最新湘教版七年级数学上册第一学期期末专题复习资料及试卷资料
- 格式:pdf
- 大小:1.30 MB
- 文档页数:28
一、选择题1.空气是混合物,为了直观介绍空气各成分的百分比,最适合用的统计图是()A.折线统计图B.条形统计图C.散点统计图D.扇形统计图2.下列调查中,适合用全面调查方法的是()A.调查某批次汽车的抗撞击能力B.调查某品牌灯管的使用寿命C.了解某班学生的身高情况D.检测某城市的空气质量3.为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量高于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.该小区按第二档电价交费的居民有17户C.估计该小区按第一档电价交费的居民户数最多D.该小区按第三档电价交费的居民比例约为6%4.在一次数学活动中,小明在某月的日历上圈出了相邻的三个数a,b,c,求出它们的和为36,则这三个数在日历中的排布不可能的是()A.B. C.D .5.一个角的余角比它的补角的23还少40°,这个角的度数是( )度 A .20 B .30 C .40 D .456.把9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其x 的值为( )x 5-2- 0 1A .2B .1-C .3-D .4- 7.如图甲,用边长为4的正方形做了一幅七巧板,拼成图乙所示的一座桥,则桥中阴影部分面积为( )A .16B .12C .8D .4 8.如图,OC 是AOB ∠的平分线,OD 是AOC ∠的平分线,且25COD ∠=︒,则AOB∠等于( )A .25︒B .50︒C .75︒D .100︒ 9.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( ) A . B .C .D .10.如图,直线上的四个点A ,B ,C ,D 分别代表四个小区,其中A 小区和B 小区相距am ,B 小区和C 小区相距200m ,C 小区和D 小区相距am ,某公司的员工在A 小区有30人,B 小区有5人.C 小区有20人,D 小区有6人,现公司计划在A ,B ,C ,D 四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在( )A .A 小区B .B 小区C .C 小区D .D 小区 11.有理数a ,b 在数轴上对应点的位置如图所示,下列选项正确的是( )A .0a b +>B .0ab >C .a b <-D .0b a -> 12.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90︒,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是( )A .2B .3C .4D .5二、填空题13.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最多的小组有80人,则参加人数最少的小组有_____人.14.据统计,某班50名学生参加综合素质测试,评价等级为、、A B C 等的学生情况如扇形图所示,则该班综合素质评价为A 等的学生有________名.15.已知方程()23250a a x---=是关于x 的一元一次方程,则此方程的解为__________. 16.2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心,在未开始检票入场前,已有1200名足球爱好者排队等待入场,假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人,如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,则___________分钟后排队现象消失.17.已知90AOB EOF ∠=∠=︒,OM 平分∠AOE ,ON 平分∠BOF .(1)如图1,当OE 在∠AOB 内部时,①AOE ∠ BOF ∠;(填>,=,<)②求∠MON 的度数;(2)如图2,当OE 在∠AOB 外部时,(1)题②的∠MON 的度数是否变化?请说明理由.18.数轴上两点A ,B 所表示的数分别为a 和b ,且满足()2280a b ++-=.点E 以每秒1个单位的速度从原点O 出发向右运动,同时点M 从点A 出发以每秒7个单位的速度向左运动,点N 从点B 出发,以每秒10个单位的速度向右运动,P ,Q 分别为ME ,ON 的中点.思考,在运动过程中,MN OE PQ-的值______________.19.“数形结合”思想在数轴上得到充分体现,如在数轴上表示数5和2-的两点之间的距离,可列式表示为()52--,或25--;表示数x 和3-的两点之间的距离可列式表示为()33x x --=+.已知31239x x y y ++-+++-=,则x y +的最大值为______.20.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料,(单位:mm ).则此长方体包装盒的体积是___________.三、解答题21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.有甲乙两个商场,一月份甲乙两商场销售总额为1000万元,二月份甲商场因内部装修,影响销售,致使销售额比一月份下降10%;而乙商场大搞促销活动,因而销售额比一月份增加了20%,这样整个甲乙两商场二月份的销售总额比一月份还要增加3.5%.问甲、乙两商场二月份的销售额分别是多少万元?23.尺规作图:如图,已知线段a ,b ,作线段AB ,使AB=3a-b .(不写作法,保留作图痕迹,标清端点字母)24.计算:(1)2751()(6)9126-+⨯-; (2)2212412(2)2m m m m -+-+-.25.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 26.如图是一个正方形的平面展开图,若要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x 、y 、z 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【详解】解:由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:D .【点睛】本题考查扇形统计图、折线统计图、条形统计图,理解各自的特点是解题的关键. 2.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合用抽样调查方法;B、调查某品牌灯管的使用寿命,适合用抽样调查方法;C、了解某班学生的身高情况,适合用全面调查方法;D、检测某城市的空气质量,适合用抽样调查方法;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B【分析】将各组数据相加可得样本容量;样本中第1、2、3组频数和占总数的比例可判断B选项;总户数乘以样本中第4、5户数和所占比例可判断C;用样本中第6组频数除以总户数可得.【详解】解:A、本次抽样调查的样本容量为4+12+14+11+6+3=50,故本选项不合题意;B、该小区按第二档电价交费的居民有1000×11650=340户,故本选项符合题意;C、样本中第一档电价户数为4+12+14=30户,所以估计该小区按第一档电价交费的居民户数最多,故本选项不合题意;D、该小区按第三档电价交费的居民比例约为350×100%=6%,故本选项不合题意.故选:B.【点睛】本题主要考查用样本估计总体,解题的关键是根据条形图得出解题所需数据及样本估计总体思想的运用.4.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+14=36,x=5.故本选项不合题意;B、设最小的数是x.x+x+6+x+7=36,x=233,故本选项错误符合题意;C、设最小的数是x.x+x+7+x+8=36,x=7,故本选项不合题意;D 、设最小的数是x .x+x+8+x+16=36,x=4,本选项不合题意.故选择:B .【点睛】本题考查用字母表示数,列代数式,列方程解应用题,掌握用字母表示数,列代数式的方法,列方程解应用题方法与步骤是解题关键.5.B解析:B【分析】设这个角为x ,根据余角和补角的定义列式即可.【详解】设这个角为x ,则这个角的余角为90x ︒-,这个角的补角为180x ︒-, 根据题意可得:()290180403x x ︒-=︒--︒, 整理得:290120403x x ︒-=︒--︒, 解得:30x =︒;故选:B .【点睛】本题主要考查了一元一次方程的应用,结合余角和补角的定义求解是解题的关键. 6.A解析:A【分析】根据题意求出“九宫格”中的a ,b ,再求出x 即可求解.【详解】解:如下表,由题意得20125a -+=--,解得:4a =-;1125b a ++=--,即41125b -+=--,解得:3b =-;5125b x +-=--,即35125x -+-=--,解得:2x =;故选A .7.C解析:C【分析】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半;【详解】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半,⨯÷=;则阴影部分的面积为4428故答案选C.【点睛】本题主要考查了七巧板求面积的知识点,准确分析计算是解题的关键.8.D解析:D【分析】根据角平分线定义得出∠AOC=2∠COD,∠AOB=2∠AOC,代入求出即可.【详解】∠的平分线,∠COD=25°,解:∵OD是AOC∴∠AOC=2∠COD=50°,∠的平分线,∵OC是AOB∴∠AOB=2∠AOC=100°,故选:D.【点睛】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.9.B解析:B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】解:A. 不能用∠O表示,选项A不符合题意;B. 能用∠1,∠AOB,∠O,选项B符合题意;C 不能用∠O表示,选项C不符合题意;D. 不能用∠O表示,选项D不符合题意.故选:B.【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.10.B解析:B【分析】分别列出停靠点设在不同小区时,所有员工步行路程总和的代数式,选出其中最小的那个.【详解】解:若停靠点设在A 小区,则所有员工步行路程总和是:()()52020062200375200a a a a ++++=+(米), 若停靠点设在B 小区,则所有员工步行路程总和是:()30200206200365200a a a +⨯++=+(米), 若停靠点设在C 小区,则所有员工步行路程总和是:()3020020056367000a a a ++⨯+=+(米), 若停靠点设在D 小区,则所有员工步行路程总和是:()()302200520020857000a a a a ++++=+(米), 其中365200a +是最小的,故停靠点应该设在B 小区.故选:B .【点睛】本题考查列代数式,解题的关键是根据题意列出路程和的代数式,然后比较大小. 11.C解析:C【分析】根据有理数a ,b 在数轴上的位置逐项进行判断即可.【详解】解:由有理数a ,b 在数轴上的位置可知,b <-1<0<a <1,且|a|<|b|,因此a+b <0,故A 不符合题意;ab <0,故B 不符合题意;a+b <0,即a <-b ,故C 符合题意;b <a ,即b-a <0,故D 不符合题意;故选:C .【点睛】本题考查数轴表示数的意义,有理数的加、减、乘法运算,掌握计算法则是正确判断的前提.12.D解析:D【分析】根据正方体的表面展开图,可得各个面上的数字,由2019次翻转为第505组的第三次翻转,即可得到答案.【详解】正方体的表面展开图,相对面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,÷=,∵201945043∴完成2019次翻转为第505组的第三次翻转,∴骰子朝下一面的点数是5.故选D.【点睛】本题主要考查正方体的表面展开图各个面上的数字规律,掌握相对面上的数字规律,是解题的关键.二、填空题13.【分析】根据扇形统计图中的数据可以计算出参加乒乓球的学生所占的百分比再根据参加人数最多的小组有80人即可计算出参加体育锻炼的人数然后即可计算出参加人数最少的小组的人数【详解】解:由扇形统计图可得参加解析:【分析】根据扇形统计图中的数据,可以计算出参加乒乓球的学生所占的百分比,再根据参加人数最多的小组有80人,即可计算出参加体育锻炼的人数,然后即可计算出参加人数最少的小组的人数.【详解】解:由扇形统计图可得,参加乒乓球的学生所占的百分比为:1﹣35%﹣25%=40%,∵参加人数最多的小组有80人,∴参加体育兴趣小组的学生有:80÷40%=200(人),∴参加人数最少的小组有200×25%=50(人),故答案为:50.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.15;【解析】【分析】先由扇形图可知C等的学生占总体的百分比是10然后根据B等的学生数计算B等的学生占总体的百分比从而求出A等的学生占总体的百分比从而求出该班综合评价学生人数【详解】解:由扇形图可知解析:15;【解析】【分析】先由扇形图可知C等的学生占总体的百分比是10%,然后根据B等的学生数计算B等的学生占总体的百分比,从而求出A 等的学生占总体的百分比,从而求出该班综合评价学生人数.【详解】解:由扇形图可知B 等的学生有30人,占总人数50人的60%,C 等的学生占总体的百分比是10%,∴A 等的学生占总体的百分比是:1-60%-10%=30%,又知某班50名学生参加期末考试,∴该班综合评价为A 等的学生有50×30%=15名,故答案为:15.【点睛】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数. 15.【分析】根据一元一次方程的定义可得且得出求解一元一次方程即可【详解】解:∵方程是关于的一元一次方程∴且解得∴该方程为解得故答案为:【点睛】本题考查一元一次方程的定义解一元一次方程掌握一元一次方程的定 解析:5x =-【分析】根据一元一次方程的定义可得20a -≠且231a -=,得出1a =,求解一元一次方程即可.【详解】解:∵方程()23250a a x ---=是关于x 的一元一次方程,∴20a -≠且231a -=,解得1a =,∴该方程为50x --=,解得5x =-,故答案为:5x =-.【点睛】本题考查一元一次方程的定义、解一元一次方程,掌握一元一次方程的定义是解题的关键.16.【分析】设每分钟赶来的足球爱好者人数为人由4个检票口同时检票15分钟后排队现象消失列出方程可求每分钟赶来的足球爱好者人数再设7个检票口同时检票分钟排队现象消失列出方程可求解【详解】设每分钟赶来的足球 解析:【分析】设每分钟赶来的足球爱好者人数为x 人,由4个检票口同时检票,15分钟后排队现象消失,列出方程,可求每分钟赶来的足球爱好者人数,再设7个检票口同时检票,y 分钟排队现象消失,列出方程,可求解.【详解】设每分钟赶来的足球爱好者人数为x 人,由题意可得:151********x +=⨯⨯,∴80x =,∴每分钟赶来的足球爱好者人数为80人,设7个检票口同时检票,y 分钟排队现象消失,由题意可得:801200740y y +=⨯⨯,∴6y =,答:7个检票口同时检票,6分钟排队现象消失,故答案为:6.【点睛】本题考查了一元一次方程的应用,找出等量关系列出正确的方程是本题的关键. 17.(1)①=;②;(2)不变化理由见解析【分析】(1)①结合题意根据角度和差的性质计算即可得到答案;②根据角平分线的性质得;结合(1)①的结论通过计算即可得到答案;(2)根据题意根据角度和差性质计算得 解析:(1)①=;②90MON ∠=︒;(2)不变化,理由见解析【分析】(1)①结合题意,根据角度和差的性质计算,即可得到答案;②根据角平分线的性质,得12MOE AOE ∠=∠,12BON BOF ∠=∠;结合(1)①的结论,通过计算即可得到答案;(2)根据题意,根据角度和差性质计算,得AOE BOF ∠=∠;根据角平分线性质计算,得AOM MOE BON NOF ∠=∠=∠=∠;结合90MOB AOM ∠=︒-∠,通过计算即可完成求解.【详解】(1)①∵90AOB EOF ∠=∠=︒∴90AOE BOE BOF BOE ∠+∠=∠+∠=︒∴AOE BOF ∠=∠故答案为:=;②∵OM 平分∠AOE ,ON 平分∠BOF ∴1122MON MOE BOE BON AOE BOE BOF ∠=∠+∠+∠=∠+∠+∠ 结合(1)①的结论AOE BOF ∠=∠∴90MON AOE BOE AOB ∠=∠+∠=∠=︒;(2)90AOB EOF ∠=∠=︒,AOE AOB BOE ∠=∠+∠,BOF BOE EOF ∠=∠+∠∴AOE BOF ∠=∠又∵OM 平分∠AOE ,ON 平分∠BOF ,∴AOM MOE BON NOF ∠=∠=∠=∠∵90MOB AOM ∠=︒-∠∴9090MON MOB BON AOM BON ∠=∠+∠=︒-∠+∠=︒.【点睛】本题考查了角度和差、角平分线的知识;解题的关键是熟练掌握角度和差计算、角平分线的性质,从而完成求解.18.2【分析】根据非负数的性质可得点A 和B 表示的数设运动时间为t 则点E 对应的数是t 点M 对应的数是-2-7t 点N 对应的数是8+10t 根据题意求得P 点对应的数和Q 点对应的数代入可得结论【详解】解:∵∴a=-解析:2【分析】根据非负数的性质可得点A 和B 表示的数,设运动时间为t ,则点E 对应的数是t ,点M 对应的数是-2-7t ,点N 对应的数是8+10t .根据题意求得P 点对应的数和Q 点对应的数,代入可得结论.【详解】解:∵()2280a b ++-=,∴a=-2,b=8,∴A 表示-2,B 表示8;设运动时间为t ,则点E 对应的数是t ,点M 对应的数是-2-7t ,点N 对应的数是8+10t . ∵P 是ME 的中点, ∴P 点对应的数是(27)132t t t +--=--, 又∵Q 是ON 的中点, ∴Q 点对应的数是0(810)452t t ++=+, ∴MN=(8+10t )-(-2-7t )=10+17t ,OE=t ,PQ=(4+5t )-(-1-3t )=5+8t , ∴1017258MN OE t t PQ t-+-==+, 故答案为:2.【点睛】本题考查数轴上动点问题,整式的加减.能正确表示线段的长度是解题关键.19.4【分析】根据题意分别得到和的最小值结合得到=4=5根据x 和y 的范围得到x+y 的最大值【详解】解:由题意可得:表示x 与-3的距离和x 与1的距离之和表示y 与-2的距离和y 与3的距离之和∴当-3≤x≤1解析:4【分析】 根据题意分别得到31x x ++-和23y y ++-的最小值,结合31239x x y y ++-+++-=得到31x x ++-=4,23y y ++-=5,根据x 和y 的范围得到x+y 的最大值.【详解】解:由题意可得: 31x x ++-表示x 与-3的距离和x 与1的距离之和, 23y y ++-表示y 与-2的距离和y 与3的距离之和,∴当-3≤x≤1时,31x x ++-有最小值,且为1-(-3)=4,当-2≤x≤3时,23y y ++-有最小值,且为3-(-2)=5,∵31239x x y y ++-+++-=,∴31x x ++-=4,23y y ++-=5,∴x+y 的最大值为:1+3=4,故答案为:4.【点睛】本题考查了数轴上两点之间的距离,绝对值的意义,,用几何方法借助数轴来求解,数形结合是解答此题的关键.20.3182000mm三、解答题21.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B 级学生数,由扇形统计图得B 学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A 级学生数,用其除以所抽取的学生总数再化成百分数即得a 的值;(2)在(1)的基础上用抽取的总学生数减去A 、B 、D 级的学生数得到C 级的学生数,即可补全条形统计图;(3)用C 级的学生数除以所抽取的总学生数乘以360°即得;(4)先算得D 级学生数占所抽取学生总数的百分比,再乘以学校的学生总数即可.【详解】(1)2448%50÷=(名),1250100%24%a =÷⨯=;(2)C 级学生数为50-12-24-4=10(名)补全条形统计图如下图(3)103607250⨯︒=︒,故填72;(4)4100%200016050⨯⨯=(名)所以该校D级学生有160名.【点睛】此题综合考查了条形统计图和扇形统计图,还有用样本去估计全体的相关知识.其关键是领会两种统计图各自的特点和不足,合起来运用.条形统计图能清楚反映出各部分的具体数目,用扇形统计图能直观清楚的看出各部分占全部的百分比.22.甲:495万元,乙:540万元【分析】首先设出一月份甲商场销售额,然后表示出乙商场销售额,根据题中的等量关系列出方程求解,即可解决问题.【详解】解:设一月份甲商场销售额为x万元,则乙商场销售额为(1000-x)万元,由题意得:x(1-10%)+(1000-x)(1+20%)=1000(1+3.5%),解得:x=550,故甲、乙两商场二月份的销售额分别是:甲:550×0.9=495(万元),乙:450×1.2=540(万元).【点睛】本题主要考查了一元一次方程在市场营销方面的应用问题;解题的关键是深刻把握题意,正确列出方程,准确求解计算.23.见解析【分析】首先作射线AP,再截取AD=DC=CE=a,在线段AE上截取EB=b,即可得出AB=3a-b.【详解】解:如图所示,线段AB即为所求.【点睛】此题主要考查了复杂作图,正确作出射线进而截取得出是解题关键.解决此类题目需要熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.(1)19;(2)﹣8m+2【分析】(1)先算乘方,再利用分配律计算即可;(2)先去括号,再合并同类项即可.【详解】(1)解:原式=751()369126-+⨯ =7513636369126⨯-⨯+⨯ =28﹣15+6=19;(2)解:2212412(2)2m m m m -+-+-=2m 2﹣4m+1﹣2m 2﹣4m+1=﹣8m+2.【点睛】本题主要考查了有理数的混合运算及整式的加减,正确掌握运算法则是解题的关键. 25.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.26.z=2,y=7,x=﹣5.【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和为5,列出方程求出x 、y 、z 的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手,分析及解答问题.。
湘教版七年级上册数学期末考试试题一、单选题1.13-的倒数是()A.3B.3-C.13-D.132.把3720000进行科学记数法表示正确的是()A.0.372×106B.3.72×105C.3.72×106D.37.2×105 3.在-1,12,-20,0,-(-5),-3+中,负数的个数有()A.2个B.3个C.4个D.5个4.下列各组的两个数中,运算后的结果相等的是()A.(﹣2)3和(﹣3)2B.(﹣2)3和﹣23C.(﹣2)2和﹣22D.23和325.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位6.已知a﹣2b=3,则代数式6b﹣3a+5的值为()A.14B.11C.4D.﹣47.如图摆放的几何体的左视图是()A.B.C.D.8.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°9.如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离B .线段AD 的长度表示点A 到BC 的距离C .线段CD 的长度表示点C 到AD 的距离D .线段BD 的长度表示点A 到BD 的距离10.下列式子正确的是()A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z =x ﹣2(z+y )D .﹣a+c+d+b =﹣(a ﹣b )﹣(﹣c ﹣d )11.下列各图经过折叠后不能围成一个正方体的是()A .B .C .D .12.如图所示,下列结论成立的是()A .若∠1=∠4,则BC ∥ADB .若∠5=∠C ,则BC ∥ADC .若∠2=∠3,则BC ∥AD D .若AB ∥CD ,则∠C +∠ADC =180°二、填空题13.把式子(3)(6)(4.8)(7)-+--+--改写成省略括号的和的形式:_____________.14.比较大小:-2.1×108______-1.9×10815.以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)16.单项式323ab -的系数是______,次数是____.17.如图,OP//QR//ST ,若∠2=100°,∠3=120°,则∠1=______.18.已知2x+4与3x -2互为相反数,则x=_____.三、解答题19.计算:(1)-20+(-14)-(-18)-13(2)3571(491236--+÷20.如图,点A ,O ,B 在同一直线上,OD 是AOC ∠的平分线,OD OE ⊥,且120AOC ∠=︒.(1)试求∠BOE 的度数:(2)直接写出图中所有与AOD ∠互余的角.21.先化简,再求值已知|x ﹣2|+(y+1)2=0,求2x 2﹣[5xy ﹣3(x 2﹣y 2)]﹣5(﹣xy+y 2)的值.22.如图,已知∠1+∠2=180°,∠3=∠B ,试说明EF ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180°(已知).∠2=∠4(______).∴∠______+∠4=180°(______).∴______∥______(______).∴∠B=∠______(______).∵∠3=∠B(______).∴∠3=∠______(______).∴EF∥BC(______).23.某区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=度.(2)灯A射线从AM开始顺时针旋转至AN需要秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=度,∠MAC=度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在(3)的条件下,将“当AC到达AN之前”改为“在BD到达BQ之前”,其它条件不变.是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出AC转动时间,若不存在,请说明理由.24.为了解某社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区参与问卷调查人中,用微信支付方式的哪个年龄段人数多?25.如图,C 是线段AB 的中点,D 是线段AB 的三等分点,如果CD=2cm ,求线段AB 的长.26.如图,在一块边长为acm 的正方形铁皮上,一边截去4cm ,另一边截去3cm ,用A 表示截去的部分,B 表示剩下的部分.(1)用两种不同的方式表示A 的面积(用代数式表示)(2)观察图形或利用(1)的结果,你能计算(3)(4)a a --吗?如果能,请写出计算结果.27.如图,直线AB ,CD 交于点O ,且∠BOC =80°,OE 平分∠BOC ,OF 为OE 的反向延长线.(1)∠2=,∠3=;(2)OF 平分∠AOD 吗?为什么?参考答案1.B 【分析】倒数:乘积是1的两数互为倒数.【详解】解:13-的倒数是3-,故选:B .【点睛】本题考查了倒数,掌握倒数的定义是解答本题的关键.2.C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3720000=3.72×106,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要确定a 的值以及n 的值.3.B 【分析】先把()3,5-+--化简,再根据负数的含义逐一分析即可得到答案.【详解】解:()33,55,-+=---=Q -1,12,-20,0,-(-5),-3+中负数有:1,20,3,---+故选B【点睛】本题考查的是负数的含义,相反数的含义,绝对值的含义,掌握与有理数相关的基础知识是解题的关键.4.B【分析】根据有理数乘方法则依次计算解答.【详解】解:A、(﹣2)3=-8,(﹣3)2=9,故该选项不符合题意;B、(﹣2)3=-8,﹣23=-8,故该选项符合题意;C、(﹣2)2=4,﹣22=-4,故该选项不符合题意;D、23=8,32=9,故该选项不符合题意;故选:B.5.B【分析】根据近似数的精确度求解.【详解】3.20精确的数位是百分位,故选B.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.D【分析】根据已知条件求出2b-a=-3,得到6b-3a=-9,代入计算即可.【详解】解:∵a﹣2b=3,∴2b-a=-3,∴6b-3a=-9,∴6b﹣3a+5=-9+5=-4,故选:D.7.A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.8.C【分析】求出∠3即可解决问题;【详解】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,由平行可得∠2=∠3=55°,故选C.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.9.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B.线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C.线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D.线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.10.D【分析】根据去括号与添括号法则逐项计算即可求解.【详解】解:A.x﹣(y﹣z)=x﹣y+z,故该选项不正确,不符合题意;B.﹣(x﹣y+z)=﹣x+y﹣z,故该选项不正确,不符合题意;C.x+2y﹣2z=x﹣2(z-y),故该选项不正确,不符合题意;D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d),故该选项正确,符合题意;故选D【点睛】本题考查了去括号与添括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.11.D【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C【分析】若同位角相等或内错角相等或同旁内角互补,则两直线平行,反之亦然.【详解】解:A,若∠1=∠4,则AB∥CD,故错误;B,若∠5=∠C,,则AB∥CD,故错误;C ,若∠2=∠3,则BC ∥AD ,故正确;D ,若AB ∥CD ,则∠C +∠ABC =180°,故错误;故选择C.【点睛】本题考查了平行线的判定及性质.13.36 4.87---+【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.【详解】解:(3)(6)(4.8)(7)36 4.87-+--+--=---+.故答案为:36 4.87---+.【点睛】本题考查的是有理数的加减混合运算,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式是解题的关键.14.<【分析】根据有理数大小比较解答,正数>0>负数,对于用科学记数法表示的数,10的n 次方相同,比较前面的数即可.【详解】解:因为10的指数相同,2.1>1.9,所以-2.1<-1.9,故答案为<【点睛】本题考查科学记数法和两个负数比较,绝对值大的反而小.15.①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误.故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.16.23-4【分析】直接写出单项式的系数及次数即可.【详解】解:323ab -=323ab -,其系数为23-,次数为所有字母次数之和,即1+3=4次,故答案为23-,4.【点睛】本题考查了单项式的系数及次数,熟记单项式的次数为所有字母次数之和是解题的关键.17.40°【分析】根据平行线的性质得到2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,求出∠PRQ的度数,根据∠1=∠SRQ ﹣∠PRQ 代入即可求出答案.【详解】解:∵////OP QR ST ,2=100∠︒,3=120∠︒,∴2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,∴=180100=80PRQ ∠︒-︒︒,∴1==40SRQ PRQ ∠∠-∠︒,故答案是40°.【点睛】本题主要考查对平行线的性质的理解和掌握,能灵活运用平行线的性质进行计算是解此题的关键.18.25-【分析】根据相反数的性质列出方程,解方程即可.【详解】∵2x+4与3x -2互为相反数,∴2x+4=-(3x -2),解得x=-25.故答案为-25.【点睛】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(1)-29;(2)-26.【分析】(1)先去括号,然后计算加减即可;(2)利用乘法分配率,进行计算即可.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)(﹣3574912-+)136÷=(﹣3574912-+)×36=﹣27﹣20+21=﹣26.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的乘法运算律进行计算.20.(1)30°(2)∠COE 与∠BOE【分析】(1)利用OD是∠AOC的平分线,得出∠AOD=∠COD12=∠AOC,求出∠AOE,再利用平角的意义求得问题;(2)利用互余两角的和是90°直接写出即可.(1)解:∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD12=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∵∠COE+∠COD=90°又AOD∠=∠COD,∠BOE=∠COE∴∠COE+∠COD=90°,∠BOE+∠COD=90°∴与AOD∠互余的角为:∠COE与∠BOE.【点睛】此题考查两角互余的关系、角平分线的意义、平角的意义,以及角的和与差等知识点.21.5x2﹣8y2,12【分析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.22.对顶角相等;1;等量代换;AB;DF;同旁内角互补,两直线平行;FDC;两直线平行,同位角相等;已知;FDC;等量代换;内错角相等,两直线平行【分析】先由已知和对顶角相等得∠1+∠4=180°,证出AB∥DF,再由平行线的性质得∠B=∠FDC,然后结合已知证出∠3=∠FDC,即可得出结论.【详解】∵∠1+∠2=180°(已知).∠2=∠4(对顶角相等).∴∠1+∠4=180°(等量代换).∴AB∥DF(同旁内角互补,两直线平行).∴∠B=∠FDC(两直线平行,同位角相等).∵∠3=∠B(已知).∴∠3=∠FDC(等量代换).∴EF∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质以及对顶角相等等知识;熟练掌握平行线的判定与性质是解题的关键.23.(1)60(2)90(3)①(t+30),2t;②当AC转动30秒时,两灯的光束射线AC∥BD(4)存在,t=110秒【分析】(1)根据邻补角互补,即可求解;(2)根据题意可得灯A射线从AM开始顺时针旋转至AN,旋转了180°,即可求解;(3)①根据旋转的角度等于旋转的速度乘以时间,即可求解;②根据平行线的性质可得∠CAM=∠PBD,可得到关于t的方程,即可求解;(4)根据平行线的性质可得∠PBD+∠CAN=180°,可得到关于t的方程,即可求解.(1)解:∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴2∠BAN+∠BAN=180°,∴∠BAN=60°;故答案为:60(2)解:灯A射线从AM开始顺时针旋转至AN,旋转了180°,∴所需时间为180÷2=90(秒)(3)解:①∵灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,∴∠PBD=(t+30)°,∠MAC=2t°,答案为:(t+30),2t②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,理由如下:如图:∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=(30+t),解得t=30(秒);所以当AC转动30秒时,两灯的光束射线AC∥BD(4)解:BD到达BQ之前,即90<t<150时,还存在某一时刻,使两灯的光束射线AC∥BD,如图:∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴(30+t)+(2t﹣180)=180,解得t=110(秒).存在t=110秒使两灯的光束射线AC∥BD【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用方程思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.(1)500;(2)详见解析;(3)用微信支付方式的20-40岁年龄段人数多【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可得出答案;(2)根据喜欢现金支付所占的比例×总人数,得出喜欢现金支付的参与调查的人数,再减去20-40岁年龄段人数,即可得到喜欢现金支付的41-60岁年龄段人数,据此补全图形即可;(3)通过条形统计图可直接得出用微信支付方式的20-40岁年龄段人数多.【详解】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图如下:(3)该社区参与问卷调查人中,用微信支付方式的20-40岁年龄段人数多.【点睛】本题考查的知识点是扇形统计图与条形统计图,解题的关键是将扇形统计图与条形统计图中的信息相关联.25.AB的长为12cm.【分析】设线段AB的长为xcm,则AC的长为12x cm,AD的长为13x cm,列方程求解即可.【详解】解:设AB 的长为xcm ,则AC 的长为12x cm ,AD 的长为13x cm ;依题意得:11223x x -=,解得:12x =.答:AB 的长为12cm .【点睛】本题考查的知识点是一元一次方程的应用,根据图形找出线段间的等量关系是解此题的关键.26.(1)4(3)3a a -+或2(3)(4)a a a ---;(2)能计算,结果为2712a a -+.【分析】(1)第一种方法:可以用大的正方形的面积减去B 的面积得出;第二种方法可以A 分割成两个小长方形的面积和即可计算;(2)根据(1)中的结果建立一个等式,根据等式即可求出(3)(4)a a --的值.【详解】(1)第一种方法:用正方形的面积减去B 的面积:则A 的面积为2(3)(4)a a a ---;第二种方法,把A 分割成两个小长方形,如图,则A 的面积为:4(3)3a a-+(2)能计算,过程如下:根据(1)得,2(3)(4)4(3)3a a a a a---=-+∴22(3)(4)4(3)3712a a a a a a a --=---=-+【点睛】本题主要考查列代数式和整式加减的应用,数形结合是解题的关键.27.(1)∠2=100°,∠3=40°.(2)OF 平分∠AOD.【分析】(1)根据邻补角和角平分线的定义进行计算即可;(2)分别计算∠AOD 和∠3的大小,然后进行判断即可.【详解】解:(1)由题意可知:2+180BOC ∠∠= ,且∠BOC =80°,∴∠2=100°,∵OE平分∠BOC∴11=402BOC∠∠=∴∠3=180°-∠1-∠2=40°.(2)OF平分∠AOD.理由:∵∠AOD=180°-∠2=180°-100°=80°,∴∠3=12∠AOD所以OF平分∠AOD.。
最新湘教版七年级数学上册期末专题复习(全册共74页附答案)目录专题提升一数轴、相反数、绝对值等的综合运用专题提升二有理数的混合运算专题提升三代数式的求值及应用专题提升四一元一次方程的易错点及应用专题提升五线段、角的计算及思想方法复习课一(2.1-2.4)复习课二(2.5-2.7)复习课三(4.1-4.4)复习课四(4.5-4.6)复习课五(5.1-5.3)复习课六(6.1-6.4)专题提升一数轴、相反数、绝对值等的综合运用带字母的绝对值问题1.a为有理数,下列判断正确的是( )A.-a一定是负数 B.|a|一定是正数 C.|a|一定不是负数 D.-|a|一定是负数2.有理数a、b在数轴上位置如图所示,则|a|与|b|的关系是( )第2题图A.|a|>|b|B.|a|≥|b|C.|a|<|b|D.|a|≤|b|3.若|x-2|+|y+3|=0,计算:(1)求x,y的值;(2)求|x|+|y|的值.4.有理数x、y在数轴上对应点如图所示:第4题图(1)在数轴上表示-x、|y|;(2)试把x、y、0、-x、︱y︱这五个数从小到大用”<”连接起来;(3)化简|x+y|-|y-x|+|y|.数轴相关的问题5.图中数轴的单位长度为1,若点A、B表示的数是互为相反数,则在图中A,B,C,D 四个点中表示绝对值最小的数的点是( )第5题图A.点A B.点B C.点C D.点D6.粗心的小明在画数轴时只标注了单位长度(一格表示1个单位长度)和正方向,而忘记了标注原点(如图所示).若点B和点C表示的两个数的绝对值相等,则点A表示的数为____________,点B 表示的数为____________,点C 表示的数为____________.第6题图7.如图,数轴的单位长度为1.(1)如果点P ,T 表示的数互为相反数,那么点S 表示的数是多少?点P ,T 表示的数分别是多少?(2)如果在四点Q ,P ,R ,T 中的其中两点所表示的数是互为相反数,则此时点S 表示的数是什么?第7题图有理数的大小比较8.如果a 为小于0的有理数,那么下列关系正确的是( )A .|a |>-aB .-a >|a |C .a >-aD .-a >a 9.比较-9798,-9899,-99100的大小.10.数轴上有四个点A、B、C、D,它们与原点的距离分别为1,2,3,4,且点A,C 在原点左边,点B,D在原点右边.(1)请分别写出点A,B,C,D表示的数;(2)比较这四个数的大小,并用”>”连接.有理数的规律探索型问题11.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )第11题图A.22 B.24 C.26 D.2812.如图,圆上有五个点,这五个点将圆分成五等份(每份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次”移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第一次”移位”,这时他到达编号为1的点,然后从1→2为第二次”移位”.现在小明从编号为4的点开始,则第2016次”移位”后,他到达编号为____________的点.第12题图13.爱思考的小方同学在做数学题时,发现下面算式有规律:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16…根据以上规律你能求出2016这个数出现在哪一行,左起第几个数吗?参考答案专题提升一 数轴、相反数、绝对值等的综合运用1.C 2.A 3.(1)由题意得,x -2=0,y +3=0,解得x =2,y =-3; (2)|x|+|y|=|2|+|-3|=2+3=5.4.(1)如图所示:第4题图(2)-x <y <0<︱y ︱<x(3)根据题意和图示分析可知:x +y >0,y -x <0,y <0,所以|x +y|-|y -x|+|y|=x +y -x +y -y =y. 5.D 6.-4 -3 37.(1)点S 表示0,点P 表示-4,点T 表示4. (2)点S 表示5,4,1,3,0或-1. 8.D 9.-9798>-9899>-9910010.(1)点A 表示-1,点B 表示2,点C 表示-3,点D 表示4. (2)4>2>-1>-3. 11.C 12.4 13.第44行,左起第9个数.专题提升二 有理数的混合运算有理数的加减混合运算技巧一、同号的数相加1.计算:(-7)+5+(-3)+4.二、同分母的数结合相加 2.计算:(1)-615-12-1+415-4.5+313;(2)12+(-23)+45+(-12)+(-13).三、能凑整的先凑整 3.计算:(1)-5.5-(-3.2)-(-2.5)-(-4.8);(2)(-313)+(-534)-(-214)+(-823)-(-14.5).四、互为相反数的结合相加4.计算:614-3.3-(-6)-(-334)+4+3.3.利用分配律简化计算5.计算下列各式: (1)(-36)×(54-56-1112);(2)-878×4;(3)4×(-725)+(-2)2×5-4÷(-512);(4)-22-(-14+118)÷(-136)-197172×36.有理数加减混合运算的应用6.自来水费采取阶梯式计价,第一阶梯为月总用水量不超过34m 3的用户,自来水价格为2.40元/m 3,第二阶梯为月总用水量超过34m 3的用户,前34m 3水价为2.40元/m 3,超出部分的水价为3.35元/m 3.小敏家上月总用水量为50m 3,求小敏家上月应交多少水费.7.某市旅游局发布统计报告:国庆期间,某风景区在7天假期中每天接待旅客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):若9月30日的游客人数为0.6万人,门票每人100元.问:国庆期间这个风景区门票收入是多少元?有规律的运算8.定义一种新运算,观察下列各式:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;5⊙4=5×4+4=24; 4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b=____________;(2)若a≠b,那么a⊙b____________b⊙a(填入”=”或”≠”);(3)若a⊙(-2b)=4,则2a-b=____________;请计算(a-b)⊙(2a+b)的值.9.定义:a 是不为1的有理数,我们把11-a称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-13,(1)a 2是a 1的差倒数,求a 2; (2)a 3是a 2的差倒数,求a 3;(3)a 4是a 3的差倒数,…依此类推a n +1是a n 的差倒数,直接写出a 2017.参考答案专题提升二 有理数的混合运算1.-1 2.(1)-143 (2)-15 3.(1)5 (2)-1 4.205.(1)18 (2)-712 (3)0 (4)-730126.由题意得:34×2.4+3.35×(50-34)=34×2.4+16×3.35=135.2(元). 答:小敏家上月应交135.2元的水费.7.国庆期间游客的总人数为1.8+2.6+2.8+2.6+2+2.2+1.2=15.2万人, 门票收入为15.2×10000×100= 15200000=1.52×107元. 8.(1)4a +b (2)≠ (3)2 69.(1)根据题意,得:a 2=11)=143=34. (2)根据题意,得:a 3=11-34=114=4.(3)由a 1=-13,a 2=34,a 3=4,a 4=11-4=-13,2017÷3=672……1,∴a 2017=-13.专题提升三 代数式的求值及应用化简求值1.化简并求值:-2(mn -3m 2-n )-[m 2-5(mn -m 2)+2mn ],其中m =1,n =-2.2.化简并求值:-6(a-b)2+7(a-b)2-4(b-a)2,其中a-b=-3.3.已知:A=3b2-2a2+5ab,B=4ab-2b2-a2,求2A-4B的值,其中a=1,b=-1.与字母取值无关的问题4.已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则( ) A.m=-5,n=-1 B.m=5,n=1 C.m=-5,n=1 D.m=5,n=-1 5.已知多项式x2+ax-y+b与bx2-3x+6y-3的差的值与字母x的取值无关,求代数式3(a2-2ab-b2)-4(a2+ab+b2)的值.数形结合化绝对值6.(1)有理数a,b,c在数轴上的位置如图所示,化简|a+b|+|b-1|-|a-c|-|1-c|.(2)有理数a,b,c在数轴上的位置如图所示,化简|a-b|-|c-a|+|-b|.第6题图代数式的应用7.为了能有效地使用电力资源,实行居民峰谷用电,居民家庭在峰时段(上午8:00~晚上21:00)用电的电价为0.55元/千瓦时,谷时段(晚上21:00~次日晨8:00)用电的电价为0.35元/千瓦时.若某居民户某月用电100千瓦时,其中峰时段用电x千瓦时.(1)请用含x的代数式表示该居民户这个月应缴纳电费;(2)利用上述代数式计算,当x=50时,求应缴纳电费.8.如图是一个长方形娱乐场所,其设计方案如图所示,其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:第8题图(1)游泳池和休息区的面积是多少?(2)绿地面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形长和宽的一半,你说他的设计符合要求吗?为什么?9.新学期,两摞规格相同的数学课本整齐地叠放在课桌上,请根据图中所给出的数据信息,解答下列问题:第9题图(1)每本书的厚度为________cm,课桌的高度为________cm;(2)当课本数为x(本)时,请直接写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)利用(2)中的结论解决问题:桌面上有56本与题(1)中相同的数学课本,整齐叠放成一摞,若从中取走14本,求余下的数学课本高出地面的距离.代数式规律的探索10.一组按照规律排列的式子:x ,x 34,x 59,x 716,x 925,…,其中第8个式子是____________,第n 个式子是____________(n 为正整数).11.如图是用相同长度的小棒摆成的一组有规律的图案,图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,图n 需要小棒____________根(用含有n 的式子表示).第11题图12.如图是由一些火柴棒搭成的图案:第12题图(1)摆第1个图案用____________根火柴棒, 摆第2个图案用____________根火柴棒, 摆第3个图案用____________根火柴棒.(2)按照这种方式摆下去,摆第n 个图案用多少根火柴棒?(3)第50个图案用多少根火柴棒?计算一下摆121根火柴棒时,是第几个图案?参考答案专题提升三代数式的求值及应用1.原式=-2mn+6m2+2n-[m2-5mn+5m2+2mn]=-2mn+6m2+2n-6m2+3mn=mn+2n,将m=1,n=-2代入,得原式=-2+2×(-2)=-2-4=-6.2.原式=-3(a-b)2,当a-b=-3时,原式=-3(a-b)2=-3×(-3)2=-27.3.原式=2(3b 2-2a 2+5ab)-4(4ab -2b 2-a 2)=6b 2-4a 2+10ab -16ab +8b 2+4a 2=14b 2-6ab ,当a =1,b =-1时,原式=14+6=20. 4.C5.∵x 2+ax -y +b -(bx 2-3x +6y -3)=(1-b)x 2+(a +3)x -7y +b +3,差的值与字母x 的取值无关,∴1-b =0,a +3=0,解得:a =-3,b =1,则原式=3a 2-6ab -3b 2-4a2-4ab -4b 2=-a 2-7b 2-10ab ,当a =-3,b =1时,-(-3)2-7×1-10×(-3)×1=-9-7+30=14.6.(1)由数轴图得:a 为负,b 为负,故a +b 为负;b <1,故b -1为负;同理,a -c 为负,1-c 为正;原式=(-a -b)+(-b +1)-(-a +c)-(1-c)=-a -b -b +1+a -c -1+c =-2b. (2)由数轴可知:a -b <0,c -a >0,-b >0,∴|a -b|-|c -a|+|-b|=-(a -b)-(c -a)-b =-a +b -c +a -b =-c.7.(1)该居民这个月应交电费为0.55x +0.35(100-x)=(0.2x +35)元; (2)当x =50时,0.2x +35=0.2×50+35=45元,所以应交电费为45元.8.(1)游泳池面积为mn ,休息区面积为πn 2. (2)绿地面积为ab -mn -18πn 2. (3)设计合理.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b.∴(ab-mn -18π·n 2)-12ab=12-π32·b 2>0.∴ab-mn -18π·n 2>12ab ,即小亮设计的游泳池面积符合要求.9.(1)每本书的厚度=(83-81.5)÷3=0.5cm ,课桌的高度=81.5-0.5×3=80cm ; (2)当课本数为x(本)时,数学课本高出地面的距离=课本厚度+课桌高度=(0.5x +80)cm ;(3)当x =56-14=42时,0.5x +80=21+80=101cm .10.x 1564 x 2n -1n 2 11.(6n -2) 12.(1)5 9 13 (2)摆第n 个图案用(4n +1)根火柴棒; (3)用火柴棒201根;第30个图案.专题提升四 一元一次方程的易错点及应用解一元一次方程的易错点易错点1 移项不变号导致错误 1.解方程:9-2x =7-5x.易错点2 去括号漏乘导致错误2.解方程:3x -7(x -1)=3-2(x +3).易错点3 去分母漏乘导致错误 3.解方程:x -1-x 3=x +26-1.易错点4 分母小数化整数多乘导致错误 4.解方程:0.1x -0.20.5-x +10.2=1.一元一次方程的应用5.有一包糖果,分给幼儿园某班的小朋友,如果每个小朋友分到6颗,则恰好有一个小朋友没有分到糖果;如果每个小朋友分到5颗,则多出5颗.那么这个班有小朋友的人数为( )A .8人B .10人C .11人D .22人6.(杭州中考)林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%×(108+x)C .54+x =20%×162D .108-x =20%(54+x)7.某品牌自行车1月份的销售量为100辆,每辆车的售价相同.2月份的销售量比1月份增加了10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为____________元.8.为迎接国庆节的到来,某市准备用灯饰美化红旗路,采用A ,B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的23.(1)A ,B 两种灯笼各需多少个?(2)已知A ,B 两种灯笼的单价分别为40元和60元,则这次美化工程购置灯笼需多少费用?9.一个三位数,三个数字之和是24,十位数字比百位数字少2.如果这个三位数减去一个两位数所得的数也是三位数,其中这个两位数两个数字与百位数字相同,而得到的这个三位数三个数字的顺序和原来三位数的数字的顺序颠倒,求原来的三位数.利用一元一次方程解决方案决策问题10.椰岛文具店的某种毛笔每支售价25元,书法练习本每本售价5元.该店为了促销该种毛笔和书法练习本,制定了两种优惠方案.方案1:买一支毛笔赠送一本书法练习本;方案2:按购买金额九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x>10)本.(1)请你用含x 的式子表示每种优惠方案的付款金额;(2)购买多少本书法练习本时,两种优惠方案的付款金额一样多.11.已知某电脑公司有A ,B ,C 三种型号的电脑,其价格分别为A 型每台6000元,B 型每台4000元,C 型每台2500元.某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台.请你设计出几种不同的购买方案供该校选择,并说明理由.参考答案专题提升四 一元一次方程的易错点及应用1.x =-23 2.x =5 3.x =-274.x =-43 5.C 6.B 7.8808.(1)A 灯笼120个,B 灯笼80个; (2)120×40+80×60=9600元.9.设百位数字为x ,则十位数字为(x -2),个位数字为24-x -(x -2)=26-2x ,根据题意,得[100x +10(x -2)+(26-2x)]-(10x +x)=100(26-2x)+10(x -2)+x ,解得x =9,∴x -2=7,26-2x =8.∴原来的三位数是100×9+10×7+8=978.答:原来的三位数是978.10.(1)方案1:5x +200(x>10); 方案2:4.5x +225(x>10).(2)购买50本时,两种方案实际付款一样多. 11.方案一:若购买A ,B 两种型号的电脑.设购买A 型电脑x 台,则购买B 型电脑(36-x)台.根据题意,得6000x +4000(36-x)=100500,解得x =-21.75.经检验,x =-21.75不符合题意,电脑台数不可能是负数或小数,故舍去. 方案二:若购买A ,C 两种型号的电脑.设购买A 型电脑x 台,则购买C 型电脑(36-x)台.根据题意,得6000x +2500(36-x)=100500,解得x =3.∴36-x =36-3=33(台).经检验,x =3符合题意,即购买A 型电脑3台,C 型电脑33台. 方案三:若购买B ,C 两种型号的电脑.设购买B 型电脑x 台,则购买C 型电脑(36-x)台.根据题意,得4000x +2500(36-x)=100500,解得x=7.∴36-x=36-7=29(台).经检验,x=7符合题意,即购买B型电脑7台,C型电脑29台.综上所述,购买电脑的方案共有两种:一种是购买A型电脑3台,C型电脑33台;另一种是购买B型电脑7台,C型电脑29台.专题提升五线段、角的计算及思想方法线段的计算1.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为( )A.2cm B.4cm C.2cm或6cm D.4cm或6cm2.如图,点C,D,E在线段AB上,已知AB=12cm,CE=6cm,求图中所有线段的长度和.第2题图3.已知:如图,B,C两点把线段AD分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长.第3题图4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.第4题图(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在AB的延长线上,且满足AC-CB=b cm,其他条件不变,MN的长度为____________.(直接写出答案)角度的计算5.如图,已知∠EOC 是平角,OD 平分∠BOC ,在平面上画射线OA ,使∠AOC 和∠COD 互余,若∠BOC =50°,则∠AOB 是____________.第5题图6.已知一个角的余角的补角是这个角的补角的45,求这个角的度数.7.如图,点O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.若∠BOE =12∠EOC ,∠DOE =72°,求∠EOC 的度数.第7题图8.如图,从点O出发引四条射线OA,OB,OC,OD,已知∠AOC=∠BOD=90°.(1)若∠BOC=35°,求∠AOB与∠COD的大小;(2)若∠BOC=46°,求∠AOB与∠COD的大小;(3)你发现了什么?(4)你能说明上述的发现吗?第8题图9.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.第9题图(1)如图1,当∠BOC=70°时,求∠DOE的度数;(2)如图2,当射线OC在∠AOB内绕点O旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.10.已知射线OC在∠AOB的内部.(1)如图1,若已知∠AOC=2∠BOC,∠AOB的补角比∠BOC的余角大30°.①求∠AOB的度数;②过点O作射线OD,使得∠AOC=3∠AOD,求出∠COD的度数;(2)如图2,若在∠AOB的内部作∠DOC,OE,OF分别为∠AOD和∠COB的平分线.则∠AOB +∠DOC=2∠EOF,请说明理由.第10题图直线与数轴11.在如图所示的数轴上,点A是BC的中点,点A,B对应的实数分别为1和-3,则点C对应的实数是____________.第11题图12.已知数轴上点A,B,C所表示的数分别是4,-5,x.(1)求线段AB的长;(2)若A,B,C三点中有一点是其他两点的中点,求x的值;(3)若点C在原点,此时A,C,B三点分别以每秒1个单位,2个单位,4个单位向数轴的正方向运动,当A,B,C三点中有一点是其他两点的中点时,求运动的时间.第12题图13.如图,请按照要求回答问题:第13题图(1)数轴上的点C表示的数是____________;线段AB的中点D表示的数是____________;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.14.已知:如图,数轴上两点A、B所对应的数分别为-3,1,点P在数轴上从点A出发以每秒2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)直接写出线段AB的中点所对应的数,以及t秒后点P所对应的数(用含t的代数式表示);(2)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(3)若点P比点Q迟1秒出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度,并问此时数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.第14题图参考答案专题提升五线段、角的计算及思想方法1.C 2.60cm3.设AB=2x,则BC=5x,CD=3x,AD=10x,∵M为AD的中点,∴AM=5x,∴BM=5x-2x =3x =6,解得:x =2,∴CM =7x -5x =2x =4cm ,AD =10x =20cm .4.(1)因为点M 、N 分别是AC 、BC 的中点,所以MC =12AC =12×8=4cm ,CN =12CB =12×6=3cm ,MN =MC +CN =4+3=7cm .(2)因为点M 、N 分别是AC 、BC 的中点,所以MC =12AC ,CN =12CB ,MN =MC +CN =12AC +12CB =12(AC +CB)=a 2cm . (3)b2cm5.115°或15°6.设这个角为x 度,由题意得:180-(90-x)=45(180-x),解得x =30.答:这个角为30°.7.设∠BOE=x ,∵∠BOE =12∠EOC ,∴∠EOC =2x.∵∠DOE=72°,∴∠DOB =12∠AOB=72°-x ,∴2(72°-x)+x +2x =180°,解得x =36°,∴∠EOC =72°.8.(1)∵∠BOC=35°,∠AOC =90°, ∴∠AOB =90°-35°=55°. 同理,∠COD =55°.(2)∵∠BOC=46°,∠AOC =90°, ∴∠AOB =90°-46°=44°. 同理,∠COD =44°. (3)∠AOB=COD.(4)∵∠AOB=90°-∠BOC,∠COD =90°-∠BOC,∴∠AOB =∠COD. 9.(1)45°; (2)不变,∠DOE =45°.10.(1)①设∠BOC=x ,∠AOC =2x ,则∠AOB=3x ,180°-3x =90°-x +30°,x =30°,则∠AOB=90°.②∠AOD =20°,则∠COD=40°或80°.(2)∵OE,OF 分别为∠AOD 和∠COB 的平分线,∴∠AOD =2∠EOD,∠BOC =2∠COF,∠AOB +∠COD=2∠EOD+2∠COD+2∠COF =2∠EOF.11.2+ 312.(1)线段AB 的长为9(2)①点C 为AB 中点时,x =-12,②点A 为BC 中点时,x =13,③点B 为AC 中点时,x=-14.(3)1秒,145秒,134秒.13.(1)2.5 -2 (2)线段BC 的中点E 表示的数是0.75,DE =2+0.75=2.75. (3)如图:第13题图BC 平分∠MBN,理由是:∵∠ABM =120°,∴∠MBC =180°-120°=60°.又∠CBN=60°,∴∠MBC =∠CBN ,即BC 平分∠MBN.14.(1)AB 中点对应的数为-1,t 秒后点P 所对应的数为-3+2t. (2)设相遇时间为t 秒,则2t +t =4,t =43,则-3+2×43=-13.答:相遇时的位置所对应的数为-13.(3)①P、Q 没相遇,则2t +t =3-1,t =23,此时C 所对应的数为-3+2×23=-53.②P 、Q 相遇后再分开,则2t +t =3+1,t =43,此时C 所对应的数为0-1×43=-43.答:点P 出发23秒后,P 、Q 相距1个单位长度,此时C 点表示-53,或点P 出发43秒后,P 、Q 相距1个单位长度,此时点C 表示-43.复习课一(2.1-2.4)例1 计算:(1)(-34)-(-12)+(+34)+(+8.5)-13;(2)0-(-256)+(-527)-(-216)-⎪⎪⎪⎪⎪⎪-657.反思:进行有理数的加减混合运算往往是把加减法统一成加法,再利用加法的运算律进行简化计算.灵活地运用加法的交换律和结合律是简化的关键,往往把互为相反数的先加,同分母的先加,同号的先加.例2 计算:(1)(-3)÷⎝ ⎛⎭⎪⎫-134×0.75×73÷3;(2)(114-56+12)×(-12);(3)(-24)÷⎝ ⎛⎭⎪⎫-14+18-12.反思:进行有理数乘除混合运算时往往是把乘除统一成乘法,再利用乘法交换律和结合律进行简化运算,在计算过程中还应注意结果的符号不要搞错.分配律的逆向使用有一定的难度,关键是找准相同的因数才能准确地计算.例3 开学时,某校对七年级(1)班的男生进行了单杠引体向上的测验,以能做7次为达标标准,名男生的成绩如下表:(1)第一小组的达标率是多少? (2)平均每人做了多少个引体向上?反思:用有理数的混合运算解决实际问题时,要分析清楚题意,选择正确的运算.运算过程中能用运算律的要使用运算律来简化计算.1.计算:(-1)÷(-5)×(-15)的结果是( )A .-1B .1C .-125D .-252.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A .56℃B .-56℃C .310℃D .-310℃3.下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③23×(-94)=-32;④(-36)÷(-9)=-4.其中正确的个数是( )A .1个B .2个C .3个D .4个4.(凉山州中考)若x 是2的相反数,|y|=3,则x -y 的值是( )A .-5B .1C .-1或5D .1或-55.数轴上的点A 和点B 所表示的数互为相反数,且点A 对应的数是-2,P 是到点A 或点B 距离为3的数轴上的点,则所有满足条件的点P 所表示的数的和为( )A .0B .6C .10D .166.(1)(____________)÷4=-312;(2)比6的相反数小4的数是____________;(3)如果一个数除以它的倒数,商是1,那么这个数是____________.7.(1)若a ,b 互为相反数,c ,d 互为倒数,且|c|=1,则a +b c +c 2-cd =____________,12cd -3a -3b =____________; (2)若三个有理数x ,y ,z 满足xyz>0,则|x|x +y |y|+|z|z=____________;(3)计算:1÷⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1-13÷⎝ ⎛⎭⎪⎫1-14÷…÷⎝ ⎛⎭⎪⎫1-110=____________.8.计算:(1)35+(-13)-1+25;(2)-54×(-214)÷(-214)×29;(3)(-14+13-38+56)÷(-124);(4)(-4.59)×(-37)+2.41×37.9.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米),依先后次序记录如下:+9,-3,-5,+6,-7,+10,-6,-4,+4,-3,+7.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向? (2)若出租车每千米耗油量为0.1升,则这辆出租车这天下午耗油多少升?10.如果表示运算x +y +z ,表示运算a -b +c -d ,求的值.11.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正、负数表示每日实际生产量与计划量相比的增减情况;(2)该车厂本周实际共生产了多少辆自行车?平均每日实际生产多少辆自行车?参考答案复习课一(2.1—2.4)【例题选讲】例1 (1)(-34)-(-12)+(+34)+(+8.5)-13=(-34+34)+(12+8.5)-13=0+9-13=823. (2)0-(-256)+(-527)-(-216)-⎪⎪⎪⎪⎪⎪-657=256+216+(-527-657)=5+(-12)=-7. 例2 (1)(-3)÷⎝ ⎛⎭⎪⎫-134×0.75×73÷3=-3×⎝ ⎛⎭⎪⎫-47×34×73×13=3×47×34×73×13=1; (2)(114-56+12)×(-12)=114×(-12)+(-56)×(-12)+12×(-12)=-15+10+(-6)=-11;(3)(-24)÷⎝ ⎛⎭⎪⎫-14+18-12=(-24)÷⎝ ⎛⎭⎪⎫-58=(-24)×⎝ ⎛⎭⎪⎫-85=1925. 例3 (1)根据题意,分析可得,共有8名同学参加了测试,其中有5名学生的测试达标,则其达标率为58×100%=62.5%. (2)由题意易得,他们做的引体向上的个数一共为2+(-1)+0+3+(-2)+(-3)+1+0+7×8=56(个),∴平均每人做56÷8=7(个).【课后练习】1.C 2.C 3.B 4.D 5.A 6.(1)-14 (2)-10 (3)±17.(1)0 12 (2)3或-1 (3)10 【解析】原式=1÷12÷23÷34÷…÷910=1×2×32×43×…×109=10. 8.(1)-13(2)-12 (3)-13 (4)3 9.(1)出租车离公园8千米,在公园的东方; (2)这辆出租车这天下午耗油6.4升.10.(-1-2-3)×(2014-2015+2016-2017)=-6×(-2)=12.11.(1)以每日生产400辆自行车为标准,多出的数记为正数,不足的数记为负数,则有+5,-7,-3,+10,-9,-15,+5.(2)405+393+397+410+391+385+405=2786(辆),2786÷7=398(辆),即共生产了2786辆自行车,平均每日实际生产398辆自行车.复习课二(2.5-2.7)例1 计算:(1)(-2)4;(2)-34;(3)(45)3.反思:①乘方是一种运算,是特殊的乘法(因数相同的乘法运算),幂是乘方运算的结果;②因为a n 表示n 个a 相乘,所以可以利用有理数的乘法进行乘方运算,即将乘方转化成乘法运算.例2 ”天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )A .700×1020B .7×1023C .0.7×1023D .7×1022反思:用科学记数法表示,关键是确定a 和10的指数.确定10的指数有两种方法:方法1:把已知数的小数点向左移动几位(保留一位整数位数),就乘10的几次方;方法2:查出已知数的整数部分的位数,整数部分的位数减去1,就等于10的指数.例3 计算:(1)-0.252÷(-12)3×(-1)2017+(-2)2×(-3)2; (2)2×[5+(-2)3]-(-|-4|)÷12.反思:学好有理数的混合运算需过四关:符号关、转化关、运算顺序关和运算律关.在计算的过程中,要注意根据运算的法则,先确定符号,再算绝对值;要注意根据算式的特点,适时地化减为加、化除为乘、化带分数为假分数,化小数为分数等.1.-23等于( ) A .-6 B .6 C .-8 D .82.(宜宾中考)地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A .11×104B .0.11×107C .1.1×106D .1.1×1053.下列计算结果正确的有( )①-22÷(-2)3=1 ②-5÷13×35=-25 ③-18÷6÷2=-6 ④-13-(-1)2=-2A .1个B .2个C .3个D .4个4.下列各近似数精确到万位的是( )A .35000B .4.5万C .3.5×104D .4.5×1055.计算-32×(-13)2-(-2)3÷(-12)2的结果是( ) A .-33 B .-31 C .31 D .336.已知2.73×10n 是一个10位数,则n =____________,原数为____________.7.计算:(1)-14+(-2)3÷49×⎝ ⎛⎭⎪⎫-23=____________; (2)-23÷2-(-2)2×(-1)2017=____________;(3)-|-32|-(-1)2×⎝ ⎛⎭⎪⎫13-12÷16=____________; (4)-14-⎝ ⎛⎭⎪⎫-512×411+(-2)3÷||-32+1=____________; (5)(-4)-(-4)×⎝ ⎛⎭⎪⎫123÷⎝ ⎛⎭⎪⎫123×(-22)=____________. 8.计算:(1)(-1)4-(5-4)÷(-13);(2)-62×(23-12)-23;(3)0.25×(-2)3-[4÷(-23)2+1]+(-1)2017;(4)(-1)5-[-3×(-23)2-113÷(-2)2].9.已知一平方千米的土地上,一年内从太阳得到的能量相当于燃烧1.3×108kg 煤所产生的能量,那么我国9.6×106km 2的土地上一年内从太阳得到的能量相当于燃烧a×10n kg 煤,求a ,n 的值.10.阅读下面材料并完成下列问题:你能比较20162017与20172016的大小吗?为了解决这个问题,我们首先写出它的一般形式,即比较n n+1与(n+1)n的大小(n是正整数),然后我们分析n=1,n=2,n=3,…,从中发现规律,经归纳、猜想得出结论.(1)通过计算,比较下列各组中两数的大小:(在横线上填写”<”、”=”或”>”)①12____________21;②23____________32;③34____________43;④45____________54;⑤56____________65;…(2)从第(1)题的结果中,经过归纳,可以猜想出n n+1与(n+1)n的大小关系是_______________________________________________________________________________ _________________________________________________________________;(3)试比较20162017与20172016的大小.参考答案复习课二(2.5—2.7)【例题选讲】例1 (1)(-2)4=(-2)×(-2)×(-2)×(-2)=16.(2)-34=-(3×3×3×3)=-81.(3)(45)3=45×45×45=64125. 分析:根据乘方的意义和符号法则求解.(1)(-2)4表示4个(-2)相乘;(2)-34表示34的相反数;(3)(45)3表示3个45相乘. 例2 D分析:7后跟上22个0用科学记数法表示是7×1022,故选D .例3 (1)原式=-(14)2÷(-18)×(-1)+4×9=-116×8×1+4×9=-12+36=3512. (2)原式=2×(5-8)-(-4÷12)=-6-(-8)=2. 分析:(1)算式中的“+”把整个算式分为两段,可以先分别计算“+”前后的两项,再求和.计算中要注意各项的符号;(2)本题中的算式含有括号,要先算括号内的运算,再按照“先乘方,再乘除,最后加减”的运算顺序进行运算.【课后练习】1.C 2.D 3.A 4.D 5.C6.9 27300000007.(1)11 (2)0 (3)-8 (4)0 (5)-208.(1)4 (2)-14 (3)-13 (4)239.a =1.248 n =1510.(1)①< ②< ③> ④> ⑤> (2)nn +1>(n +1)n (n≥3的正整数),n n +1<(n +1)n (n≤2的正整数)(3)20162017>20172016.复习课三(4.1-4.4)例1 用代数式表示:(1)a 与b 的差的立方________;a 与b 的平方的和________.(2)比x 与y 的积少3的数________;x 的2倍与y 的3倍的差________.(3)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为________元.(4)观察下列算式:32-12=8,52-12=24,72-12=48,92-12=80,…,由以上规律可以得出第n 个等式为____________.反思:列代数式时,要理解每句关系语的含义,包括数与字母的关系,包含哪些运算,列式时要正确反映关系语中的运算顺序;要善于找关键词,然后把关键词用适当的运算符号表示出来.例2 (1)已知(m +2)x 2ym +1是关于x ,y 的五次单项式,则m 的值是________. (2)已知多项式-5πx 2a +1y 2-14x 3y 3+x 4y 3. ①求多项式各项的系数和次数;②若多项式的次数是7,求a 的值.反思:在确定单项式的系数和次数时,一定要牢牢抓住定义,要注意π是数字而不是字母;在确定多项式的项时,要注意各项的符号.例3 (1)已知a =12,b =-3,求代数式4a 2+6ab -b 2的值; (2)已知代数式x +2y 的值是3,求代数式2x +4y +1的值;(3)已知a +b a -b =7,求代数式2(a +b )a -b -a -b 3(a +b )的值.反思:求代数式的值时首先要注意格式书写的规范,其次很多情况下要用到整体思想,如(2)就应把x +2y 看成一个整体,用整体代入的方法来求值.1.小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( )第1题图A .(3a +4b)元B .(4a +3b)元C .4(a +b)元D .3(a +b)元2.下列说法正确的是( )A .单项式-x 23的系数是-3 B .单项式2π2ab 3的指数是7 C .多项式x 3y -2x 2+3是四次三项式D .多项式x 3y -2x 2+3的项分别为x 3y ,2x 2,33.2016年某省财政收入比2015年增长8.9%,2017年比2016年增长9.5%,若2015年和2017年该省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( )A .b =a(1+8.9%+9.5%)B .b =a(1+8.9%×9.5%)C .b =a(1+8.9%)(1+9.5%)D .b =a(1+8.9%)2(1+9.5%)4.当1<a <2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-35.已知a 2+3a =1,则代数式2a 2+6a -1的值为( ) A .0 B .1 C .2 D .36.六年级某班有a 名学生,同学之间互赠礼物,每人都向其他同学赠送一个,则全班共送出的礼物个数为( )A .a(a +1)B .a (a +1)2 C .a(a -1) D .a (a -1)2 7.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )。
类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】(1)114-(+6)-358+(-1.25)-⎝⎛⎭⎫-358;(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 运用分配律解题的技巧一、正用分配律5.计算.(1)⎝⎛⎭⎫12-34+18×(-24);(2)391314×(-14).二、逆用分配律6.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律7.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.参考答案与解析1.解:(1)原式=114+(-1.25)-6+⎝⎛⎭⎫358-358=-6.(2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.解:(1)原式=-12+18-3=3.(2)原式=⎝⎛⎭⎫40-114×(-14)=40×(-14)-114×(-14)=-560+1=-559. 6.解:原式=-367×(4-3+6)=-27. 7.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235.。
有理数第一课 有理数 数轴 相反数 绝对值 倒数知识结构图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类热身练习: 1. 如果+20%表示增加20%, 那么-6%表示( ).A. 增加14%B. 增加6%C. 减少6%D. 减少26%2.如果 , 则“ ”内应填的实数是( ) A. B. C. D.3.- 的相反数是___ ____, —2的倒数是 , |— |= 。
4. 若 。
典例分析:1.把下列各数填入表示它所在的数集中: 。
整数有 分数有 负数有 有理数有2.如果a, b 是互为相反数, c, d 是互为倒数, x 的绝对值等于2, 那么 的值是 ;反思:3.若 , 则 的值为( ) A. B.C. 0D. 4点评: 一个数的绝对值是指数轴上表示这个数的点到 的距离, 所以某数的绝对值是非负数。
几个非负数的和等于零, 则这几个非负数同时为零。
4.实数a 、b 在数轴上的位置如图1所示, 则a 与b 的大小关系是( )A. a > bB. a = bC. a < bD. 不能判断图15.某工厂在上一星期的星期日生产了100台彩电, 下表是本星期的生产情况: 比前一天的产量多的记为正数, 比前一天产量少的记为负数。
请算出本星期最后一天星期日的产量是 台, 本星期的总产量是 台, 星期 的产量最多, 星期 的产量最少。
反馈练习:1.如果水位升高3m 时水位变化记作+3m, 则水位下降5米时水位变化记作:2.大于–3且不大于2的所有整数写出来是3.将有理数0, , 2.7, -4, 0.14按从小到大的顺序排列, 用“<”号连接起来应为_____________ ______.4.已知有理数a 、b 在数轴上的位置如图所示, 下列结论正确的是( ) A.b <a B.ab <0 C.b —a >0 D.a+b >0 5. 与a-b 互为相反数的是( ) A. a+b B. a-b C. -a-b D. b-a6.若 , , 且 , 试用“<”号连接 , , - , - 。
湘教版七年级上册数学期末考试试题一、单选题1.如果向右走5步记为+5,那么向左走3步记为()A .+3B .-3C .+13D .-132.月球白天的温度可达127℃,夜晚可降到-183℃,那么月球表面白天气温比晚上高()A .310℃B .-310℃C .56℃D .-56℃3.下列说法中,正确的是()A .单项式x 没有系数B .35x y 的次数是3C .2mn 与22n m -是同类项D .多项式31x -的项是3x 和14.下列运算中,结果正确的是()A .55x x -=B .235224x x x +=C .220a b ab -=D .43b b b-+=-5.下列方程中,解为3x =-的是()A .23x x +=B .30x -=C .103x +=D .31x -=6.如图所示几何图形中,是棱柱的是()A .B .C .D .7.在如图所示四幅图中,符合“射线PA 与射线PB 表示同一条射线”的图形是()A .B .C .D .8.下列调查中,适合采用全面调查(普查)方式的是()A .了解湖南卫视“快乐大本营”的收视率B .了解洪山竹海中竹蝗的数量C .了解全国快递包裹产生包装垃圾的数量D .了解某班同学“跳绳”的成绩9.如图,线段AB =22cm ,C 是AB 上一点,且AC =14cm ,O 是AB 的中点,线段OC 的长度是()A .2cmB .3cmC .4cmD .5cm10.按照如图所示的计算程序,若x=3,则输出的结果是()A .1B .9C .71-D .81-二、填空题11.2021的倒数是___________.12.数据4400000000人,这个数用科学记数法表示为_________.13.若一个多项式与m n -的和等于2m ,则这个多项式是_______.14.当x =________时,代数式122x -的值为0.15.为了做一个试管架,在长为a (cm )(a >6)的木板上钻3个小孔(如图)每个小孔的直径为2cm ,则x 等于_____cm .16.如图是根据某市2017年至2021年的各年工业生产总值绘制而成的折线统计图,则比上年增长额最大的年份是___________年.17.关于m 、n 的单项式﹣2manb 与32(1)a m -n 的和仍为单项式,则这两个单项式的和为___.18.如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.三、解答题19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.计算:3221(3)(2)[(2)(1)]12⎛⎫-⨯-+-⨯-+÷- ⎪⎝⎭21.先化简,再求值:()()254222.510xy x xy xy -+-+,其中1x =,2y =-.22.解方程:(1)3(x+1)=2(4x ﹣1);(2)32225x xx ---=.23.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强就某日午餐浪费饭菜情况进行了调查,随机抽取了若干名学生,将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图:回答下列问题:(1)这次调查的样本容量是________﹔(2)已知该中学共有学生2500人,请估计这日午餐饭和菜都有剩的学生人数;若按平均每人剩10克米饭计算.这日午餐将浪费多少千克米饭?24.5名老师带领若干名学生旅游(旅游费统一支付)他们联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?AB BC,AB长为1200米,BC长为1600米,一个人骑摩托25.如图,现有两条乡村公路,AB BC向C处行驶;另一人骑自行车从B处以5米/车从A处以20米/秒的速度匀速沿公路,秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.直线AB与CD相交于点O,OE平分70BOD AOC OF CD∠∠=⊥,,于O.∠互余的角是________.(1)图中与EOF∠的度数.(2)求EOF27.阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图,点M表示数1-,点N 表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、-3时,b 的值分别是多少?②利用(1)中的结论,探索a 与b 的关系,并用含a 的式子表示b ;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.参考答案1.B 2.A 3.C 4.D 5.A 6.B 7.C 8.D 9.B 10.C 11.12021【详解】2021的倒数是12021故答案为:12021.12.94.410⨯【详解】解:4400000000=94.410⨯,故答案为:94.410⨯.13.m n+【分析】已知一个加式与和求另一个加式,用减法,所以可得这个多项式是()2m m n --,再去括号,合并同类项即可得到答案.【详解】解: 一个多项式与m n -的和等于2m ,∴这个多项式是()22,m m n m m n m n --=-+=+故答案为:.m n +14.14【分析】根据题意可得1202x -=,解出即可.【详解】解:根据题意得:1202x -=,解得:14x =.故答案为:1415.64a -.【分析】根据题意可知4x 加上三个圆的直径(6cm )的和是acm ,列方程得到4x+3×2=a ,然后解关于x 的一元一次方程即可.【详解】根据题意得4x+3×2=a ,解得x =64a -,故答案为64a -.16.2021【分析】折线统计图中越陡说明增长的幅度越大,从图中看出2021年的折线最陡,所以增长额最大,进而知道增长额最大年份.【详解】解:从图中看出2021年的折线最陡,所以增长额最大,∴2021年比上年增长额最大故答案为:2021.【点睛】本题考查折线统计图的综合运用,读懂统计图,了解图形的变化情况是解决问题的关键.17.m 2n .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值,再代入代数式计算即可.【详解】∵﹣2manb 与3m 2(a ﹣1)n 的和仍为单项式,∴﹣2manb 与3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴﹣2manb+3m 2(a ﹣1)n =﹣2m 2n+3m 2n =m 2n .故答案为:m 2n .18.1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解: 点C 为线段AB 的中点,且10AB =,152BC AB ∴==,4DB = ,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.19.()13 2.50232-<-<<<--<【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.【详解】解:33--=-,(2)2--=,∵13 2.50232-<-<<<<,∴13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.-22【分析】根据有理数的四则混合运算顺序,先算乘方,再算乘除,最后算加减,有括号的要先算括号.【详解】原式219(2)21(8=÷-++-⨯()1848=-++-22=-【点睛】本题考查了有理数的四则混合运算,掌握四则运算顺序是解题的关键.21.24220x xy ---,20-【分析】把整式去括号、合并同类项后,然后把x 和y 的值代入计算即可得出结果.【详解】解:原式()2542520=---+xy x xy xy 2542520=----xy x xy xy 24220=---x xy ,当1x =,2y =-时,原式()24121220=-⨯-⨯⨯--()4420=----20=-.【点睛】本题考查了整式的加减—化简求值.去括号、合并同类项把整式正确化简是解题的关键.22.(1)x =1;(2)x =2.【分析】(1)先去括号,然后移项合并,再系数化为1,即可得到答案;(2)先去分母、去括号,然后移项合并,再系数化为1,即可得到答案;【详解】解:(1)3(x+1)=2(4x ﹣1),去括号,得3x+3=8x ﹣2,移项,得3x ﹣8x =﹣2﹣3,合并同类项,得﹣5x =﹣5,系数化为1,得x =1;(2)32225x xx ---=,去分母,得5(3x ﹣2)﹣2(2﹣x )=10x ,去括号,得15x ﹣10﹣4+2x =10x ,移项,得15x+2x ﹣10x =10+4,合并同类项,得7x =14,系数化为1,得x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法.23.(1)120(2)这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭【分析】(1)用A 组人数除以它所占的百分比即可得到调查的总人数;(2)先求出这日午饭有剩饭的学生人数为:2500×(1-60%-10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.(1)解:这次调查的样本容量=72÷60%=120(人),故答案为120;(2)解:122500250120⨯=(人);()250020%250107500⨯+⨯=(克)=7.5千克,答:这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.24.(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+⨯=,B 旅行社的费用为:()0.852020a a ⨯+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.25.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x 秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y 秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x 秒摩托车追上自行车,列方程得20x=1200+5x ,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y 秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.26.(1)∠DOE 和∠BOE ;(2)55︒【分析】(1)根据余角定义:如果两个角的和等于90︒(直角),就说这两个角互为余角可得答案;(2)首先计算出∠BOE 的度数,再计算出∠BOF 的度数,再求和即可.(1)∵OE 平分∠BOD ,∴∠BOE=∠DOE ,∵OF ⊥CD ,∴∠DOF=90︒,∴∠EOF+∠DOE=90︒,∠EOF+∠BOE=90︒,∴图中与EOF ∠互余的角是∠DOE 和∠BOE ;故答案为:∠DOE 和∠BOE ;(2)∵直线AB 、CD 相交于点O ,∠AOC=70︒,∴∠BOD=70︒,∵OE 平分∠BOD ,∴∠BOE=35︒,∵OF ⊥CD ,∴∠BOF=180709020︒-︒-︒=︒,∴∠EOF=∠BOE+∠BOF=55︒.【点睛】此题主要考查了角的计算,以及余角,关键是掌握余角定义,理清图形中角的关系.27.(1)①画图见解析,2,-2,5;②2b a =-;③-2019;(2)107.【分析】(1)①根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;②根据2a b +=,变换后即可得出结论;③根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;(2)设点A 表示的数为x ,根据点A 的运动找出点B ,结合互为基准变换点的定义即可得出关于x 的一元一次方程,解之即可得出结论;(1)解:画图略,① 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当0a =时,2b =,当4a =时,2b =-,当3a =-时,5b =,故答案为:2;2-;5;②2a b += ,2b a ∴=-,故答案为:2a -;③ 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当2021a =时,2019b =-;(2)解:设点A 表示的数为x ,根据题意得:5422x x -+=,解得:107x =.。
湘教版七年级上册数学期末考试试题一、单选题1.3-的相反数是()A .3B .3-C .3±D .132.在10,2,1,2-这四个数中,最小的数是()A .0B .-2C .1D .123.如图,数轴上被墨水遮盖的数可能是()A .-1B .-1.5C .-3D .-44.买一个足球需m 元,买一个篮球需n 元,则买5个足球和4个篮球共需()A .9mn 元B .20mn 元C .()45m n +元D .()54m n +元5.下列计算正确的是()A .2a a a +=B .4353x x x-=C .235235x x x +=D .22245a b ba a b-=-6.方程314x -=的解是()A .53x =B .53x =-C .1x =D .1x =-7.下列调查中,适宜采用抽样调查方式的是()A .调查2022年北京冬奥运会参赛运动员兴奋剂的使用情况B .调查一个班级的学生对电视节目“奇葩说”的知晓率C .调查一架“歼15”舰载战机各零部件的质量D .调查荷塘区中小学生每天体育锻炼的时间8.已知7620α︒∠=',则α∠的补角是()A .10340︒'B .10380︒'C .1340︒'D .1380︒'9.有理数a 在数轴上的位置如图所示,则5a -=()A .5a -B .5a -C .5a +D .5a --10.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°二、填空题11.某仓库运进面粉25t 记做25+,那么运出面粉18t 应记做_________.12.将360000用科学记数法表示应为________.13.某中学为了了解本校2000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是_________.14.火星赤道的夏季,白天气温高达35C ︒,晚上温度降至73C ︒-,则日晚温差是_________C ︒.15.如图,90BAC ︒∠=,90ADC ∠=︒,150∠=︒,则C ∠=________.16.已知关于x 的方程2x+a ﹣5=0的解是x=2,则a 的值为_______.17.若,a b 为有理数,我们定义新运算“⊕”使得2a b a b ⊕=-,则13⊕=________.18.如图所示的运算程序中,若开始输入的x 的值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2021次输出的结果为________.三、解答题19.(1)计算:()32165÷--(2)计算:()()211264--⨯--⎡⎤⎣⎦20.(1)解方程:3927y y -=-(2)解方程:2131136x x -+-=21.先化简,再求值:()()222423x xy xy x ----,其中1,2x y =-=.22.如图,线段20AB cm =,C 是线段AB 上一点,25AC AB =,M 是AB 的中点,N 是AC 的中点.(1)AC =________cm ,BM =_________cm ;(2)求线段CM 的长;(3)求线段MN 的长.23.某校计划组织师生共440人参加一次公益活动,如果租用10辆大型客车和5辆中型客车恰好全部坐满.已知每辆大型客车的乘客座位数比中型客车多17个.求每辆大型客车和每辆中型客车的乘客座位数.24.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①、②的统计图,已知“查资料”的人数是40人.注:0-1表示大于0同时小于等于1,以此类推.请你根据以上信息解答下列问题:(1)“玩游戏”的所占百分比是________;(2)这次抽样中,共抽取了________人进行调查;(3)补全条形统计图;(4)该校共有学生2200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.25.已知点O是直线AB上的一点,∠COE=090,OF是∠AOE的平分线。
七年级上册数学期末复习测试卷(时间:120分钟 满分100分)一.填空题:(每题3分,共30分)1.12-的相反数是________,-3的倒数是___________. 2.计算:20072008(1)(1)---=_______________.3.关于x 的方程250x k -+=的解是-1,则k =___________.4.不等式32x x -<的解集是_______________.5.小忆对全班同学最喜爱丹顶鹤的人数运用划记法记录数据进行统计,喜欢的人数记为“正正 ”,经统计喜欢丹顶鹤的人数有_____人,占全班人数的25%,则全班共有______人。
6.将右图折叠起来所成的空间图形是_____________.7.已知310a b +++=,则()a b +的相反数为_____________.8.有理数a ,b ,c 在数轴上表示的点如图所示,则ac____bc .9、连续六个自然数,前三个数的和为2001,那么后三个数的和为 10、如图,为正方体展开图形,将它折回正方体,则点A 会和下列哪两个面连接 (只填数字)二.选择题:(每题3分,共30分)1.如果0a b +=,那么a 与b 之间的关系是( )A.互为相反数.B.相等.C.符号相反.D.符号相同.2.已知一组数据1,3,2,5,x 的众数是3,则这组数据的中位数是( )A.2.8B.2C.3D.53.中央电视台《开心辞典》栏目有过这样的问题:如图1所示,根据方框内图形的规律,请从图2中的①~④中选择适当的图形填入“?”中,正确的选择是( )4.不等式411x <的正整数解是( )A.1,2,3x x x ===B.0,1,2x x x ===C.1,2,1x x x ===-D.1,2x x ==5.某人以八折的优惠价买了一套服装省去25元,那么买这套服装实际用了( )A.31.25元.B.60元.C.125元.D.100元.6.2008年5月12日我国四川汶川地区发生8.0级大地震,给广大人民造成巨大伤害. 社会各方积极捐款帮助灾区人民灾后重建工作,截止2008年7月2日,共捐款403.2亿元,用科学记数法表示为( )元.A.120.403210⨯B.9403.210⨯C.104.03210⨯D.84.03210⨯7.关于多项式233213232x y x y y ---,下列说法正确的是( ) A.它是三次四项式. B.它是关于字母y 的降幂排列.C.它的一次项是12y . D.233x y 与322x y -是同类项. 8.某一学习小组共6人,在一次数学测验中,得100分的1人,得90分的2人,得 68分的2人,得64分的1人,那么这个小组的平均成绩是( )A.82分.B.80分.C.74分.D.90分.9.方程3 1.410.50.4x x --=,可以化成( ) A.3014101054x x --= B.3014154x x --= C.314154x x --= D.75612x x --= 10.已知1234522,24,28,216,232,=====…,20092的个位数是( )A.2B.4C.6D.8三.解答题:(每小题6分,共24分) 1.计算:4301(1)(1.95)0.5055---+-⨯⨯--+2.先化简,再求值:222(43)2(1)(24)a a a a a a --+---+-,其中2a =-.3.解方程:212132x x -+-=4.解不等式,并把解集在数轴上表示出来;332144x x ---<四.(本题8分)2003年,我国遭受到非典型性肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成诚,抗击“非典”如图1是我市某中学“献爱心,抗非典”自愿捐款情况的条形统计图,图2是该中学学生人数比例分布图,该校共有学生1450人。
2024年湘教版数学初一上学期模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、小华有5张红色卡片和8张蓝色卡片,他随机抽取一张卡片,求抽到红色卡片的概率。
选项:A. 1/3B. 1/2C. 2/3D. 3/42、一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
选项:A. 40平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米3、一个长方形的长是10厘米,宽是5厘米,这个长方形的周长是多少厘米?A. 20厘米B. 25厘米C. 30厘米D. 35厘米4、小华有一些邮票,如果他每天用掉3张,那么5天后他会用掉多少张邮票?A. 15张B. 16张C. 17张D. 18张5、一个长方形的长是8厘米,宽是长的一半,这个长方形的面积是多少平方厘米?A、32平方厘米B、16平方厘米C、12平方厘米D、24平方厘米6、一个正方形的边长增加20%,那么它的面积增加了多少百分比?A、20%B、44%C、36%D、25%7、(1)如果两个数的乘积是-12,那么这两个数的符号分别是:A. 都是正数B. 都是负数C. 一个正数和一个负数D. 一个零和一个负数8、(2)下列哪个数是偶数?A. -3B. 0C. 1.5D. 49、(1)若一个数加上它的倒数等于2,那么这个数是()A. 2B. 1C. 0.5D. 2/3(2)在下列选项中,不属于等差数列的是()A. 1, 4, 7, 10, …B. 3, 6, 9, 12, …C. 2, 5, 8, 11, …D. 0, 3, 6, 9, …二、填空题(本大题有5小题,每小题3分,共15分)1、若一个数的平方等于25,则这个数是______ 。
2、一个长方形的长是8厘米,宽是5厘米,它的周长是 ______ 厘米。
3、已知一元一次方程2x - 5 = 3x + 1,解得x的值为 ______ 。
4、若等式3a - 2 = 2a + 5的解为a = 4,那么3a + 2的值为 ______ 。
最新湘教版七年级数学上册第一学期期末专题复习+期末试卷2017-2018学年度第一学期期末检测考试七年级数学试卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________题号一二三总分得分(最新湘教版专用)一、选择题(每小题3分,共30分)1.下列四个数中,最大的数是()A.-2 B.13C.0D.6周国年10312.方程-x+6=2x的解为()A.x=6B.x=4C.x=2D.x=0周国年10313.某班有50人,其中三好学生10人,优秀学生干部5人,则在扇形统计图上表示三好学生人数的圆心角是()A.72°B.100°C.120°D.80°周国年10314.数轴上点A,B表示的数分别是5,-3,它们之间的距离可以表示为()A.-3+5B.-3-5C.|-3+5|D.|-3-5|5.已知-25a2m b和7a4b3-n是同类项,则m+n的值是()A.2B.3C.4D.6周国年10316.下列各式比较大小错误的是()A.(-2)2>(-2)3B.|-1|>(-1)3C.-35>-53D.-13>-0.3周国年10317.如图,点C是线段AB上的点,点D是线段AC的中点,点E是线段BC的中点,若DE=10,则AB的长为()A.10B.20C.30D.40周国年10318.某学校第一季度共节约煤3700千克,其中二月份比一月份多节约20%,三月份比二月份多节约25%,则此学校三月份节约煤()A.1000千克B.1200千克C.1300千克D.1500千克周国年10319.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设碳原子(C)的数目为n(n 为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n-2D.C n H n+3周国年103110.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是()周国年1031二、填空题(每小题3分,共24分)11.若∠α=26°30′,则∠α的补角是________.12.如果a 与(-1)2017互为相反数,那么a =________.周国年103113.当x =________时,代数式2x +16+1的值为2.周国年103114.已知2m -n 2=-4,则代数式10-4m +2n 2的值为________.15.已知点A ,B ,C 都是直线l 上的点,且AB =5cm ,BC =3cm ,那么点A 与点C 之间的距离是______________.周国年103116.阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a →∥b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(2,3),b →=(4,m ),且a →∥b →,则m =________.周国年103117.如图所示是某中学七、八、九年级为贫困山区儿童捐款的统计图,已知该校七、八、九年级共有学生2000人,请根据统计图计算七、八、九年级共捐款________元.周国年1031第17题图18.如图所示是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒(用含n 的代数式表示).周国年1031第18题图三、解答题(共66分)19.(8分)计算:-56+(-24);(2)-13-(1-0.5)×13×[2-(-3)2].周国年103120.(10分)解方程:(1)3(x +1)=2(4x -1);周国年1031(2)x 4-x -12+5=x +36.21.(8分)先化简,再求值:5(a 2b +2ab 2)-2(3a 2b +5ab 2-1),其中a =-2,b =2.22.(8分)如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠AOC =40°,求∠COD 的度数.周国年1031周国年103123.(10分)某商场将M 品牌服装每套按进价的2倍进行销售,恰逢“春节”来临,为了促销,他将售价提高了50元再标价,打出了“大酬宾,八折优惠”的牌子,结果每套服装的利润是进价的23,该老板到底给顾客优惠了吗?说出你的理由.周国年103124.(10分)宁远县教育局要求各学校加强对学生的安全教育,全县各中小学校引起高度重视,小刚就本班同学对安全知识的了解程度进行了一次调查统计.他将统计结果分为三类,A:熟悉,B:了解较多,C:一般了解.图①和图②是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求小刚所在的班级共有多少名学生;周国年1031(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算“了解较多”部分所对应的扇形圆心角的度数;(4)如果小刚所在年级共1000名同学,请你估算全年级对安全知识“了解较多”的学生人数.周国年103125.(12分)如图,数轴上两个动点A,B起始位置所表示的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.(1)若A,B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度;(2)若A,B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?周国年1031(3)若A,B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.期末试卷参考答案与解析1.D 2.C 3.A 4.D5.C 6.D 7.B 8.D 9.A 10.C 11.153°30′12.113.5214.18周国年103115.2cm 或8cm 16.617.2518018.2n (n +1)19.解:(1)原式=-18+20-8=-6.(4分)(2)原式=-1-12×13×(-7)=-1+76=16.(8分)周国年103120.解:(1)去括号得3x +3=8x -2,移项、合并同类项得-5x =-5,解得x =1.(5分)(2)去分母得3x -6x +6+60=2x +6,移项、合并同类项得-5x =-60,解得x =12.(10分)周国年103121.解:原式=5a 2b +10ab 2-6a 2b -10ab 2+2=-a 2b +2,(5分)当a =-2,b =2时,原式=-8+2=-6.(8分)22.解:因为∠BOC =2∠AOC ,∠AOC =40°,所以∠BOC =2×40°=80°,所以∠AOB=∠BOC +∠AOC =80°+40°=120°.(4分)因为OD 平分∠AOB ,所以∠AOD =12∠AOB =12×120°=60°,(6分)所以∠COD =∠AOD -∠AOC =60°-40°=20°.(8分)周国年103123.解:该老板给顾客优惠了.(2分)理由如下:设A 品牌服装每套进价x 元,由题意得(2x +50)×0.8-x =23x ,解得x =600.(6分)则原来的售价2×600=1200(元),提价后打八折的价格(2×600+50)×0.8=1000(元),1000<1200,故该老板给顾客优惠了.(10分)24.解:(1)20÷50%=40(名).答:该班共有40名学生.(2分)周国年1031(2)C :一般了解的人数为40×20%=8(名),补图如图所示.(4分)(3)360°×(1-50%-20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的扇形圆心角的度数为108°.(7分)周国年1031(4)1000×(1-50%-20%)=300(名),所以小刚所在年级对安全知识“了解较多”的学生大约有300名.(10分)25.解:(1)B 点的运动速度为1个单位/秒.(3分)(2)设a 秒时两点相距6个长度单位.因为8+4=12>6,且A 点运动速度大于B 点的速度,所以分以下两种情况:①当点B 在点A 的右侧时,依题意得12-2a =6-a ,解得a =6.(5分)②当点A 在点B 的右侧时,依题意得2a -12=a +6,解得a =18.(7分)综上所述,6秒或18秒时两点相距6个单位长度.(8分)周国年1031(3)设点C 的运动速度为x 个单位/秒,运动时间为t 秒,根据题意得8+(2-x )×t =[4+(x -1)×t ]×2,(10分)整理得2-x =2x -2,解得x =43.故C 点的运动速度为43个单位/秒.(12分)1、类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】周国年1031(1)114-(+6)-358+(-1.25)(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】周国年1031(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+ 1.25.周国年1031*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A .0B .-1C .2016D .-2016周国年10314.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;周国年1031(2)计算:|12-1|+|13-12|+|14-13|+…+|19-18|+|110-19|.◆类型二运用分配律解题的技巧一、正用分配律5.计算.-34+(-24);(2)391314×(-14).周国年1031二、逆用分配律6.计算:436×367.周国年1031三、除法变乘法,再利用分配律7-27+周国年10311、参考答案与解析1.解:(1)原式=114+(-1.25)-6358- 6.(2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+ 1.25=10-7=3.周国年10313.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910.5.解:(1)原式=-12+18-3=3.(2)(-14)=40×(-14)-114×(-14)=-560+1=-559.6.解:原式=-367×(4-3+6)=-27.7-27+=-75+125-285=-235.周国年1031。