初二下学期期末数学综合复习资料(十二)
- 格式:doc
- 大小:222.99 KB
- 文档页数:4
初二数学下册综合复习资料数学是一门广泛应用于科学和技术领域的学科。
在日常生活中,数学也是十分重要的。
通过学习数学,人们可以提高计算能力、逻辑思维和问题解决能力。
初中阶段是数学学习的重要阶段,因为它对高中数学的学习打下了坚实的基础。
本文将为初二数学下册的同学们提供一些综合复习资料。
一、代数与函数篇1. 同项式合并:同一式子中相同字母的项相加或减。
2. 完全平方公式:$(a+b)(a-b)=a^2-b^2$。
3. 因式分解:将一个多项式分解成两个或多个多项式的积。
4. 代入法求未知数:利用已知条件将未知数进行代入再进行计算。
5. 一次函数:函数$y=kx+b$为一次函数,其中$k$为斜率,$b$为截距。
二、图形篇1. 识别平面图形:学会识别不同的几何图形,如正方形、矩形、菱形、圆形等。
2. 图形的周长:对于任意一个多边形,它的周长等于所有边长之和。
3. 图形的面积:对于任何一个几何图形,它的面积都是一个数值,可以用来表示这个图形的大小。
4. 平移、旋转和翻转:将平面图形按一定规则进行平移、旋转和翻转,得到新的位置和形状。
三、数与量篇1. 常量与变量:常量是值不变的数,而变量是值可以改变的数。
2. 分数的加减法:相同分母的分数只需将分子相加或相减。
3. 分数的乘除法:两个分数相乘,先将分子相乘,再将分母相乘,最后化简。
两个分数相除,可以转化为一个分数乘另一个分数的倒数。
4. 百分数:百分之一就是1%,百分之十就是10%,以此类推。
5. 速度和时间:速度等于路程除以时间,时间等于路程除以速度,路程等于速度乘以时间。
四、数据处理篇1. 统计量:常用统计量有平均数、中位数、众数和极差。
2. 数据的解读:通过分析和解释数据可以帮助我们更好地理解数据背后的含义。
3. 研究设计:通过制定实验方案和探究变量之间的关系来深入研究数据。
总结初二数学下册是数学学习的重要阶段,本文提供了一些综合复习资料,希望能够帮助同学们更好地掌握数学知识,从而取得更好的成绩。
八年级数学下册期末备考知识点复习资料八年级数学下册期末备考知识点复习资料第一章一次函数1函数的定义,函数的定义域、值域、表达式,函数的图像2一次函数和正比例函数,包括他们的表达式、增减性、图像3从函数的观点看方程、方程组和不等式第二章数据的描述1了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2会用各种统计图表示出一些实际的问题第三章全等三角形1全等三角形的性质:全等三角形的对应边、对应角相等2全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.第四章轴对称1轴对称图形和关于直线对称的两个图形2轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的.垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等.(等角对等边)5等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.在三角形中,大角对大边,大边对大角.第五章整式1整式定义、同类项及其合并2整式的加减3整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4乘法公式(1)平方差公式(2)完全平方公式5整式的除法(1)同底数幂的除法(2)整式的除法6因式分解(1)提共因式法(2)公式法(3)十字相乘法。
八年级下数学期末总复习知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下数学期末总复习知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级下数学期末总复习知识点(word版可编辑修改)的全部内容。
八年级下数学期末总复习第十六章二次根式a1、;22)8321464(÷+- 2、2)223(+3、5321322302⨯⨯4、⎪⎪⎭⎫ ⎝⎛-÷12131125、()()2626-+ 6、()2252-7、()38512•+ 8、()()23322332-+9、2764148•⎪⎭⎫ ⎝⎛+ 10、123132+++第十七章 勾股定理一.基础知识点:1:勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方.(即:a 2+b 2=c 2) 其主要应用:(1)已知直角三角形的两边求第三边,则c =,b =,a =(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
勾股定理逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2〉a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
八年级下册数学知识点背诵
数学知识点的背诵是学习数学的重要环节。
在八年级下册数学
学习中,有多个重要的知识点需要掌握。
以下是这些知识点及其
重点内容:
一、平面几何
1.图形类别:凸、凹、正、反、全等、相似、等腰、等边、直角、锐角、钝角、变形、对称、轴对称、中心对称、平移、旋转、翻折、缩放、相交
2.图形的性质:面积、周长、对角线、夹角、垂线、高线、中线、角平分线、对边平行、内角和、外角和、三角形面积公式、
余弦定理、正弦定理、勾股定理
二、数学运算
1.分数的加减乘除:分数的相加、分数的相减、分数的相乘、
分数的相除、分数转化为小数、小数转化为分数、分数化简
2.百分数:百分数转化为小数、小数转化为百分数、百分数的加减乘除、百分数与分数的互化、百分数计算
三、代数
1.代数式的基本概念:代数式的组成、代数式的计算
2.一元一次方程:基本概念、解一元一次方程的方法
3.多项式与因式分解:多项式的概念、多项式的加减乘法、因式分解的方法
四、统计与概率
1.数据的分析:各种类型的数据、中位数、平均数、众数、极差、四分位数、百分位数、数据的描绘
2.概率的计算:事件、随机事件、概率的基本概念、概率的计算方法
以上是八年级下册数学知识点的主要内容和重点,每个知识点都需要经常理解和掌握,特别是图形类别和平面几何还需要多画图来帮助记忆和理解。
相信只要学生认真背诵并不断提高自己的数学水平,学习数学并不会很难。
前三章知识结构1、三角形的任意一边小于两边之和而大于两边之差即是:|a-b|<c<a+b2、三角形的高:利用面积相等求三角形中边或者高的长度。
3、三角形的中线:将三角形分为面积相等的两个小三角形。
4、三角形的角平分线:角相等或者角平分线性质和判定的利用,尺规作图画角平分线。
5、三角形具有稳定性、四边形及多边形不具有稳定性6、三角形的内角和为180°,与三角形的形状无关。
7、外角性质:三角形的一个外角等于与它不相邻的两个内角之和。
8、一个n边形从一个顶点出发的对角线为(n-3)条,所有的对角线条数则为.9、各角相等,各边相等的多边形叫做正多边形。
以及了解各种多边形如何满足镶嵌成功10、n边形的内角和为、任何多边形的外角和都等于360°11、全等三角形的判定:“SSS”“ASA”“SAS”“AAS”“HL”;重难点:SAS与HL的区别。
12、角的平分线的性质:角平分线上的点到角的两边的距离相等【步骤是重点】13、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上【步骤是重点】14认识轴对称图形,以及了解镜子成像和地上水面成像后的图像特征【理解想象的经验】15、轴对称的性质:成轴对称的两个图形全等。
对称轴与连结“对应点的线段”垂直。
对应点到对称轴的距离相等。
对应点的连线互相平行。
重点:求关于X轴或Y轴对称的点坐标,以及利用割补法求平面坐标系中三角形的面积16、线段的垂直平分线:(1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
(2)性质:线段垂直平分线上的点与线段两端点的距离相等。
【步骤是重点】(3)判定:与线段两端点距离相等的点在线段的垂直平分线上。
【步骤是重点】17.等腰三角形:已知边或者周长,求另外的边或者周长,已知一个内角或者外角求其余的内角度数18.等腰三角形性质:(1)“等边对等角”(2)等角对等边,(3)三线合一:顶角平分线、底边上的中线和底边上的高相互重合。
初二下学期数学期末试卷答案(经典版)一、选择题 (每小题3分,共30分) 1.下列计算中,正确的是 ﹙ ﹚A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=02.纳米是一种长度单位,1纳米=910-米。
已知某种花粉的直径为35000纳米,则用科学计数法表示该花粉的直径为 ( )A. m 6105.3-⨯B. m 5105.3-⨯C. m 41035-⨯D. m 4105.3⨯ 3.某八年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数 B.众数 C.极差 D.平均数 4.下列三角形中是直角三角形的是( )A.三边之比为7:6:5 B.三边之比为2:3:1 C.三边之长为2225,4,3 D.三边之长为13,14,15 5.正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角 6.已知三点),(111y x P ),(222y x P )2,1(3-P都在反比例函数xky =的图象上,若0,021><x x ,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC 、BD 相交于点O ,OE⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cm B.6cm C.8cm D.10cm8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AB 于点N,则MN等于( )A.56 B.59 C.512 D.5169.若31=+xx ,则1242++x x x 的值是 ( ) A BCO EA.81 B. 101 C. 21 D. 41 10.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ). A .不小于54m 3 B .小于54m 3C .不小于45m 3D .小于45m 3二、填空题 (每小题4分,共24分)11.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=________. 12.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是___________. 13.如图,在菱形ABCD 中,∠A=060,E 、F 分别是AB 、AD 的中点,若 EF=2,则菱形ABCD的边长是____. 14.若分式方程931312-=++-x kx x 无解,则k =_________.15.如图,一次函数11y x =-与反比例函数22y x=的图象交于点A (2,1), B (-1,-2),则使12y y >的x 的取值范围是 .16.如图,正方形ABCD 的面积为25,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为_____________。
八年级下册数学期末复习资料知识点回顾1. 分数和小数的相互转换:可以将小数转换成分数,也可以将分数转换成小数。
2. 实数的概念和性质:实数包括有理数和无理数,有理数可以表示为分数或小数,无理数不能表示为分数且无限不循环。
3. 正数、负数和零的加减运算:正数和正数相加、负数和负数相加都是正数,正数和负数相加要看绝对值大小,负数和零相加为负数。
4. 整数的乘除运算:两个正数相乘为正数,两个负数相乘为正数,正数和负数相乘为负数。
除法运算时,除数不能为零。
5. 线段的长度计算:使用两点坐标公式计算线段的长度。
6. 图形的周长和面积计算:周长是图形边界的长度总和,面积是图形所占的平方单位面积。
7. 数量关系的一般问题:通过列式解决问题,建立方程式求解。
解题技巧1. 长期记忆法:对于重要的公式和定义,多次重复记忆可以帮助记忆更牢固。
2. 总结归纳法:通过总结归纳类似问题的解题方法和思路,对于类似问题能够快速解决。
3. 转化为已知问题法:遇到难题或陌生问题时,尝试将其转化为已知问题或类似问题进行解答。
4. 合理利用符号法:使用符号代替具体数值进行计算,可以简化计算过程。
5. 多角度思考法:从不同的角度和方法分析问题,能够拓宽思维并获得新的解题思路。
例题演练1. 将小数0.25转换成分数形式。
解析:小数0.25相当于25/100,即1/4。
2. 将分数3/5转换成小数形式。
解析:将分子3除以分母5,得到0.6。
3. 计算(-7) + (-4)。
解析:两个负数相加的结果为负数,-7 + (-4) = -11。
4. 计算9 ÷ (-3)。
解析:正数除以负数为负数,9 ÷ (-3) = -3。
5. 已知点A(2, 3)和点B(5, 7),求线段AB的长度。
解析:根据两点坐标公式,线段AB的长度为√[(5-2)²+(7-3)²] = √[9+16] = √25 = 5。
6. 矩形的边长分别为3cm和4cm,求其周长和面积。
人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。
人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。
请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。
初二下学期期末数学综合复习资料(十二)
一、填空题(每小题2分)
1、在实数范围内因式分解:44-x = 。
2、当x 时,代数式x
--13有意义。
3、6-是 的平方根。
4、若x =3+2,则代数式162+-x x 的值是 。
5、比较大小:-63 -72(填“>、<或=”)
6、计算:2002
2003
)
23()
23(+⋅-
= 。
7、用4米长的铁丝围成一个平行四边形,使长边与短边的比为3∶2,则长边为 米。
8、矩形ABCD 中,E 是边DC 的中点,△AEB 是等腰直角三角形,矩形ABCD 的周长是24,则矩形的面积是 。
9、正方形的面积为2㎝2
,则对角线的长是 。
10、在26个英文大写字母中,既是轴对称图形又是中心对称图形的个数共有 个。
11一个多边形除一个内角外,其余各内角的和等于2000°,则这个内角应等于 度。
12观察图形:图中是边长为1,2,3 …的正方形:
当边长n =1时,正方形被分成2个全等的小等腰直角三角形; 当边长n =2时,正方形被分成8个全等的小等腰直角三角形;
当边长n =3时,正方形被分成18个全等的小等腰直角三角形;…… 以此类推:当边长为n 时,正方形被分成全等的小等腰直角三角形的个数是 。
二、选择题(每小题3分)
13、已知:6.3、-327-、π、-3.14、2
)5(-、0.101001000…,其中无理数的个数
有( )
A 、 2 个
B 、3 个
C 、 4 个
D 、5个 14、下列结论中正确的是( )
A 、实数分为正实数和负实数
B 、没有绝对值最小的实数
C 、实数a 的倒数是
a
1
D 、当n 为奇数时,实数的n 次方根有且仅有一个。
15、把2
1)
2(--a a 根号外的因式移入根号内化简,得到的结果是( )
A 、
2-a B 、a -2 C 、-2-a D 、-a -2
16、一个直角三角形的两条边是3㎝和4㎝,则第三边长是( )
A 、5㎝
B 、7 ㎝
C 、5㎝或
7㎝ D 、不能确定
17、不等边的两个全等三角形可以拼成不同的平行四边形的个数是( ) A 、2 个 B 、3 个 C 、4 个 D 、5 个 18、下列命题正确的是( )
A 、对角线相等的四边形是矩形
B 、对角线垂直的四边形是菱形
C 、对角线互相垂直平分的四边形是矩形
D 、对角线相等的菱形是正方形
19、从平行四边形的各顶点作对角线的垂线,则顺次连结四个垂足所成的四边形是( )
A 、任意四边形
B 、平行四边形
C 、矩形
D 、菱形 20、如图,Rt △ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,
E 、
F 分别是AB 、AC 的中
点,∠C =30°,BC =4㎝,则四边形AEDF 的周长是( )
A 、4㎝
B 、34㎝
C 、)32(+
㎝ D 、)322(+㎝
F
E
D C B
A
21、以线段a =16,b =13,c =10,d =6为边构造四边形,且使a ∥c ,则这样的四边
形可作( )
A 、1个
B 、2个
C 、无数多个
D 、0个 三、化简题(每题4分) 22、n
m
n m b a b a 1052⋅⋅ 23、
1
--b b
b (b ≥0且b ≠1)
四、计算题(每题4分) 24、4
51-
49
1+2
)
2
1(-
25、(3-2)2·(5+26)
26、y
x
3
÷2
y
x ·5
5
3y
x
五、先化简,再求值(本题6分) 27、)2
(3652
2
2
-+
⋅-+-m m m m
m m m 其中1
54-=
m
六、(本题6分)
28、已知,一张矩形纸片ABCD 的边长分别为9㎝和3㎝,把顶点A 和C 叠合在一起,得折痕EF (如图)
①猜想四边形AECF 是什么四边形,并证明你的猜想。
②求折痕EF 的长。
H(D)
F E
D
C(A)
B
A
(第十二套)答案
一:1、)2)(2)(2(2-
++x x x ;2、>1;3、6;4、-6;5、<;6、23-
;
7、
5
6;8、128;9、2cm ;10、6个;11、1600;12、22n
二、BDCCB ,DBDD
三:22、n m b a 10;23、b ; 四:24、
7
13;25、1;26、
xy y
x 3
225
五、27、原式=2)1(-m =5
六:28、①连结AC 交EF 于点O ,由题意知EF 垂直平分AC ,可证△EOC ≌△FOA 得OE =OF
∴AECF 是菱形(对角线互相垂直平分)
②设OE =OF =x ,由△AOF ∽△ABC 得:AB
AO BC
OF =,即
9
302
3
3
=x
∴x =
302
1,∴EF =30。