北师大版初三数学下册8圆内接正多边形(20210204010327)
- 格式:docx
- 大小:9.06 KB
- 文档页数:3
北师大版数学九年级下册3.8《圆内接正多边形》教案一. 教材分析《圆内接正多边形》是北师大版数学九年级下册第3.8节的内容。
本节主要让学生了解圆内接正多边形的性质,并会运用这些性质解决一些简单问题。
教材通过引入正多边形和圆的关系,引导学生探究圆内接正多边形的性质,培养学生的观察、思考和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了正多边形的性质,对正多边形的对称性、边角关系等有了一定的了解。
但学生对圆内接正多边形的性质可能较为陌生,需要通过实例和操作来逐步理解和掌握。
三. 教学目标1.了解圆内接正多边形的性质。
2.学会运用圆内接正多边形的性质解决一些简单问题。
3.培养学生的观察、思考和解决问题的能力。
四. 教学重难点1.圆内接正多边形的性质。
2.如何运用圆内接正多边形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例分析法和合作学习法。
通过提出问题,引导学生观察、思考和讨论,从而得出结论。
同时,通过案例分析和合作学习,让学生在实践中掌握圆内接正多边形的性质。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的圆内接正多边形图片,如足球、奖杯等,引导学生关注这些现象,并提出问题:“这些图形有什么共同特点?它们与圆有什么关系?”2.呈现(10分钟)呈现圆内接正多边形的定义,并通过动画展示圆内接正多边形的形成过程。
同时,引导学生观察和总结圆内接正多边形的性质。
3.操练(10分钟)让学生分组讨论,每组选择一个圆内接正多边形,观察并记录其性质。
然后,各组汇报讨论结果,师生共同总结圆内接正多边形的性质。
4.巩固(10分钟)出示一些练习题,让学生运用圆内接正多边形的性质解决问题。
教师及时给予解答和指导,确保学生掌握所学知识。
5.拓展(10分钟)出示一些实际问题,如设计一个圆内接正多边形的图案,让学生思考如何应用圆内接正多边形的性质解决问题。
北师大版九年级数学下册:3.8《圆内接正多边形》教案2一. 教材分析北师大版九年级数学下册第3.8节《圆内接正多边形》是圆内接正多边形的相关知识,主要介绍圆内接正多边形的性质及判定方法。
通过学习,使学生了解圆内接正多边形与圆的关系,能运用其性质解决一些简单问题。
二. 学情分析学生在学习本节内容前,已经掌握了多边形的内角与外角的知识,对正多边形的性质也有了一定的了解。
但学生对圆内接正多边形的概念及性质可能较难理解,需要通过实例和图形来帮助学生直观地感受和理解。
三. 教学目标1.理解圆内接正多边形的概念,掌握其性质。
2.学会运用圆内接正多边形的性质解决一些简单问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.圆内接正多边形的概念及性质。
2.如何运用圆内接正多边形的性质解决实际问题。
五. 教学方法采用问题驱动法、图形演示法、合作交流法等,引导学生观察、思考、推理,培养学生的数学思维能力。
六. 教学准备1.准备相关多媒体教学课件和教学素材。
2.准备圆内接正多边形的图形示例。
3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)通过复习多边形的内角与外角的知识,引导学生回顾正多边形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)(1)展示圆内接正多边形的图形示例,引导学生观察并思考:圆内接正多边形有什么特点?(2)引导学生总结圆内接正多边形的性质,并用文字和符号表示。
3.操练(10分钟)(1)让学生根据圆内接正多边形的性质,解决一些简单问题。
如:已知一个圆内接正六边形,求其内角度数。
(2)引导学生运用圆内接正多边形的性质,证明一个结论。
如:圆内接正多边形的对角线互相垂直。
4.巩固(10分钟)让学生独立完成练习题,检验对圆内接正多边形知识的掌握程度。
同时,教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生思考:如何判断一个多边形是否为圆内接正多边形?让学生通过合作交流,探讨判断方法。
第04讲_圆内接正多边形知识图谱正多边形和圆知识精讲一. 正多边形的概念及性质1. 正多边形的定义:各角相等,各边相等的多边形叫做正多边形.2. 正多边形的相关概念:(1)正多边形的中心:我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心;(2)正多边形的半径:外接圆的半径叫做正多边形的半径;(3)正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角;(4)正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.补充说明:正多边形的性质:(1)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;(2)正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;(3)偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.二. 正多边形与圆的关系1. 把一个圆n等分,依次连结各个等分点所得到的多边形是这个圆的内接正n边形;这个圆叫这个正n边形的外接圆;经过各等分点作圆的切线,以相邻切线交点为顶点的多边形是这个圆的外切正n边形.2. 定理:任何一个正多边形都有一个外接圆和一个内切圆;并且这两个圆是同心圆.三. 正多边形有关的计算1. 正n边形的每个内角都等于()2180nn-⋅︒;2. 正n边形的每一个外角与中心角相等,等于360n︒;3. 设正n 边形的边长为n a ,半径为R ,边心距为n d ,周长为n C ,面积为n S ;则:222111422n n n n n n n n n R d a C na S n d a d C =+==⋅⋅=⋅,,三点剖析考点:正多边形的概念、性质及相关计算重难点:正多边形相关计算.易错点:对正多边形相关的概念混淆不清.正多边形的相关概念例题1、 下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为120︒的六边形是正六边形;⑤边数相同的正n 边形的面积之比等于它们边长的平方比;⑥各边相等的圆外切多边形是正多边形.其中,正确的命题是_____________. 【答案】 ②⑤【解析】 ①错误,反例:矩形各角相等但不是正四边形;②正确,边相等则各边所对的圆心角相等,由半径和圆心角可构成 个全等的等腰三角形,则多边形的各内角也相等;③错误,正奇数边形不是中心对称图形;④错误,在正六边形的基础上作任意一组对边的平行线,仍然截出一个六边形,各内角均为,但不是正六边形;⑤正确,相似的性质;⑥错误,只要使切点与圆心的连线不平分多边形的边长即可.例题2、 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( ) A.30° B.60° C.90° D.120° 【答案】 B【解析】 由于任意多边形的外角和均为360°,所以这个正多边形的边数为360660=,所以正六边形的中心角的度数为360606︒=︒.例题3、 正六边形的边心距与边长之比为( )A.3:3B.3:2C.1:2D.2:2【答案】 B【解析】 此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.首先根据题意画出图形,然后设六边形的边长是a ,由勾股定理即可求得OC 的长,继而求得答案.如图:设六边形的边长是a , 则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC=12AB=12a ,∴OC=22OA AC -=32a ,a n d nR O CBA∴正六边形的边心距与边长之比为:32a:a=3:2.故选B.例题4、已知:线段a(如图)(1)求作:正六边形ABCDEF,使边长为a(用尺规作图,要保留作图痕迹,不写作法及证明)(2)若a=2cm,则半径R=______cm,边心距r=______cm,周长p=______cm,面积S=______cm2.【答案】(1)(2)2,3,12,63【解析】(1)如图,正六边形ABCDEF即为所求;(2)∵a=2cm,∴半径R=2cm.∵OA=OB=AB=a,∴∠OAB=60°,∴r=OG=OA•sin60°=2×332cm.∵a=2cm,∴周长p=6a=12cm,∴S正六边形ABCDEF=6S△OAB=6×12×2×3=63(cm2).相关计算例题1、如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__________________°.【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.例题2、已知正六边形的边长为2,则它的内切圆的半径为()A.1B.3C.2D.23【答案】B【解析】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×32=3,∴边长为2的正六边形的内切圆的半径为3.例题3、如图1、2、3、…..、n,M、N分别是O的内接正三角形ABC、正方形ABCD、五边形ABCDE、…..、正n边形ABCDE…..的边AB、BC上的点,且BM CN=,连接OM、ON.(1)求图1中MON∠的度数;(2)图2中MON∠的度数是____________,图3中MON∠的度数是____________;(3)试探究MON∠的度数与正n边形边数n的关系(直接写出答案).【答案】(1)120︒;(2)90︒,72︒;(3)360 n︒【解析】解:分别连接OB、OC,(1)AB AC=ABC ACB∴∠=∠OC OB=,O是外接圆的圆心,CO ACB∴∠平分30OBC OCB∴∠=∠=︒30OBM OCN∴∠=∠=︒BM CN=,OC OB=OMB ONC∴∆∆≌BOM NOC∴∠=∠60BAC∠=︒120BOC∴∠=︒120MON BOC∴∠=∠=︒(2)同(1)可得MON∠的度数是90︒;图3中MON∠的度数是72︒(3)由(1)可知,360==1203MON︒∠︒;在(2)中,360==904MON︒∠︒;在(3)中360==725MON︒∠︒…..,故当n时,360 MONn︒∠=.随练1、如图,正五边形ABCDE内接于⊙O,则∠CAD=___________度.【答案】 36【解析】 ∵五边形ABCDE 是正五边形,∴AB =BC =CD =DE =EA =72°,∴∠CAD=12×72°=36°.随练2、 已知正多边形的半径与边长相等,那么正多边形的边数是( ) A.4 B.5 C.6 D.8 【答案】 C【解析】 ∵正多边形的半径与边长相等,∴正多边形的相邻的两条半径与一条边围成一个正三角形, ∴正多边形的中心角为60°∵正多边形所有中心角的和为360°, ∴360606︒÷︒=,∴正多边形的边数为6,随练3、 若等边三角形的边长是12厘米,则其内切圆的面积为 . 【答案】 12π平方厘米. 【解析】 如图,作OD ⊥AB , ∵等边三角形的边长为12厘米, ∴AD=6厘米.又∵∠DAO=12∠BAC=12×60°=30°,∴tan30°=6DO DOAD ==33, ∴DO=23厘米,∴其内切圆的面积=π(23)2=12π. 故答案为:12π平方厘米.随练4、 如图,ABCD 是O ⊙的内接正方形,PQRS 是半圆的内接正方形,那么正方形PQRS 与正方形ABCD 的面积之比为____________.【答案】 2:5 【解析】随练5、 已知圆内接正方形的面积为2,求该圆的外切正三角形的外接圆的外切正六边形的面积.SOR Q P D CBA【答案】 3【解析】 如图,设AB 是圆内接正方形的边长,CD 是外切正三角形的边长,EF 是外切正六边形的边长,连结OA OB OC OE 、、、.∵AB 是内接正方形的边长,内接正方形面积为2,∴290AB OA OB AOB ==∠=︒,,∴1OA OB ==.∵CD 是外切正三角形的边长,∴60OA CD AOC ⊥∠=︒,,∴22OC OA ==. ∵EF 是外切正六边形的边长,∴602OC EF OEF OE EF CE ⊥∠=︒==,,,∴323CE ==, ∴43EF ,∴263436683EOF S S ∆===⎝⎭随练6、 已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是( ) A.32 B.34 C.27 D.28 【答案】 D【解析】 暂无解析弧长与扇形的面积知识精讲一.弧长公式1.圆的周长:2πR C =2.弧长公式:π180nl R =(其中,l 表示弧长,n 表示这段弧所对圆心角度数值;R 表示该弧所在圆的半径).二.扇形面积公式1.圆的面积公式:2πS R =2.扇形面积公式:21π3602n S R lR ==扇形(n 表示扇形圆心角度数值;R 表示半径).三.圆锥、圆柱的侧面积与全面积1.圆锥(1)圆锥的侧面积:1=22S r l rl ππ=侧(以下公式中的l 均指扇形母线长);(2)圆锥的全面积:221=+=+22S S S r r l r rl ππππ=+全底侧;(3)圆锥的体积:213V r h π=;(4)圆锥的高、底面半径、母线之间的关系:222r h l +=;(5)设圆锥的底面半径为r ,母线长为l ,侧面展开图的圆心角为n ︒;则有:360S r n l S ==底侧O BADC2.圆柱(1)圆柱的侧面积:=2S r h π侧(2)圆柱的全面积:2=2πr 2πS S S rh=++侧全底四.不规则图形面积的巧算一般利用拼凑法,割补法,把不规则图形切割拼接成面积容易计算的图形再进行计算,例如:弓形面积:=S S S -弓形三角形扇形.三点剖析一.考点:弧长、扇形面积公式,圆锥的侧面积、全面积计算 二.重难点:1.计算扇形面积,计算圆锥的侧面积;2.计算扇形面积的时候,除了用圆心角求面积,也可以用弧长求面积; 三.易错点:1.圆锥相关面积计算时,注意每个量对应关系; 2.计算圆锥侧面积时,注意母线和圆锥的高是不相等的.弧长公式例题1、 一个扇形的半径为8cm ,弧长为163cm π,则扇形的圆心角为__________. 【答案】 120︒【解析】 设扇形圆心角为n ︒,根据弧长公式可得:8161803n ππ=,解得:120n =︒.例题2、 如图,在Rt ∴ABC 中,∴C=90°,∴A=20°,BC=3,以点C 为圆心,BC 的长为半径的∴C 交AB 于点D ,交AC 于点E ,则(劣弧)的长为( )A.πB.πC.πD.π【答案】 A【解析】 连接CD ,如图所示, ∴∴C=90°,∴A=20°, ∴∴B=70°.l2πrrOh 2πrh O r∴CB=CD,∴∴BDC=∴B=70°,∴∴BCD=40°,∴的长为=.故选A.例题3、如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+3)cm,圆O沿地面BC 方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.【答案】53πcm.【解析】作AD⊥BC于D,OE⊥AD于E,则AE=2+3﹣2=3,又OA=2,∴sin∠AOE=32 AEOA=,∴∠AOE=60°,则AB的长为()6090251803ππ+⨯⨯=,则圆O在地面上滚动的距离为53πcm,故答案为:53πcm.例题4、如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【答案】(1)AE平分∠DAC(2)①3;②43π﹣3【解析】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,BE=12AB=12×4=2,AE=3BE=23,在Rt△ADE中,∠DAE=∠BAE=30°,∴DE=12AE=3,∴AD=3DE=3×3=3;②∵OA=OB,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S扇形AOE﹣S△AOE=S扇形AOE﹣12S△ABE=21202360π﹣12•12•23•2=43π﹣3.例题5、【答案】5π【解析】暂无解析随练1、 如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=3,CE=1.则BD 的长是( )A.39π B.239πC.33π D.233π【答案】 B【解析】 连接OC ,∵△ACE 中,AC=2,AE=3,CE=1, ∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,即AE ⊥CD ,∵sinA=CE AC =12,∴∠A=30°, ∴∠COE=60°,∴CE OC =sin ∠COE ,即1OC =32,解得OC=233,∵AE ⊥CD , ∴BC =BD ,∴BD =BC =23603180π⨯=239π.随练2、 如图,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上.MNP △沿线段AB 按A B −−→的方向滚动,直至MNP △中有一个点与点B 重合为止,则点P 经过的路程为__________.【答案】43π 【解析】 该题考查的是弧长的计算.点P 经过的路程是两段弧,半径为1,圆心角为120︒,根据1=180n Rπ进行计算即可.故点P 经过的路程为:1201421803ππ⨯⨯⨯=.故答案为:43π.A (M )PNB扇形面积公式例题1、如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【答案】B【解析】∴AB=25,BD=15,∴AD=25-15=10,∴S贴纸=(﹣)×2=350πcm2,例题2、如图,AB是⊙O的直径,弦CD⊥AB于点E,⊙O的半径为3,弦CD的长为3cm,则图中阴影部分面积是_____.【答案】π﹣33 4【解析】∵弦CD⊥AB于点E,∴CE=32,∵OC=3,∴OE=32,∴∠OCE=30°,∴∠COD=120°,∴图中阴影部分面积=()21203360π⋅⨯﹣12×3×32=π﹣334,例题3、如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为.【答案】(3π﹣)cm2.【解析】作OH∴DK于H,连接OK,∴以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∴A'D=2CD,∴∴C=90°,∴∴DA'C=30°,∴∴ODH=30°,∴∴DOH=60°,∴∴DOK=120°,∴扇形ODK的面积为=3πcm2,∴∴ODH=∴OKH=30°,OD=3cm,∴OH=cm,DH=cm;∴DK=3cm,∴∴ODK的面积为cm2,∴半圆还露在外面的部分(阴影部分)的面积是:(3π﹣)cm2.随练1、如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB 为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.12π B.12π+1 C.π D.π+1【答案】A【解析】∵AB=2,∴BD=22,S阴影=S扇形BDE﹣12S扇形ACD=()24522360π﹣12×904360π⨯=π﹣12π=12π,故选A.随练2、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【答案】.【解析】根据图示知,∴1+∴2=180°﹣90°﹣45°=45°,∴∴ABC+∴ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∴1﹣∴2=135°,∴阴影部分的面积应为:S==.故答案是:.圆锥例题1、如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】∴h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.h=23cm,底面半径r=2cm,则圆锥体的全面积为____cm2.A.43πB.8πC.12πD.(43+4)π【答案】C【解析】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为23cm,∵圆锥的母线长为4cm,∵侧面面积=12×4π×4=8π; 底面积为=4π,全面积为:8π+4π=12πcm 2. 故选:C .例题3、 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为__________.【答案】22.【解析】 过O 点作OC AB ⊥,垂足为D ,交O 于点C ,由折叠的性质可知,1122OD OC OA ==,由此可得,在Rt AOD ∆中,30A ∠=︒,同理可得30B ∠=︒,在AOB ∆中,由内角和定理,得180120AOB A B ∠=︒-∠-∠=︒AB ∴的长为12032180ππ⨯=设围成的圆锥的底面半径为r ,则22r ππ=1r cm ∴=∴圆锥的高为223122-=随练1、 圆锥的底面半径为4cm ,高为3cm ,则它的表面积为( ) A.12πcm 2 B.20πcm 2 C.26πcm 2 D.36πcm 2【答案】 D【解析】 底面周长是2×4π=8πcm ,底面积是:42π=16πcm 2. 母线长是:22345+=,则圆锥的侧面积是:218π520πcm 2⨯⨯=,则圆锥的表面积为16π+20π=36πcm 2.随练2、 已知扇形的圆心角为120°,所对的弧长为83π,则此扇形的面积是______. 【答案】163π【解析】 ∵扇形的圆心角为120°,所对的弧长为83π, ∴l=120R 81803⨯=ππ, 解得:R=4,则扇形面积为12Rl=163π随练3、 如图,在菱形ABCD 中,AB=2,∠C=120°,以点C 为圆心的与AB ,AD 分别相切于点G ,H ,与BC ,CD 分别相交于点E ,F .若用扇形CEF 作一个圆锥的侧面,则这个圆锥的高是__________.【答案】 2【解析】 如图:连接CG , ∵∠C=120°, ∴∠B=60°,∵AB 与相切,∴CG ⊥AB ,在直角△CBG 中,CG=BC•sin60°=2×=3,即圆锥的母线长是3, 设圆锥底面的半径为r ,则:2πr=,∴r=1.则圆锥的高是:=2.不规则图形面积的巧算例题1、 如图,AB 是∴O 的直径,弦CD ∴AB ,∴CDB=30°,CD=2,则S 阴影=( )A.πB.2πC.D.π【答案】 D【解析】 如图,CD ∴AB ,交AB 于点E , ∴AB 是直径,∴CE=DE=CD=, 又∴∴CDB=30° ∴∴COE=60°, ∴OE=1,OC=2, ∴BE=1,∴S ∴BED =S ∴OEC , ∴S 阴影=S 扇形BOC ==.故选:D .例题2、如图,半圆O的直径AB=2,弦CD∴AB,∴COD=90°,则图中阴影部分的面积为.【答案】.【解析】∴弦CD∴AB,∴S∴ACD=S∴OCD,∴S阴影=S扇形COD=•π•=×π×=.例题3、如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【答案】(1)DE为⊙O的切线(2)(24﹣4π)cm2【解析】(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=12(4+8)×4﹣2904360π••=(24﹣4π)cm2.随练1、 如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是____________.【答案】23π﹣3 【解析】 如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°,∴△DAB 是等边三角形, ∵AB=2,∴△ABD 的高为3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =260213602π⨯-×2×3=23π﹣3.随练2、 如图,在∴BCE 中,点A 时边BE 上一点,以AB 为直径的∴O 与CE 相切于点D ,AD ∴OC ,点F为OC 与∴O 的交点,连接AF . (1)求证:CB 是∴O 的切线;(2)若∴ECB=60°,AB=6,求图中阴影部分的面积.【答案】(1)证明见解析;(2)π.【解析】(1)证明:连接OD,与AF相交于点G,∴CE与∴O相切于点D,∴OD∴CE,∴∴CDO=90°,∴AD∴OC,∴∴ADO=∴1,∴DAO=∴2,∴OA=OD,∴∴ADO=∴DAO,∴∴1=∴2,在∴CDO和∴CBO中,,∴∴CDO∴∴CBO,∴∴CBO=∴CDO=90°,∴CB是∴O的切线.(2)由(1)可知∴3=∴BCO,∴1=∴2,∴∴ECB=60°,∴∴3=∴ECB=30°,∴∴1=∴2=60°,∴∴4=60°,∴OA=OD,∴∴OAD是等边三角形,∴AD=OD=OF,∴∴1=∴ADO,在∴ADG和∴FOG中,,∴∴ADG∴∴FOG,∴S∴ADG=S∴FOG,∴AB=6,∴∴O的半径r=3,∴S阴=S扇形ODF==π.随练3、如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【答案】 .【解析】 如图,∴AB=AB ′=8,∴BAB ′=60° ∴图中阴影部分的面积是: S=S 扇形B ′AB +S 半圆O ′﹣S 半圆O =+π×52﹣π×52 =π.拓展1、 若正六边形的边长为4,则它的内切圆面积为( ) A.9π B.10π C.12π D.15π【答案】 C【解析】 连接OD 、OE ,作OM ⊥DE 于M , ∵六边形ABCDEF 是边长为4的正六边形, ∴△ODE 是等边三角形, ∴OD =DE =4,∴3sin 604232OM OD =•︒=⨯=,∴它的内切圆面积2(23)12=π⨯=π.2、 边长为4的正六边形的边心距________,中心角等于________度,边长为________. 【答案】 23;60;4【解析】 六边形每个中心角度数为360÷6=60°,根据每个中心角都分六边形为等边三角形,∵正六边形的边长为4, 则每个等边三角形的高即圆心距为:sin 6023CO BO =⋅︒=.3、正六边形的外接圆的半径与内切圆的半径之比为________.【答案】 2:3 【解析】 暂无解析4、 如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________________.【答案】 75°【解析】 设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,∧3110A A A =512⊙O 的周长,∴∠A3OA10=536012⨯=150°,∴∠A 3A 7A 10=75°,5、 (1)已知:如图1,ABC ∆是O ⊙的内接正三角形,点P 为弧BC 上一动点,求证:PA PB PC =+ (2)如图2,四边形ABCD 是O ⊙的内接正方形,点P 为弧BC 上一动点,求证:2PA PC PB =+(3)如图3,六边形ABCDEF 是O ⊙的内接正六边形,点P 为弧BC 上一动点,请探究PA PB PC 、、三者之间有何数量关系,并给予证明.【答案】 见解析【解析】 (1)证明:延长BP 至E ,使PE PC =,连结CE .OCABPPODAB COPFDCA1260,3460∠=∠=︒∠=∠=︒60,CPE PCE ∴∠=︒∴∆是等边三角形.,,360,CE PC E ∴=∠=∠=︒又EBC PAC ∠=∠, BEC APC ∴∆∆≌ PA BE PB PC ∴==+.(2)证明:过点B 作BE PB ⊥交PA 于E ,122390,13∠+∠=∠+∠=︒∴∠=∠,又45APB ∠=︒,,2,BP BE PE PB ∴=∴=,,AB BC ABE CBP PC AE =∴∆∆∴=≌.2PA AE PE PC PB ∴=+=+(3)答:3PA PC PB =+证明:在AP 上截取AQ PC =,连结BQ ,,BAP BCP AB BC ∠=∠=,,ABQ CBP ∴∆≅∆BQ BP ∴=.又30,APB ∠=︒3PQ PB ∴=,3PA PQ AQ PB PC ∴=+=+6、 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.【答案】 (1)78°(2)见解析【解析】 (1)∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.7、 如图,在等腰Rt △ABC 中,AC=BC=22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )321E C B ADO PO Q AB C D E F PA.2πB.πC.22D.2 【答案】 B 【解析】 取AB 的中点O 、AE 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图, ∵在等腰Rt △ABC 中,AC=BC=22,∴AB=2BC=4,∴OC=12AB=2,OP=12AB=2, ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO=90°,∴点M 在以OC 为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF=OC=2, ∴M 点的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•2π•1=π.8、 在Rt △ABC 中,∠C =90°,AC =BC =1,将其放入平面直角坐标系,使A 点与原点重合,AB 在x 轴上,△ABC沿x 轴顺时针无滑动的滚动,点A 再次落在x 轴时停止滚动,则点A 经过的路线与x 轴围成图形的面积为________.【答案】 12π+【解析】 ∵∠C =90°,AC =BC =1, ∴22112AB =+=;根据题意得:2△ABC 绕点B 顺时针旋转135°,BC 落在x 轴上;△ABC 再绕点C 顺时针旋转90°,AC 落在x 轴上,停止滚动;∴点A 的运动轨迹是:先绕点B 旋转135°,再绕点C 旋转90°;如图所示:∴点A 经过的路线与x 轴围成的图形是:一个圆心角为135°,半径为2的扇形,加上△ABC ,再加上圆心角是90°,半径是1的扇形;∴点A 经过的路线与x 轴围成图形的面积22135(2)190111136023602⨯π⨯⨯π⨯=+⨯⨯+=π+.9、如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中AE的长为________.【答案】32 2π【解析】∵四边形ABCD为正方形,∴222CA AB==,∠ACB=45°,∴∠ACE=135°,∴AE的长度13522321802π==π.10、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cmB.15cmC.10cmD.20cm【答案】D【解析】过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.11、用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,这个圆锥的底面圆的半径为________.【答案】1【解析】 暂无解析12、 若扇形的半径为30cm ,圆心角为60°,则此扇形围成圆锥的底面半径为 cm . 【答案】 5 【解析】 设圆锥的底面半径为r ,根据题意得2π•r=6030180π⨯,解得r=5, 即圆锥的底面半径为5cm .故答案为5.13、 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4cm ,则图中阴影部分面积为________cm 2.【答案】 4π【解析】 ∵∠BCA =90°,∠BAC =30°,AB =4cm ,∴BC =2,23AC =,∠A′BA =120°,∠CBC′=120°,∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)-S 扇形BCC′-S △ABC 222120π(42)4πcm 360=⨯-=. 14、 一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是__________.【答案】 5:4【解析】 如图1,连接OD ,∵四边形ABCD 是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD=222+1=5,∴扇形的面积24555=3608ππ⨯(); 如图2,连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形,∴∠BMC=90°,MB=MC ,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=22, ∴⊙M 的面积是π×(22)2=12π, ∴扇形和圆形纸板的面积比是515=824ππ÷().15、 如图,△ABC 中,AC =BC ,AB =4,∠ACB =90°,以AB 的中点D 为圆心DC 长为半径作14圆DEF ,设∠BDF =α(0°<α<90°),当α变化时图中阴影部分的面积为________(14圆:∠EDF =90°,14圆的面积21π4r =⋅)【答案】 π-2【解析】 作DM ⊥AC 于M ,DN ⊥BC 于N ,连接DC ,如图所示:∵CA =CB ,∠ACB =90°,∴∠A =∠B =45°,DM AD =,DN =, ∴DM =DN ,∴四边形DMCN 是正方形,∴∠MDN =90°,∴∠MDG =90°-∠GDN ,∵∠EDF =90°,∴∠NDH =90°-∠GDN ,∴∠MDG =∠NDH ,在△DMG 和△DNH 中,MDG NDH DMG DNH DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH (AAS ),∴四边形DGCH 的面积=正方形DMCN 的面积,∵正方形DMCN 的面积2218DM AB ==21428=⨯=, ∴四边形DGCH 的面积218AB =, ∵扇形FDE 的面积22290πππ4π3601616CD AB ⋅⨯===, ∴阴影部分的面积=扇形面积-四边形DGCH 的面积=π-2.16、 如图,ABCD 是平行四边形,AB 是O 的直径,点D 在O 上1AD OA ==,则图中阴影部分的面积为__________.【答案】 34 【解析】 连接DO EO BE ,,,过点D DF AB F ⊥作于点,1AD OA AD AO DO ==∴==,,AOD ∴∆是等边三角形,ABCD 四边形是平行四边形,//60DC AB CDO DOA ∴∴∠=∠=︒,, ODE ∴∆是等边三角形,同理可得出OBE ∆是等边三角形且3个等边三角形全等, ∴阴影部分面积等于BCE ∆面积,36012DF ADsin DE EC =︒===,, ∴图中阴影部分的面积为:34.。
知识点总结知识点1 圆内接正多边形及相关定义顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆n等分(),依次连接各分点,我们就可以作出一一个圆内接正多边形.如图,五边形ABCDE是0的内接正五边形,圆心O叫做这个正五边形的中心; OA是这个正五边形的半径;∠AOB是这个正五边形的中心角; OM BC,垂足为M,OM是这个正五边形圆心距。
1.圆内接正多边形:顶点都在同一圆上的正多边形叫做圆内接正多边形,这个圆叫做正多边形的外接圆.2.与正多边形有关的概念:(1)正多边形的外接圆的圆心叫做这个正多边形的中心,(2)正多边形的外接圆的半径叫做这个正多边形的半径,(3)正多边形每-边所对的圆心角叫做这个正多边形的中心角.(4)正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距.要点精析:边心距与弦心距的关系:边心距是圆心到正多边形一边的距离,此时的边心距也可以看作正多边形的外接圆中,圆心到多边形的边(即外接圆的弦)的距离,即边心距也是弦心距;但弦心距不一定是边心距).知识点< 2 > 圆内接正多边形的画法利用尺规作一个已知圆的内接正六边形.由于正六边形的中心角为60° ,因此它的边长就是其外接圆的半径R.所以,在半径为R的圆上,依次截取等于R的弦,就可以六等分圆,进而作出圆内接正六边形,为了减少累积误差,通常像如图那样,作00的任意一一条直径FC,分别以F,C为圆心,以00的半径R为半径作弧,与0相交于点E, A和D, B则A,B,C, D, E, F 是O0的六等分点,顺次连接AB, BC, CD,DE, EF, FA,便得到正六边形ABCDEF.1.用量角器等分圆:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可360°以等分圆周,从而得到正多边形,采用“先用量角器画一个的圆心角,然后在圆上依次截取这个圆心角所对弧的等弧”,这种方法简便,误差小,且可以画任意正多边形.2.用尺规等分圆:用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这种方法有局限性,不是任意正多边形都能用此法作图,从理论上讲这是一种准确方法,但在作图时较复杂,同样存在作图的误差,3,易错警示:作图时由于忽视累积误差的影响,导致作图不准,应减少累积误差。
3.8圆内接正多边形
教学目标:
(1)使学生理解圆内接正多边形及相关概念;
(2)通过圆内接正多边形及相关概念的教学,培养学生归纳和解题能力;通过圆内接正六边形、圆内接正四边形的作图培养学生作图能力以及观察、猜想、推理、迁移能力;
(3)进一步向学生渗透“特殊一一一般”再“一般一一特殊”的唯物辩证法思想.
教学重点:
圆内接正多边形相关计算,用尺规作圆内接正六边形.
教学难点:
能把圆内接正多边形相关计算转化为解直角三角形问题.
教学活动设计:
一.复习引入
出示课件(2)提问:
1 •等边三角形、正方形的边、角各有什么性质?
教师组织学生进归纳:等边三角形与正方形的边、角性质的共同点
2. 什么样的图形是正多边形?
二新课讲解
(一)正多边形的概念:
(1 )概念:各边相等、各角也相等的多边形叫做正多边形•如果一个正多边形有n(n > 3)条边,就叫
正n边形•等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
(2)概念理解和应用:出示课件(3)
①请同学们举例,自己在日常生活中见过的正多边形•(正三角形、正方形、正六边形,…….)
(二)分析、发现:
问题:正多边形与圆有什么关系呢?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分•要将圆五等分,把等分点顺次连结,可得正五边形•要将圆六等分呢?
(三)圆内接正多边形概念:顶点都在同一个圆上的正多边形叫圆内接正多边形。
这个圆叫做该正多边形的外接圆。
定理:把圆分成n(n > 3)等份,
(1)依次连结各分点所得的多边形是这个圆的内接正n边形;
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
我们以n=5的情况进行证明•出示课件(4)
已知:。
O 中,弧AB =弧BC=M CD =弧DC=M DE
求证:(1)五边形ABCDE是O 0的内接正五边形;
证明:(略)
引导学生分析、归纳证明思路:
弧相等可得弦相等、圆周角相等
说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:
①依次连结圆的n(n >3)等分点,所得的多边形是正多边形;②经过圆的n(n >3)等分点作圆的切线,相邻
切线相交成的多边形是正多边形.
(2)要注意定理中的“依次”、“相邻” 等条件.
(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.
(四)圆内接正多边形相关概念(出示课件6)
圆内接正多边形的中心、中心角、边心距
(五)初步应用
例出示课件(7)
解(略)
(六)圆内接正多边形画法:
.(1)画一个边长为2cm的正六边形.(出示课件8)
⑵ 利用尺规作一个已知圆的内接正六边形.(出示课件9)
三巩固练习
出示课件10、11、12
四小结:
n边形. 知识:(1 )正多边形的概念.(2)n等分圆周(n >3)可得圆的内接正n边形和圆的外切正
能力和方法:圆内接正多边形的证明方法和相关计算,圆内接正多边形的尺规作法
(七)作业教材P99习题3.10第2题.。