i +等于 ( ) A .i B .-i C .1D .-1 15.【2010·全国卷1理数】复数3223i i+=-( ) A.i B.i - C.12-13i D. 12+13i16.【2010·山东理数】已知2(,)a i b i a b i +=+2a i b i i +=+(a,b ∈R ),其中i 为虚数单位,则a+b=( )A.-1B.1C.2D.317.【2010·安徽理数】i= ( )A.14-B.14+C.12D.12 18.【2010·湖北理数】若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i +的点是( )A.EB.FC.GD.H1 【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2.2 【答案】A【解析】本试题主要考查复数的运算. 231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3 【答案】A【解析】本题考查复数的运算及几何意义. 1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4 【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题.6 【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =选B.7 【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题.8 【答案】B9 【答案】C10 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1.11 【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1. 331+24121-(1-)(1+)2i i i i i i i i +++===+()() 12 【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
专题复数历年高考真题汇编1.【2019年新课标1文科01】设z,则|z|=()A.2 B.C.D.1【解答】解:由z,得|z|=||.故选:C.2.【2018年新课标1文科02】设z2i,则|z|=()A.0 B.C.1 D.【解答】解:z2i2i=﹣i+2i=i,则|z|=1.故选:C.3.【2017年新课标1文科03】下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.4.【2016年新课标1文科02】设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.5.【2015年新课标1文科03】已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【解答】解:由(z﹣1)i=1+i,得z﹣1,∴z=2﹣i.故选:C.6.【2014年新课标1文科03】设z i,则|z|=()A.B.C.D.2【解答】解:z i i.故|z|.故选:B.7.【2013年新课标1文科02】()A.﹣1i B.﹣1i C.1i D.1i【解答】解: 1i.故选:B.8.【2012年新课标1文科02】复数z的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【解答】解:复数z1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.9.【2011年新课标1文科02】复数()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【解答】解: 2+i故选:C.10.【2010年新课标1文科03】已知复数Z,则|z|=()A.B.C.1 D.2【解答】解:化简得Z•••,故|z|,故选:B.考题分析与复习建议本专题考查的知识点为:复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义等,历年考题主要以选择题题型出现,重点考查的知识点为复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算等,预测明年本考点题目会比较稳定,备考方向以知识点复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算为重点较佳.最新高考模拟试题1.复数52iz =-在复平面上的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】,在复平面上的对应点为()2,1,位于第一象限. 故选A.2.设i z a b =+(a ,b ∈R ,i 是虚数单位),且22i z =-,则有( ) A .1a b +=- B .1a b -=- C .0a b -= D .0a b +=【答案】D 【解析】 因为,所以220a b -=,22ab =-, 解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,所以0a b +=,故选D.3.若复数1i1ia z +=+为纯虚数,则实数a 的值为( ) A .1 B .1-C .0D .2【答案】B 【解析】故,解1a =-故选:B4.复数i (1+i )的虚部为( ) A .2 B .1C .0D .1-【答案】B 【解析】∵i (1+i )=-1+i , ∴i (1+i )的虚部为1.故选:B .5.已知复数11z i =-+,复数2z 满足122z z =-,则2z = ( ) A .2 B .2C .10D .10【答案】B 【解析】 由题得,所以.故选:B6.已知复数312i z i=+,则复数z 的实部为( )A .25-B .25i -C .15-D .15i -【答案】A 【解析】 解:∵,∴复数z 的实部为25-. 故选A . 7.复数122ii-=+( ) A .1i - B .i -C .iD .1i +【答案】B 【解析】.故选B8.已知i 为虚数单位,复数z 满足:,则在复平面上复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 因为,所以复平面上复数z 对应的点为13(,)22-,位于第四象限, 故选D .9.设复数z a i =+,z 是其共轭复数,若3455z i z =+,则实数a =( ) A .4 B .3C .2D .1【答案】C 【解析】 解:z a i =+z a i ∴=-10.已知i 是虚数单位,复数z 满足,则z =( )A .2B .2C .1D .5【答案】A 【解析】,所以,故本题选A.11.复数,其中i 为虚数单位,则z 的实部是( ) A .-1 B .1C .2D .3【答案】D 【解析】解:∴,∴z的实部是3故选:D.12.已知复数,则复数z=()A.2i+B.2i-C.i D.i-【答案】C【解析】由题意,复数,则,故选C. 13.已知i为虚数单位,若,则b a=()A.1 B.2C .2D.2 【答案】C【解析】i为虚数单位,若,根据复数相等得到1212 ab⎧=⎪⎪⎨⎪=⎪⎩.故答案为:C.14.已知复数z满足,则||z=()A.2B.5 C.52D.8【答案】C【解析】∵,∴,∴.故选C .15.已知i 是虚数单位,则复数11i i -+在复平面上所对应的点的坐标为( ) A .()0,1 B .()1,0-C .()1,0D .()0,1-【答案】A 【解析】 ∵,∴该复数在复平面上对应的点的坐标为()0,1.故选A.16.若复数z 满足,则在复平面内z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 由题得,所以1z i =+,所以在复平面内z 的共轭复数对应的点为(1,1),在第一象限. 故选:A17.已知复数z 满足12iz i =+,则z 的虚部是( ) A .1- B .i -C .2D .2i【答案】A 【解析】 因为12iz i =+所以所以虚部为1-所以选A18.已知31i zi-=-(其中i为虚数单位),则z的虚部为( )A.i-B.1-C.1D.2【答案】B【解析】因为,所以2z i=-,故z的虚部为1-,故选B.19.复数的虚部为()A.1-B.3-C.1 D.2【答案】B【解析】所以z的虚部为3-故选B项.20.已知复数,212z i=+(i为虚数单位),若12zz为纯虚数,则a=()A.2-B.2 C.12-D.12【答案】C【解析】∵,∴,∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选:C . 21.设复数z 满足2ii z+=,则z =( ) A .1 B .5C .3D .5【答案】B 【解析】2ii z+=,,,故选B.22.已知复数1i z i=-,则2z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 ∵,∴,∴2z +在复平面内对应的点的坐标为211,2⎛⎫- ⎪ ⎪⎝⎭,位于第一象限. 故选:A .23.复数z 满足(1)2z i i -=,则复数z =( )A .1i -B .12iC .1i +D .1i --【答案】D【解析】由题意得: 1z i ∴=--本题正确选项:D24.若复数是纯虚数,其中m 是实数,则1z =( ) A .i B .i - C .2i D .2i -【答案】B【解析】复数z =m (m +1)+(m +1)i 是纯虚数,故m (m +1)=0且(m +1)≠0,解得m =0,故z =i ,故i .故选:B .25.设i 为虚数单位,则复数22iz i -=+的共扼复数z =( )A .3455i + B .3455i -C .3455i -+D .3455i --【答案】A【解析】解:,故选:A .26.已知复数1z 、2z 在复平面内对应的点关于虚轴对称,113z i =+,则12z z =( )A .2B .3C .2D .1【答案】D【解析】由题意,复数1z 、2z 在复平面内对应的点关于虚轴对称,113z i =+, 则,所以,故选 D. 27.已知复数z 1=1+2i ,z 2=l ﹣i ,则12z z =( ) A .13i 22-- B .13i 22-+ C .13i 22- D .13i 22+ 【答案】B【解析】∵,∴.故选:B . 28.在复平面内,复数(2i)z -对应的点位于第二象限,则复数z 可取( )A .2B .-1C .iD .2i +【答案】B【解析】不妨设,则, 结合题意可知:,逐一考查所给的选项: 对于选项A :,不合题意; 对于选项B :,符合题意; 对于选项C :,不合题意; 对于选项D :,不合题意; 故选:B .29.已知i 为虚数单位,则复数3(1)i z i i +=-的虚部为( )A .1B .2C .1-D .2-【答案】C【解析】因为,所以z 的虚部为1-.30.已知复数(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为() A .0 B .1- C .1 D .13-【答案】D【解析】因为,对应的点为(1,1)a a +-,因为点在直线2y x =上,所以,解得13a =-. 故选D.。
2010年高考数学复数试题分类解析一、考查复数代数形式的四则运算1、(四川理数)(1)i 是虚数单位,计算i +i 2+i 3=____________.2、(湖南文数)1. 复数21i-等于____________. 3、(天津理数)(1)i 是虚数单位,复数1312i i -+=+____________. 4、(福建文数)4.i 是虚数单位,41i ()1-i+等于____________. 5、(安徽文数)(2)已知21i =-,则i(13i )=____________.6、(浙江文数)3.设i 为虚数单位,则51i i -=+____________. 7、(安徽理数)1、i 33i=+ ____________. 8、(天津文数)(1)i 是虚数单位,复数31i i+-=____________. 9、(重庆理数)(11)已知复数z=1+I ,则2z z -=____________. 10、(广东理数)2.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=____________.二、考查复数的几何意义1、(北京理数)(9)在复平面内,复数21i i-对应的点的坐标为 。
2、(湖北理数)1.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是 。
3、(陕西文数)2.复数z =1i i +在复平面上对应的点位于第 象限。
4、(北京文数)⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是 。
三、考查复数的模和共轭1、(上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
2、(江苏卷)2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为_________.四、考查复数相等的充要条件1、(江西理数)1.已知(x+i )(1-i )=y ,则实数x=_______,y=_____.2、(辽宁理数)(2)设a,b 为实数,若复数11+2i i a bi =++,则a=______,b=______. 3、(山东理数)(2)已知()2,a i b i a b R i +=+∈,其中i 为虚数单位,则a b +=五、综合考查复数知识1、(浙江理数)(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+(C )2z z x -≥ (D )z x y ≤+2. (福建理数)参考答案:一、1、-1 2、1+ i 3、1+i 4、1 53i6、2-3i7、134+8、1+2i9、-2i 10、4+2 i 二、1、(-1,1) 2、H 3、一 4、2+4i三、1、i 26- 2、2四、1、x=1,y=2 2、31,22a b == 3、1 五、1、D 2、B。
总题数:22 题第1题(2010年普通高等学校夏季招生考试数学文史类(北京卷))题目在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2iC.2+4i D.4+i答案C 由题意知A(6,5),B(-2,3),故C(2,4),则点C对应的复数为2+4i.第2题(2010年普通高等学校夏季招生考试数学文史类(天津卷))题目i是虚数单位,复数=( )A.1+2i B.2+4i C.-1-2i D.2-i 答案A =1+2i.第3题(2010年普通高等学校夏季招生考试数学理工农医类(天津卷))题目i是虚数单位,复数=( )A.1+i B.5+5i C.-5-5i D.-1-i答案A=1+i.第4题(2010年普通高等学校夏季招生考试数学文史类(辽宁卷))题目设a,b为实数,若复数=1+i,则( )A.a=,b= B.a=3,b=1C.a=,b= D.a=1,b=3答案A 由题意a+b i==∴a=,b=,选A项.第5题(2010年普通高等学校夏季招生考试数学理工农医类学(辽宁卷)) 题目设a,b为实数,若复数=1+i,则( )A.a=,b= B.a=3,b=1C.a=,b= D.a=1,b=3答案A 由题意a+b i==∴a=,b=,选A项.第6题(2010年普通高等学校夏季招生考试数学文史类(浙江卷))题目设i为虚数单位,则=( )A.-2-3i B.-2+3i C.2-3i D.2+3i 答案C =2-3i.第7题(2010年普通高等学校夏季招生考试数学理工农医类(浙江卷))题目对任意复数z=x+y i(x,y∈R),i为虚数单位,则下列结论正确的是( )A.|z-|=2y B.z2=x2+y2C.|z-|≥2x D.|z|≤|x|+|y|答案D 对于A:|z-|=|2y i|=2|y|≠2y,对于B:z2=x2-y2+2xy i≠x2+y2,对于C:|z-|=2|y|≥2x 不一定成立,对于 D:|z|==|x|+|y|成立.第8题(2010年普通高等学校夏季招生考试数学文史类(湖南卷))题目复数等于( )A.1+i B.1-iC.-1+i D.-1-i答案A =1+i.第9题(2010年普通高等学校夏季招生考试数学理工农医类(广东卷))题目若复数z1=1+i,z2=3-i,则z1·z2=( )A.4+2i B.2+i C.2+2i D.3+i答案A z1·z2=(1+i)(3-i)=3-i2+2i=4+2i.第10题(2010年普通高等学校夏季招生考试数学文史类(安徽卷))题目已知i2=-1,则i(1-i)=( )A. -iB. +iC.--i D.-+i答案B i(1-i)=i-i2=+i.第11题(2010年普通高等学校夏季招生考试数学理工农医类(安徽卷))题目i是虚数单位,=( )A. B.C. D.答案B . 第12题(2010年普通高等学校夏季招生考试数学文史类(山东卷))题目已知=b+i(a,b∈R),其中i为虚数单位,则a+b等于 ( ) A.-1 B.1 C.2 D.3答案B ∵=b+i,∴a+2i=-1+b i.∴a=-1,b=2.∴a+b=1.第13题(2010年普通高等学校夏季招生考试数学理工农医类(山东卷))题目已知=b+i(a,b∈R),其中i为虚数单位,则a+b等于 ( ) A.-1 B.1 C.2 D.3答案B ∵=b+i,∴a+2i=-1+b i.∴a=-1,b=2.∴a+b=1.第14题(2010年普通高等学校夏季招生考试数学理工农医类(江西卷))题目已知(x+i)(1-i)=y,则实数x,y分别为( )A.x=-1,y=1 B.x=-1,y=2C.x=1,y=1 D.x=1,y=2答案D 由(x+i)(1-i)=y,得x+1+(1-x)i=y,∴∴x=1,y=2.第15题(2010年普通高等学校夏季招生考试数学文史类(陕西卷))题目复数z=在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案A =(1-i)=+,对应点坐标为(,),该点位于第一象限.第16题(2010年普通高等学校夏季招生考试数学理工农医类(陕西卷))题目复数z=在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案A =(1-i)=+,对应点坐标为(,),该点位于第一象限.第17题(2010年普通高等学校夏季招生考试数学文史类(福建卷))题目i是虚数单位,()4等于( )A.i B.-iC.1 D.-1答案C =i,∴()4=i4=1.故选C.第18题(2010年普通高等学校夏季招生考试数学理工农医类(福建卷))题目对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy∈S”,则当时,b+c+d等于( )A.1 B.-1 C.0 D.i答案B 因为集合中的元素是互异的,解方程组,得,∵x,y∈S,xy∈S,∴当c=i时,d=-i,b+c+d=-1;当c=-i时,d=i,b+c+d=-1,故b+c+d=-1.第19题(2010年普通高等学校夏季招生考试数学文史类(全国卷新课标))题目已知复数z=,则|z|等于( )A. B. C.1 D.2 答案B |z|====.第20题(2010年普通高等学校夏季招生考试数学理工农医类(全国卷新课标))题目已知复数z=,是z的共轭复数,则z·=( )A. B. C.1 D.2答案A z·=|z|2而|z|====,∴|z|2=,∴z·=.第21题(2009年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ卷)) 题目已知,则复数z=()A.-1+3iB.1-3iC.3+iD.3-i答案B解析:∵,∴=(2+i)(1+i)=2+3i+i2=1+3i.∴z=1-3i.第22题(2009年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ卷))题目=( )A.-2+4iB.-2-4iC.2+4iD.2-4i答案A解析:.故选A.总题数:22 题第23题(2009年普通高等学校夏季招生考试数学理工农医类(北京卷))题目在复平面内,复数z=i(1+2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案B解析:∵z=i(1+2i)=-2+i,∴其对应点为(-2,1).故选B.第24题(2009年普通高等学校夏季招生考试数学文史类(天津卷))题目i是虚数单位,等于( )A.1+2iB.-1-2iC.1-2iD.-1+2i 答案D解析:因为.第25题(2009年普通高等学校夏季招生考试数学理工农医类(天津卷))题目i是虚数单位,等于()A.1+2iB.-1-2iC.1-2iD.-1+2i答案D解析:因为.第26题(2009年普通高等学校夏季招生考试数学文史类(辽宁卷))题目已知复数z=1-2i,那么等于…( )A. B.C. D.答案C解析: .第27题(2009年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目已知复数z=1-2i,那么等于…( )A. B. C. D.答案D解析:=1+2i,∴.第28题(2009年普通高等学校夏季招生考试数学文史类(浙江卷))题目设z=1+i(i是虚数单位),则( )A.1+iB.-1+iC.1-iD.-1-i 答案A解析:z=1+i,则,z2=2i,故,故选A. 第29题(2009年普通高等学校夏季招生考试数学理工农医类(浙江卷)) 题目设z=1+i(i是虚数单位),则=( )A.-1-iB.-1+iC.1-iD.1+i答案D解析:z=1+i,则,z2=2i,故=1+i,故选D.第30题(2009年普通高等学校夏季招生考试数学文史类(安徽卷))题目i是虚数单位,i(1+i)等于…( )A.1+iB.-1-iC.1-iD.-1+i 答案D解析:i(1+i)=i+i2=-1+i.第31题(2009年普通高等学校夏季招生考试数学理工农医类(安徽卷)) 题目i是虚数单位,若(a,b∈R),则乘积ab的值是()A.-15 B.-3 C.3 D.15答案B解析:==,∴ab=-3.第32题(2009年普通高等学校夏季招生考试数学文史类(山东卷)) 题目复数等于( )A.1+2iB.1-2iC.2+iD.2-i答案C解析:.第33题(2009年普通高等学校夏季招生考试数学理工农医类(山东卷)) 题目复数等于( )A.1+2iB.1-2iC.2+ID.2-i 答案C解析:.第34题(2009年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为( )A.-1B.0C.1D.-1或1答案A解析:由题意知∴x=-1.第35题(2009年普通高等学校夏季招生考试数学理工农医类(四川卷))复数的值是( )A.-1B.1C.-iD.i答案A解析:.第36题(2009年普通高等学校夏季招生考试数学理工农医类(重庆卷)) 题目已知复数z的实部为-1,虚部为2,则=()A.2-iB.2+iC.-2-iD.-2+i答案A解析:.第37题(2009年普通高等学校夏季招生考试数学理工农医类(陕西卷)) 题目已知z是纯虚数,是实数,那么z等于( )A.2iB.iC.-iD.-2iD解析:设z=bi(b≠0),则∈R,则b+2=0,∴b=-2.故选D.第38题(2009年普通高等学校夏季招生考试数学文史类(海南、宁夏卷))题目复数等于( )A.1B.-1C.iD.-i答案C解析: .故选C.第39题(2009年普通高等学校夏季招生考试数学理工农医类(海南、宁夏卷)) 题目复数等于……( )A.0B.2C.-2iD.2iD解析:原式.故选D.第40题(2009年普通高等学校夏季招生考试数学文史类(广东卷))题目下列n的取值中,使i n=1(i是虚数单位)的是( )A.n=2B.n=3C.n=4D.n=5答案C解析:∵i4=1,故选C.第41题(2009年普通高等学校夏季招生考试数学理工农医类(广东卷))题目设z是复数,α(z)表示满足z n=1的最小正整数n,则对虚数单位i,α(i)等于… ( ) A.8 B.6 C.4 D.2答案C解析:∵i4=1,∴α(i)=4.第42题(2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ))题目设,且为正实数,则()A.2 B.1 C.0 D.答案D 解析: (a+i)2i=(a2-1+2ai)i=-2a+(a2-1)i.∵(a+i)2i为正实数,∴∴a=-1.第43题(2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ)) 题目设且,若复数是实数,则()A. B. C. D.答案A 解析: (a+bi)3=a3+3a2·bi+3a(bi)2+(bi)3=a3+3a2bi-3ab2-b3i=(a3-3ab2)+(3a2b-b3)i为实数3a2b-b3=0,又∵b≠0,∴3a2-b2=0.∴b2=3a2.选A.第44题(2008年普通高等学校夏季招生考试数学理工农医类(天津卷)) 题目i是虚数单位,等于( )A.-1B.1C.-iD.i答案答案:A解析:==-1,故选A.总题数:22 题第45题(2008年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目复数的虚部是( )A.iB.C.iD.答案答案:B解析:+=(-2-i)+(1+2i)=-+i,故虚部为.第46题(2008年普通高等学校夏季招生考试数学理工农医类(浙江卷))题目已知是实数,是纯虚数,则=(A)1 (B)-1 (C)(D)-答案A 解析:==,∴=0.∴a=1.第47题(2008年普通高等学校夏季招生考试数学理工农医类(福建卷)) 题目若复数(是纯虚数,则实数a的值为A.1 B.2 C.1或2 D.-1、答案B 解析:∵(a2-3a+2)+(a-1)i是纯虚数,因此解得a=2.第48题(2008年普通高等学校夏季招生考试数学理工农医类(湖南卷)) 题目复数(1+)3等于A.8B.-8C.8iD.-8i答案D解析:(i)3=()3===-8i.第49题(2008年普通高等学校夏季招生考试数学文史类(广东卷))题目已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是( )A.(1,5)B.(1,3)C.(1,)D.(1,)答案答案:C |z|=,∵0<a<2,∴1<<.|z|=,∵0<a<2,∴1<<.第50题(2008年普通高等学校夏季招生考试数学理工农医类(广东卷))题目已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是( )A.(1,5)B.(1,3)C.(1,)D.(1,) 答案答案:C解析:|z|=,∵0<a<2,∴1<<.第51题(2008年普通高等学校夏季招生考试数学理工农医类(安徽卷)) 题目复数()A.2 B.-2 C. D.答案A解析:i3(1+i)2=-i(2i)=-2i2=2.第52题(2008年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限答案D解析:∵<2<π,∴角的终边落在第二象限,则sin2>0,cos2<0, 故该复数对应点位于第四象限.第53题(2008年普通高等学校夏季招生考试数学理工农医类(四川卷)) 题目复数2i(1+ i)2=(A)-4 (B)4 (C)-4i (D)4i答案A解析:2i(1+i)2=2i·(1+2i-1)=2i·2i=-4.第54题(2008年普通高等学校夏季招生考试数学理工农医类(四川卷延考))题目已知复数,则(A)(B)(C)(D)答案答案:D解析:,. 第55题(2008年普通高等学校夏季招生考试数学理工农医类(重庆卷))题目复数1+等于( )A.1+2iB.1-2iC.-1D.3答案答案:A解析:1+=1=1+2i.第56题(2008年普通高等学校夏季招生考试数学文史类(山东卷))题目设z的共轭复数是,若z+=4,z·=8,则等于(A)i (B)-i (C) 1 (D) i 答案D设z=a+bi,则=a-bi(a,b∈R),∵z+=4,z·=8,∴a=2,a2+b2=8.∴b=±2.当b=2时,=i,当b=-2时,=-i.故选D.第57题(2008年普通高等学校夏季招生考试数学理工农医类(山东卷))题目设z的共轭复数是,或z+=4,z·=8,则等于(A)1 (B)-i (C)±1 (D) ±i答案D 解析:设z=a+bi,则=a-bi(a,b∈R),∵z+=4,z·=8,∴a=2,a2+b2=8.∴b=±2.当b=2时,=i,当b=-2时,=-i.故选D.第58题(2008年普通高等学校夏季招生考试数学文史类(海南、宁夏卷))题目已知复数,则()A. 2B. -2C. 2iD. -2i答案A=2.第59题(2008年普通高等学校夏季招生考试数学理工农医类(海南、宁夏卷)) 题目已知复数,则()A. 2 iB. -2 iC. 2D. -2答案B 解析:z=1-i得z2=-2i,代入=-2i.∴选B.第60题(2007年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ))题目2.设a是实数,且是实数,则A. B.1 C. D.2答案答案:B解析:∈R,∴=0.∴a=1.第61题(2007年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ))题目3.设复数z满足=i,则z =(A) -2+i (B) -2-i (C) 2-i (D) 2+i 答案答案:C解析:z==2-.第62题(2007年普通高等学校夏季招生考试数学理工农医类(天津卷))题目1.是虚数单位,()A.B. C.D.答案C第63题(2007年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目5.若,则复数在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案答案:B解析:∵θ∈(,),∴cosθ<0,sinθ可正可负,且|cosθ|>|sinθ|.∴cosθ+sinθ<0.∴sinθ-cosθ>0.∴此复数在复平面内所对应的点在第二象限.第64题(2007年普通高等学校夏季招生考试数学理工农医类(福建卷))题目(1)复数等于A B - C i D -i答案答案:D解析: ==-i.第65题(2007年普通高等学校夏季招生考试数学理工农医类(湖南卷)) 题目1.复数等于()A. B. C. D.答案答案:C解析:()2==2i.第66题(2007年普通高等学校夏季招生考试数学文史类(广东卷新课标)) 题目2.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=A.-2B.C.D.2答案D解析:(1+b i)(2+i)=2+i+2b i-b=(2-b)+(1+2b)i.∵是纯虚数,∴2-b=0且1+2b≠0.∴b=2.总题数:22 题第67题(2007年普通高等学校夏季招生考试数学理工农医类(广东卷新课标))题目2.若复数是纯虚数(是虚数单位,是实数)则=A.2B.C.D.-2 答案答案:A解析:(1+b i)(2+i)=2+i+2b i-b=(2-b)+(1+2b)i.∵是纯虚数,∴2-b=0且1+2b≠0.∴b=2.第68题(2007年普通高等学校夏季招生考试数学理工农医类(安徽卷))题目4.若a为实数,=-i,则a等于(A)(B)-(C)2(D)-2答案答案:B解析:化简=-i,得=-i,=-i,∴∴a=-.第69题(2007年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目1.化简的结果是A.2+iB.-2+iC.2-iD.-2-i答案答案:C解析:=2-i.第70题(2007年普通高等学校夏季招生考试数学理工农医类(四川卷)) 题目(1)复数的值是(A)0 (B)1 (C)-1 (D)1答案答案:A解析:原式=+i3=i-i=0.第71题(2007年普通高等学校夏季招生考试数学文史类(山东卷新课标))题目1.复数的实部是(A)-2 (B)2 (C)3 (D)4 答案B解析: ====2-i,∴实部为2.第72题(2007年普通高等学校夏季招生考试数学理工农医类(山东卷新课标))题目(1)若z=cosθ+isinθ(i为虚数单位),则使z2= -1的θ值可能是A. B. C. D.答案答案:D解析:z2=cos2θ-sin2θ+i2sinθcosθ=cos2θ+isin2θ=-1,∴∴2θ=2kπ+π.∴θ=.第73题(2007年普通高等学校夏季招生考试数学理工农医类(陕西卷))题目1.在复平面内,复数z=对应的点位于( )(A)第一象限(B)第二象限(C)第三象限(D )第四象限答案答案:D解析:z=,故选D.第74题(2006年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅰ(新课程))题目(4)如果复数(m2+i)(1+mi)是实数,则实数(A)1 (B)-1 (C)(D)-答案B解析:(m2+i)(1+mi)=(m2-m)+(1+m3)i∵复数(m2+i)(1+mi)是实数∴1+m3=0∴m=-1第75题(2006年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程)) 题目(3)(A)(B)(C)(D)答案A解析:∴选A第76题(2006年普通高等学校夏季招生考试数学(理工农医类)北京卷(新课程)) 题目(1)在复平面内,复数对应的点位于(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限答案D解析:,虚部为负∴第四象限第77题(2006年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程))题目(1)i是虚数单位,=(A) (B) (C) (D)答案A解析:故选A.第78题(2006年普通高等学校夏季招生考试数学(理工农医类)浙江卷(新课程))题目(2)已知,其中m,n是实数,i是虚数单位,则m+ni=(A)1+2i (B)1-2i (C)2+i (D)2-i答案C解析:∵∴∴∴m+ni=2+i第79题(2006年普通高等学校夏季招生考试数学(理工农医类)福建卷(新课程)) 题目(1)设则复数为实数的充要条件是(A)(B)(C)(D)答案D∵(a+bi)(c+di)为实数∴虚部为0(a+bi)(c+di)=(ac-bd)+(ad+bc)i∴ad+bc=0第80题(2006年普通高等学校夏季招生考试数学(文理合卷)广东卷(新课程)) 题目2.若复数z满足方程z2+2=0,则z3=A. B. C.±2i D.+2答案C解析:设z=a+bi则 z2+2=0(a+bi)2+2=0a2+2abi-b2+2=0∴z=±i∴z3=(±i)3=±2i第81题(2006年普通高等学校夏季招生考试数学(理工农医类)安徽卷(新课程)) 题目(1)复数等于()(A)i (B)-i (C)(D)答案A解析:原式=第82题(2006年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程))题目2.已知复数z满足(+3i)z=3i,则z等于A.i B. i C. D.i 答案D解析:设z=a+bi,代入方程()(a+bi)=3i,化简,得(a-3b)+(3a+b)i=3i∴解得故选D另解:由题得z=第83题(2006年普通高等学校夏季招生考试数学(理工农医类)四川卷(新课程)) 题目(2)复数(1-i)3的虚部为(A)(B)(C)(D)答案D解析:(1-i)3=-2-2i∴虚部为-2.第84题(2006年普通高等学校夏季招生考试数学(理工农医类)陕西卷(新课程)) 题目2.复数等于(A)(B)(C)(D)答案D解析:原式=第85题(2005年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅰ(新课程)) 题目1.复数=(A)(B)(C)(D)答案A解法一:原式==== =i.解法二:原式====i.第86题(2005年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程)) 题目5.设a、b、c、d∈R,若为实例,则(A)bc+ad≠0 (B)bc-ad≠0(C)bc-ad=0 (D)bc+ad=0答案C解析:==∈R,∴bc-ad=0.第87题(2005年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程))题目若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.-2 B.4 C.-6 D.6 答案C解析:==+i是纯虚数,∴=0.∴a=-6.故选C. 第88题(2005年普通高等学校夏季招生考试数学(文理合卷)辽宁卷(新课程))题目复数在复平面内,z所对应的点在A.第一象限 B.第二象限C.第三象限 D.第四象限答案B解析:z=-1==-1+i ,∴z对应点为(-1 ,1),在第二象限.总题数:22 题第89题(2005年普通高等学校夏季招生考试数学(理工农医类)浙江卷(新课程))题目在复平面内,复数+(1+i)2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限答案B解析:+(1+i)3=+[-2()]3=-8=-+i.故对应的点位于第二象限.第90题(2005年普通高等学校夏季招生考试数学(理工农医类)福建卷(新课程))题目复数z=的共轭复数是A.B.C.D.答案B解析:z====+i,∴z的共轭复数为-i.第91题(2005年普通高等学校夏季招生考试数学(理工农医类)湖北卷(新课程)) 题目()A. B.C. D.答案C解析:===-i(1+2i)=2-i. 第92题(2005年普通高等学校夏季招生考试数学(理工农医类)湖南卷(新课程))题目复数z=i+i2+i3+i4的值是A、-1B、0C、1D、i答案B解析:z=i+i2+i3+i4=i-1-i+1=0.第93题(2005年普通高等学校夏季招生考试数学(文理合卷)广东卷(新课程))题目若,其中、,是虚数单位,则(A)0 (B)2 (C)(D)5答案D解析:(a-2i)i=b-i,即2+a i=b-i,∴故a2+b2=1+4=5.第94题(2005年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程))题目设复数:为实数,则x=()A.-2 B.-1 C.1 D.2 答案A解:z1·z2=(1+i)·(x+2i)=(x-2)+(2+x)i,z1·z2∈R.∴2+x=0,∴x=-2.第95题(2005年普通高等学校夏季招生考试数学(理工农医类)重庆卷(新课程))题目()A. B.-C. D.-答案A解析:()2 005=[]2 005=()2 005=i2 005=i.第96题(2005年普通高等学校夏季招生考试数学(理工农医类)山东卷(新课程)) 题目()(A);(B);(C)1;(D)答案D解析:+=+=---=-1.第97题(2005年普通高等学校春季招生考试数学(文史类)北京卷(新课程))题目-2+i的共轭复数是………………………………………………()A.2+iB.2-iC.-2+iD.-2-i答案D第98题(2005年普通高等学校春季招生考试数学(理工农医类)北京卷(新课程))题目i-2的共轭复数是…………………………………………………()A.2+iB.2-iC.-2+iD.-2-i答案D第99题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程))题目(1-i)2·i等于……………………………………………………………………………()A.2-2iB.2+2iC.-2D.2答案D第100题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅲ(新课程)) 题目设复数ω=-+i,则1+ω等于……………………………………()A.-ωB.ω2C.-D.答案C第101题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅳ(新课程)) 题目()2等于…………………………………………………………()A.+iB.--iC.-iD.-+i答案D第102题(2004年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程)) 题目i是虚数单位,等于…………………………………()A.1+iB.-1-iC.1+3iD.-1-3i答案D第103题(2004年普通高等学校夏季招生考试数学(文理合卷)辽宁卷(新课程)) 题目设复数z满足=i,则|1+z|等于……………………………()。
2010年全国各地高考数学真题分章节分类汇编之复数一、选择题:1.(2010年高考山东卷理科2)已知(a,b∈R),其中i为虚数单位,则a+b=(A)-1 (B)1 (C)2 (D)3【答案】B【解析】由得,所以由复数相等的意义知:,所以1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
2.(2010年高考全国卷I理科1)复数(A)i(B) (C)12-13 (D) 12+13【答案】A【解析】.【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧. 3.(2010年高考湖北卷理科1)若为虚数单位,图中复平面内点z表示复数z,则表示复数的点是A.EB.FC.GD.H【答案】D【解析】由图知z=,所以,故选D。
4.(2010年高考福建卷理科9)对于复数,若集合具有性质“对任意,必有”,则当时,等于( )A.1B.-1C.0D.【答案】B【解析】由题意,可取,所以,选B。
【命题意图】本题属创新题,考查复数与集合的基础知识。
5.(2010年高考安徽卷理科1)是虚数单位,A、B、C、D、1.B【解析】,选B.【规律总结】为分式形式的复数问题,化简时通常分子与分母同时乘以分母的共轭复数,然后利用复数的代数运算,结合得结论.6.(2010年高考天津卷理科1)i是虚数单位,复数=(A)1+i (B)5+5i (C)-5-5i (D)-1-i【答案】A【解析】,故选A。
【命题意图】本小题考查复数的基本运算,属保分题。
7.(2010年高考广东卷理科2)若复数z1=1+i,z2=3-i,则z1·z2=()A.4+2 i B. 2+ i C. 2+2 i D.3【答案】A【解析】。
8.(2010年高考四川卷理科1)i是虚数单位,计算i+i2+i3=(A)-1(B)1(C)(D)解析:由复数性质知:i2=-1故i+i2+i3=i+(-1)+(-i)=-1答案:A9. (2) (2010年全国高考宁夏卷2)已知复数,是z的共轭复数,则=A. B. C.1 D.2【答案】A解析:,所以.另解:,下略.10.(2010年高考陕西卷理科2)复数在复平面上对应的点位于(A)(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】A【解析】∵,∴复数在复平面上对应的点位于第一象限.故选.11.(2010年高考江西卷理科1)已知,则实数,分别为A., B.,C.,D.,【答案】D12.(2010年高考浙江卷5)对任意复数z=x+yi (x,y∈R),i为虚数单位,则下列结论正确的是【答案】D13.(2010年高考辽宁卷理科2)设a,b为实数,若复数,则(A)(B)(C) (D)【答案】A14.(2010年高考全国2卷理数1)复数(A)(B)(C)(D)【答案】A【命题意图】本试题主要考查复数的运算.【解析】.二、填空题:1.(2010年高考江苏卷试题2)设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.【答案】2[解析] 考查复数运算、模的性质。
2010年高考数学试题分类汇编——复数(2010上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= i 26- 。
解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-(2010重庆理数)(11)已知复数z=1+I ,则2z z -=____________. 解析:i i i i i 211112-=---=--+(2010北京理数)(9)在复平面内,复数21i i -对应的点的坐标为 。
答案:(-1,1)(2010江苏卷)2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.[解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
(2010湖北理数)1.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1zi +的点是A .E B.F C.G D.H1.【答案】D【解析】观察图形可知3z i =+,则3211z i i i i +==-++,即对应点H (2,-1),故D 正确.二、填空题(2010上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-(2010重庆理数)(11)已知复数z=1+I ,则2z z -=____________.解析:i i i i i 211112-=---=--+(2010北京理数)(9)在复平面内,复数21ii -对应的点的坐标为 。
答案:(-1,1)(2010江苏卷)2、设复数z 满足z(2-3i )=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
【备战2016】(湖北版)高考数学分项汇编专题15 复数(含解析)理一.选择题1.【2010年普通高等学校招生全国统一考试湖北卷1】若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数1zi+的点是()A.E B.F C.G D.H2.【2011年普通高等学校招生全国统一考试湖北卷1】i为虚数单位,则201111ii+⎛⎫=⎪-⎝⎭()A. -1B. -iC. 1D. i3.【2012年普通高等学校招生全国统一考试湖北卷1】方程26130x x++=的一个根是()A.32i-+ B.32i+ C.23i-+D.23i+4.【2013年普通高等学校招生全国统一考试湖北卷1】在复平面内,复数21i z i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5.【2014年普通高等学校招生全国统一考试湖北卷1】 i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D.i考点:复数的运算,容易题.6. 【2015高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-二.填空题1.【2006年普通高等学校招生全国统一考试湖北卷】设,x y 为实数,且511213x y i i i +=---,则x y += 。
所以x +y =4。
2.【2007年普通高等学校招生全国统一考试湖北卷12】复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)。
2010年高考数学试题分类汇编(文科)第15部分:复数一、选择题:1.(2010年高考山东卷文科2)已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3【答案】B【解析】由a+2i =b+i i得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
2.(2010年高考天津卷文科1)i 是虚数单位,复数31i i +-= (A)1+2i (B)2+4i (C)-1-2i (D)2-i【答案】A【解析】31i i+-=(3)(1)2i i ++=24122i i +=+,故选A 。
【命题意图】本小题考查复数的基本运算,属保分题。
3.(2010年高考福建卷文科4)i 是虚数单位,41i ()1-i +等于 ( ) A.i B .-i C.1 D.-1【答案】C【解析】41i ()1-i+=244(1i)[]=i =12+,故选C. 【命题意图】本题考查复数的基本运算,考查同学们的计算能力.4.(2010年高考北京卷文科2)在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i答案C【命题意图】本题考查复平面的基本知识及中点坐标公式.求解此类问题要能够灵活准确的对复平面内的点的坐标与复数进行相互转化.【解析】两个复数对应的点的坐标分别为A(6,5),B(-2,3),则其中点的坐标为C(2,4),故 其对应的复数为2+4i.5. (2010年高考浙江卷文科3)设i 为虚数单位,则51i i-=+ (A)-2-3i (B)-2+3i(C)2-3i (D)2+3i解析:选C ,本题主要考察了复数代数形式的四则运算,属容易题6.(2010年高考安徽卷文科2)已知21i =-,则i(13i )=i i (C)i (D)i2.B【解析】(1)i i =+选B.【方法总结】直接乘开,用21i =-代换即可. 7.(2010年高考辽宁卷文科2)设,a b 为实数,若复数121i i a bi+=++,则 (A )31,22a b == (B )3,1a b == (C )13,22a b == (D )1,3a b == 解析:选A. 1231122i a bi i i ++==++,因此31,22a b ==.8.(2010年高考宁夏卷文科3)已知复数z =1z = (A)14 (B )12(C )1 (D )2 【答案】D解析:14z i ====。
2021年高|考数学试题分类汇编 - -复数编者:刘一堂一、选择题1、 (2021湖南文数 )1. 复数21i-等于 A. 1 +I B. 1 -i C. -1 +i D. -1 -i2、 (2021浙江理数 ) (5 )对任意复数()i ,R z x y x y =+∈ ,i 为虚数单位 ,那么以下结论正确的选项是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查 ,A 项 ,y z z 2≥- ,故A 错 ,B 项 ,xyi y x z 2222+-= ,故B 错 ,C 项 ,y z z 2≥- ,故C 错 ,D 项正确 .此题主要考察了复数的四那么运算、共轭复数及其几何意义 ,属中档题3、 (2021全国卷2理数 ) (1 )复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦.4、 (2021陕西文数 )z =1ii+在复平面上对应的点位于 [A](A)第|一象限(B )第二象限(C )第三象限(D )第四象限解析:此题考查复数的运算及几何意义1i i +i i i 21212)1(+=-= ,所以点 ()21,21位于第|一象限5、 (2021辽宁理数 )(2)设a,b 为实数 ,假设复数11+2ii a bi=++ ,那么 (A )31,22a b == (B) 3,1a b == (C) 13,22a b ==(D) 1,3a b == 【答案】A【命题立意】此题考查了复数相等的概念及有关运算 ,考查了同学们的计算能力 .【解析】由121ii a bi +=++可得12()()i a b a b i +=-++ ,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b = ,应选A .6、 (2021江西理数 )1. (x +i ) (1 -i ) =y ,那么实数x ,y 分别为 ( )A.x = -1 ,y =1B. x = -1 ,y =2C. x =1 ,y =1D. x =1 ,y =2 【答案】 D【解析】考查复数的乘法运算 .可采用展开计算的方法 ,得2()(1)x i x i y -+-= ,没有虚部 ,x =1,y =2.7、 (2021安徽文数 )(2)21i =- ,那么i(1) =i i (C)i (D)i 2.B【解析】(1)i i =选B.【方法总结】直接乘开 ,用21i =-代换即可.8、 (2021浙江文数 )3.设i 为虚数单位 ,那么51ii-=+ (A) -2 -3i(B) -2 +3i(C)2 -3i (D)2 +3i解析:选C ,此题主要考察了复数代数形式的四那么运算 ,属容易题9、 (2021山东文数 ) (2 )()2,a ib i a b R i+=+∈ ,其中i 为虚数单位 ,那么a b += A. 1- B. 1 C. 2 D. 3 答案:B10、 (2021北京文数 )⑵在复平面内 ,复数6 +5i, -2 +3i 对应的点分别为A,B.假设C 为线段AB 的中点 ,那么点C 对应的复数是(A )4 +8i (B)8 +2i (C )2 +4i (D)4 +i 答案:C11、 (2021四川理数 ) (1 )i 是虚数单位 ,计算i +i 2+i 3= (A )-1 (B )1 (C )i - (D )i 解析:由复数性质知:i 2=-1 故i +i 2+i 3=i +(-1)+(-i )=-1 答案:A12、 (2021天津文数 )(1)i 是虚数单位 ,复数31ii+- = (A)1 +2i (B)2 +4i (C) -1 -2i (D)2 -i 【答案】A【解析】此题主要考查复数代数形式的根本运算 ,属于容易题 .进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数 ,同时将i 2改为 -1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 【温馨提示】近几年天津卷每年都有一道关于复数根本运算的小题 ,运算时要细心 ,不要失分哦 .13、 (2021天津理数 ) (1 )i 是虚数单位 ,复数1312ii-+=+(A)1+i (B)5+5i (C) -5 -5i (D) -1-i 【答案】A【解析】此题主要考查复数代数形式的根本运算 ,属于容易题 .进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数 ,同时将i 2改为 -1.1312i i -+=+-+551(12)(12)5ii i i +==++-(13i )(1-2i)【温馨提示】近几年天津卷每年都有一道关于复数根本运算的小题 ,运算时要细心 ,不要失分哦 .14、 (2021广东理数 )z 1 =1 +i ,z 2 =3 -i ,那么z 1·z 2 = ( )A .4 +2 i B. 2 + i C. 2 +2 2. A .12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+ 15、 (2021福建文数 )4.i 是虚数单位,41i ()1-i+等于 ( ) A .iB . -iC .1D . -1【答案】C【解析】41i ()1-i + =244(1i)[]=i =12+,应选C . 【命题意图】此题考查复数的根本运算,考查同学们的计算能力.16、 (2021全国卷1理数 )(1)复数3223ii+=- (A)i (B)i - (C)12 -13i (D) 12 +13i17、 (2021山东理数 )(2) 2(,)a i b i a b i +=+2a ib i i+=+ (a,b ∈R ) ,其中i 为虚数单位 ,那么a +b =(A) -1 (B)1 (C)2 (D)3【答案】B【解析】由a+2i=b+ii得a+2i=bi-1,所以由复数相等的意义知a=-1,b=2,所以a+b=1,应选B.【命题意图】此题考查复数相等的意义、复数的根本运算 ,属保分题 .18、 (2021安徽理数 )1、i是虚数单位33i =+A、134B、134C、132D、132(33)3313433i i ii-+===+,选B.【规律总结】33i+为分式形式的复数问题 ,化简时通常分子与分母同时乘以分母的共轭复3i-然后利用复数的代数运算 ,结合21i=-得结论.19、 (2021福建理数 )20、 (2021湖北理数 )1.假设i为虚数单位 ,图中复平面内点Z表示复数Z ,那么表示复数1zi+的点是A.E B.F C.G D.H1.【答案】D【解析】观察图形可知3z i =+,那么3211z i i i i+==-++ ,即对应点H (2 ,-1 ) ,故D 正确. 二、填空题21、 (2021上海文数 )12z i =- (i 为虚数单位 ) ,那么z z z ⋅+= i 26- . 解析:考查复数根本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-22、 (2021重庆理数 ) (11 )复数z =1 +I ,那么2z z- =____________. 解析:i i i i i211112-=---=--+23、 (2021北京理数 ) (9 )在复平面内 ,复数21ii-对应的点的坐标为 . 答案: ( -1,1 )24、 (2021江苏卷 )2、设复数z 满足z(2 -3i) =6 +4i (其中i 为虚数单位 ) ,那么z 的模为___________.[解析] 考查复数运算、模的性质 .z(2 -3i) =2(3 +2 i), 2 -3i 与3 +2 i 的模相等 ,z 的模为2 .25、 (2021湖北理数 )1.假设i 为虚数单位 ,图中复平面内点Z 表示复数Z ,那么表示复数1zi+的点是 A .E B.F C.G D.H 1.【答案】D【解析】观察图形可知3z i =+,那么3211z ii i i+==-++ ,即对应点H (2 ,-1 ) ,故D 正确.。
2010年全国各地高考数学真题分章节分类汇编
第15部分:复数
一、选择题:
1.(2010年高考山东卷理科2)已知2(,)a i b i a b i +=+2a i b i i
+=+(a,b ∈R ),其中i 为虚数单位,则a+b=
(A)-1 (B)1 (C)2 (D)3
【答案】B
【解析】由a+2i =b+i i
得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,故选B.
【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
2.( 2010年高考全国卷I 理科1)复数3223i i
+=- (A)i (B)i - (C)12-13i (D) 12+13i
【答案】A 【解析】32(32)(23)694623(23)(23)13
i i i i i i i i i +++++-===--+. 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.
3.(2010年高考湖北卷理科1)若i 为虚数单位,图中复平面内点z 表示复数z ,则表 示复数1z i
+的点是 A.E B.F
C.G
D.H
【答案】D
【解析】由图知z=2+i ,所以1z i =+21i i +=+(2)(1-i)422(1+)(1-i)2
i i i i +-==-,故选D 。
4.(2010年高考福建卷理科9)对于复数a,b,c,d ,若集合{}S=a,b,c,d 具有性质“对任意x,y S ∈,必有xy S ∈”,则当
22a=1b =1c =b ⎧⎪⎨⎪⎩
时,b+c+d 等于 ( )
A.1
B.-1
C.0
D.i
【答案】B
【解析】由题意,可取a=1,b=-1,c=i,d=-i ,所以b+c+d=-1+i+-i 1=-,选B 。
【命题意图】本题属创新题,考查复数与集合的基础知识。
5.(2010年高考安徽卷理科1)i
=
A 、
1412- B 、1412+ C 、126+ D 、126
- 1.B
1
4===+,选B.
21i =-得结论.
6.(2010年高考天津卷理科1)i 是虚数单位,复数1312i i
-++= (A )1+i (B )5+5i (C )-5-5i (D )-1-i
【答案】A 【解析】1312i i -+=+(13)(12)5i i -+-=5515
i i +=+,故选A 。
【命题意图】本小题考查复数的基本运算,属保分题。
7.(2010年高考广东卷理科2)若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )
A .4+2 i B. 2+ i C. 2+2 i D.3
【答案】A
【解析】12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+。
8.(2010年高考四川卷理科1)i 是虚数单位,计算i +i 2+i 3=
(A )-1 (B )1 (C )i - (D )i
解析:由复数性质知:i 2=-1
故i +i 2+i 3=i +(-1)+(-i )=-1
答案:A
9. (2) (2010年全国高考宁夏卷2)已知复数z =z 是z 的共轭复数,则z z ∙= A. 14 B.12
C.1
D.2 【答案】A
解析:
144z i ====-+,
所以2211()()444
z z ⋅=-+=.
另解:
14z i =====,下略. 10.(2010年高考陕西卷理科2)复数1i z i
=
+在复平面上对应的点位于 (A ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
【答案】A
【解析】∵()i i i i i i z 2
1211112+=--=+=,∴复数z 在复平面上对应的点位于第一象限.故选A .
11.(2010年高考江西卷理科1)已知()(1)x i i y +-=,则实数x ,y 分别为
A .1x =-,1y =
B .1x =-,2y =
C .1x =,1y =
D .1x =,2y =
【答案】D
12.(2010年高考浙江卷5)对任意复数z=x+yi (x,y ∈R ),i 为虚数单位,则下列结论正确的是
【答案】D
13.(2010年高考辽宁卷理科2)设a,b 为实数,若复数
11+2i i a bi =++,则 (A )31,22
a b == (B) 3,1a b == (C) 13,22
a b == (D) 1,3a b == 【答案】A
14.(2010年高考全国2卷理数1)复数2
31i i -⎛⎫= ⎪+⎝⎭
(A )34i -- (B )34i -+ (C )34i - (D )34i +
【答案】A
【命题意图】本试题主要考查复数的运算. 【解析】231i i -⎛⎫= ⎪+⎝⎭
22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 二、填空题:
1.(2010年高考江苏卷试题2)设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.
【答案】2
[解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
2.(2010年高考北京卷理科9)在复平面内,复数
21i i -对应的点的坐标为 。
【答案】(-1,1) 【解析】因为21i i -=2(1)12i i i +=-+,故复数21i i
-对应的点的坐标为(-1,1)。
3.(2010年高考上海市理科2)若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
【答案】6-2i 【解析】因为12z i =+,所以1412z z z i ⋅+=++-=6-2i.
4.(2010年高考重庆市理科11) 已知复数1z i =+,则
2z z -=____________. 【答案】-2i 解析:i i i i i
211112-=---=--+. 5.(2010年上海市春季高考3)计算:
21i i =+ (i 为虚数单位) 答案:1i + 解析:
22(1)2211(1)(1)2
i i i i i i i i -+===+++-。