七年级数学上5 1丰富的图形世界同步测试题 苏科版带答案
- 格式:doc
- 大小:31.50 KB
- 文档页数:4
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图所示,该几何体的俯视图是()A. B. C. D.2、一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4D.3π+43、如图所示,该几何体的俯视图是()A. B. C. D.4、下面图形中,三棱柱的平面展开图为()A. B. C. D.5、由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A. B. C.D.6、一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么 ( )A.a = 1,b =5B.a = 5,b = 1C.a = 11,b = 5D.a = 5,b = 117、如图,你能看出这个倒立的水杯的俯视图是()A. B. C. D.8、下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C. D.9、如图是由一些相同的小正方体构成的几何体的三视图,则构成构成这个几何体的小正方体的个数是()A.3B.4C.5D.610、如图是由四个相同的小正方体组成的立体图形,它的左视图为()A. B. C. D.11、如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A. B. C. D.12、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“青”字所在面相对的面上的汉字是()A.青B.春C.梦D.想13、下列立体图形中俯视图是三角形的是()A. B. C. D.14、如图是由5个相同的小正方体组成的立体图形,这个立体图形的主视图是()A. B. C. D.15、如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长方体的棱长总和是48cm,并且它的长、宽、高是三个连续的自然数,这个长方体的表面积是(________)cm2,体积是(________)cm3.17、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明________.18、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为________.</div>19、将正方体的表面沿某些棱剪开,展开如图所示的平面图形,则原正方体中与“高”字所在的面相对的面上标的字是________20、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________cm2.21、如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y=________.22、在桌上摆着一个由若干个相同小正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为________。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图是一个圆柱体,则它的主视图是()A. B. C. D.2、如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C. D.3、如图所示的几何体的俯视图是()A. B. C. D.4、如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变5、用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.正方体B.圆柱C.圆锥D.三棱柱6、如图,是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为倒数,则的值为()A.0B.-1C.-2D.17、如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.8、如图四个几何体:其中从左面看到的形状图与从上面看到的形状图相同的几何体共有()A.1个B.2个C.3个D.4个9、如图,由相同的小正方体搭成的几何体的主视图是()A. B. C. D.10、如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1B.4C.5D.611、如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④12、下列四个几何体中,主视图、左视图与俯视图是全等形的几何体是()A.球B.圆柱C.三棱柱D.圆锥13、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么,在该正方体中与“设”字相对的字是()A.美B.丽C.盐D.城14、一个几何体的三视图如图所示,那么这个几何体是()A. B. C.D.15、如图所示的几何体,其左视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是________17、一个容积是125dm3的正方体棱长是________dm.18、如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由________ 个小正方形搭建而成.19、如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为________.20、长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是________。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A.考B.试C.顺D.利2、如图,桌面上有一个一次性纸杯,它的主视图应是()A. B. C.D.3、对如图的几何体变换位置或视角,则可以得到的几何体是()A. B. C. D.4、如图所示的紫砂壶,其俯视图是()A. B. C. D.5、如图,该几何体的哪个视图是轴对称图形()A.左视图B.主视图C.俯视图D.左视图和主视图6、长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m 2B.12m 2C.1m 2D.3m 27、如图,下列关于物体的主视图画法正确的是()A. B. C. D.8、用一个平面去截如图的长方体,截面不可能为()A. B. C. D.9、如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于()个正方体的质量.A.12B.16C.20D.2410、如图,由几个小正方体组成的立体图形的左视图是A. B. C. D.11、如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是()A. B. C. D.12、如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个13、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为()A.12πB.15πC.12π+6D.15π+1214、如图所示的几何体的俯视图是()A. B. C. D.15、如图是某几何体的三视图及相关数据,则该几何体的表面积是()A. B. C. D.二、填空题(共10题,共计30分)16、一个几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有________条.底面形状是________.17、用若干个相同的小正方体搭一个几何体,该几何体的主视图、俯视图如图所示.若小正方体的棱长为1,则搭成的几何体的表面积是________.18、一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=________.19、下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).20、如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为,则的值为________.21、如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为________ .(结果保留π)22、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要________个小立方体,王亮所搭几何体的表面积为________.23、一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到________个三角形.24、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是选项中的________(填序号)25、下图是由六个棱长为的正方体组成的几何体,则从上面看得到的平面图形的面积是________.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、画图:(1)画出圆锥的三视图.(2)已知∠AOB,用直尺和圆规作∠A′O′B′=∠AOB(要求:不写作法,保留作图痕迹)28、如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?29、如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)30、如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.参考答案一、单选题(共15题,共计45分)1、C2、A4、C5、B6、D7、C8、D9、C10、A11、D12、C13、D14、B15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
5.1 丰富的图形世界一.选择题1.下列图形中,属于立体图形的是()A.B.C.D.2.一个棱柱有12条棱,那么它的底面一定是()A.十八边形B.六边形C.四边形D.八边形3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图魔方共由多少个小正方体组成()A.18 B.19 C.26 D.275.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.186.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.487.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样D.②和③更重8.下面的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.9.(教材变式题)下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥ B.①②③ C.③⑥D.④⑤10.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变 D.无法确定变化11.如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图的新几何体,则该新几何体的体积为()cm3.A.48πB.50πC.58πD.60π12.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.二.填空题13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是.14.下列几何体属于柱体的有个.15.六棱柱有个顶点,个面,条棱.16.如图,在长方体ABCD﹣EFGH中,与面ABFE平行的面是.17.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.18.图1是棱长为a的小正方体,图2、图3出这样相同的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…,第n层,第n层的小正方体的个数为s.(提示:第一层时,s=1;第二层时,s=3)则第n层时,s=(用含h的式子表示)三.解答题19.将下列几何体与它的名称连接起来.20.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱等分.21.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有个.第3个几何体中只有2个面涂色的小立方体共有个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数的和.22.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥.(2)这个几何体有4个面.(3)这个几何体有5个顶点.(4)这个几何体有8条棱.(5)请你再说出一个正确的结论.23.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.24.在研究几何图形的过程中,经常需要运用一些方法加深对它们的认识.方法一:通过分别明确区别比如,要明确平面内两条不重合直线的位置的区别,课本上根据公共点个数的情况,将不重合的两条直线的位置关系分成两种﹣﹣﹣﹣﹣﹣相交(有一个公共点),平行(没有公共点).(1)小亮认为,根据公共点个数的情况,也可将平面内的一条直线和一个角的位置关系进行分类,请你按照他的想法完成分类,(要求画出每一种位置关系的示意图)方法二:通过画图揭示联系比如,要揭示几何体中的柱体、圆柱,含有曲面的几何体,三棱柱之间的联系,小明画出了如下结构图•(1)请你继续采用小明的方式揭示下面几个有关两个角的关系之间的联系:①“两个角互补“;②”两条互相垂直的直线所成的四个角中没有公共边的两个角”;③“两个角是对顶角”④“两个角中一个是锐角,另一个是钝角”,它们有一条公共边,且另一边互为反向延长线“.(请将上述各种关系的序号填进图②中的横线上,每条横线上只能填一个序号.25.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图①),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图③),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图④,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图④的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图⑤,此时,形成一个新的长方体表面积最小,求c的取值范围.26.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.参考答案与解析一.选择题1.(•丽水)下列图形中,属于立体图形的是()A.B.C.D.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.2.(•高台县校级期中)一个棱柱有12条棱,那么它的底面一定是()A.十八边形 B.六边形C.四边形D.八边形【分析】依据n棱柱有3n条棱进行求解即可.【解答】解:设该棱柱为n棱柱.根据题意得:3n=12.解得:n=4.所以该棱柱为4棱柱.故选:C.【点评】本题主要考查的是认识立体图形,掌握棱柱的棱的条数和棱柱的底面的边数之间的关系是解题的关键.3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.4.如图魔方共由多少个小正方体组成()A.18 B.19 C.26 D.27【分析】首先根据图形可得每一层小正方体的个数,再乘以层数即可.【解答】解:每一层小正方体有9个,共3层,小正方体的总数为:3×9=27,故选:D.【点评】此题主要考查了认识立体图形,关键是掌握魔方的形状.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.18【分析】观察几何体,得到这个几何体向前、向后、向上、向下、向左、向右分别有3个正方形,则它的表面积=6×3×1.【解答】解:这个几何体的表面积=6×3×1=18.故选:D.【点评】本题考查了几何体的表面积:正方体表面积为6a2 (a为正方体棱长).6.(•台湾)有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.48【分析】根据题意画出图形,得出2y+x=27,3x=15,求出x和y,即可得出结果.【解答】解:如图所示:根据题意得:2y+x=27,3x=15,其他都不符合三角形条件,解得:x=5,y=11,∴正角锥所有边的长度和=3x+3y=15+33=48;故选:D.【点评】本题考查了立体图形;根据题意画出图形,得出关系式是解决问题的关键.7.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样 D.②和③更重【分析】根据4个直圆柱的底面积和高可判断其质量的关系.【解答】解:由题意可知四个圆柱为直径相同的直圆柱,且它们都在正方体内,所以它们的底面积相等,高相等.所以质量一样.故选C.【点评】本题考查认识立体图形,解题的关键是明确题意,利用数形结合的思想解答问题.8.下面的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.【分析】根据题意和看到的部分可以推测出第四部分对应的几何体,本题得以解决.【解答】解:由几何体的图形可知,第四部分,看到的一个,后面三个,故选A.【点评】本题考查认识立体图形,解题的关键是明确题意,利用数形结合的思想解答.9.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥ B.①②③ C.③⑥D.④⑤【分析】根据立体图形的概念和定义,立体图形是空间图形.【解答】解:根据以上分析:属于立体图形的是③正方体;⑤圆锥;⑥圆柱.故选A.【点评】解决本题的关键是明白立体图形有:柱体,锥体,球体.10.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变 D.无法确定变化【分析】观察图发现:挖去小正方体后,减少了三个面,又增加了三个面,剩下物体的表面积和原来的表面积相等.【解答】解:挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,故选C.【点评】本题考查了几何体的表面积,挖正方体的相对面的面积是相等的.11.如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图的新几何体,则该新几何体的体积为()cm3.A.48πB.50πC.58πD.60π【分析】根据组合体的形状,可得一个底面直径是4高是14的圆柱,底面直径是4,高是2圆柱的一半,根据圆柱的体积公式,可得答案.【解答】解:底面直径是4高是14的圆柱的体积是π()2×14=56π,底面直径是4,高是2圆柱的一半的体积是π()2×4×=4π,该新几何体的体积为56π+4π=60π,故选:D.【点评】本题考查了认识立体图形,确定几何体的形状是解题关键.12.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.【分析】结合已知图形,先判断a,b,c,d所代表的图形,再判断记作a⊙d的图形即可.【解答】解:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合,故选A.【点评】读懂题意,结合图形组合的特点,判断出a,b,c,d所代表的图形,是解决问题的关键.二.填空题13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.【分析】在长方体中,面与面之间的关系有平行和垂直两种.【解答】解:平面ABFE与平面DCGH,故答案为:平行.【点评】此题主要考查了认识立体图形,在立体图形中,两个平行的面中的每条棱也互相平行.14.下列几何体属于柱体的有5个.【分析】根据柱体与锥体的定义区分即可.【解答】解:属于柱体的有:①正方体,②长方体,③圆柱,⑥三棱柱,⑧五棱柱,故答案为:5.【点评】本题主要考查认识立体图形的能力,掌握柱体、锥体定义是关键.15.六棱柱有12个顶点,8个面,18条棱.【分析】根据六棱柱的概念和定义即解.【解答】解:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为12,8,18.【点评】此题主要考查了认识立体图形,解决本题的关键是掌握六棱柱的构造特点.16.如图,在长方体ABCD﹣EFGH中,与面ABFE平行的面是DCGH.【分析】在立方体中,面与面之间的关系有平行和垂直两种.【解答】解:观察图形,与面ABFE平行的面即与它相对的面就是面DCGH.故答案为面DCGH.【点评】在立体图形中,两个平行的面中的每条棱也互相平行.17.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到6个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n ﹣2)个三角形.【解答】解:如图所示:8﹣2=6,故答案为:6.【点评】本题主要考查多边形的性质,从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n﹣2.18.图1是棱长为a的小正方体,图2、图3出这样相同的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…,第n层,第n层的小正方体的个数为s.(提示:第一层时,s=1;第二层时,s=3)则第n层时,s=n(n+1)(用含h的式子表示)【分析】第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,根据相应规律可得第3层,第n层正方体的个数.【解答】解:∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,第3个图有3层,第3层正方体的个数为1+2+3,∴第n层时,s=1+2+3+…+n=n(n+1).故答案为:n(n+1).【点评】本题考查图形规律性的变化;得到第n层正方体的个数的规律是解决本题的关键.三.解答题19.将下列几何体与它的名称连接起来.【分析】根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.【解答】解:如图所示:【点评】考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.20.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,各面都没有涂色的小正方体有1个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有8个,各面都没有涂色的有(n﹣2)3个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱7等分.【分析】(1)三面涂色的为8个角上的正方体,两面涂色的为八条棱上除去三面涂色的正方体的个数,没有涂色的用正方体总数减去三面、两面及一面涂色的正方体;(2)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,列方程即可得到结论.【解答】(1)如图②,把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,∴(n﹣2)3=100,∵43<100<53,∴4<n﹣2<5,∴6<n<7,∴至少应该将此正方体的棱7等分,故答案为:7.【点评】主要考查了图形的变化类问题及立体图形的认识和用特殊归纳一般规律的方法.关键是通过正方体的特点来得到有关涂色情况的规律.21.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有4个.第3个几何体中只有2个面涂色的小立方体共有20个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数的和.【分析】(1)第1个几何体中最底层的4个角的小立方体只有2个面涂色;第3个几何体中只有2个面涂色的小立方体共有5×4=20个;(2)根据所给图形中只有2个面涂色的小立方体的块数得到第n个几何体中只有2个面涂色的小立方体的块数与4的倍数的关系即可;(3)根据(2)得到的规律,进行计算即可.【解答】解:(1)观察图形可得第1个几何体中最底层的4个角的小立方体只有2个面涂色;第3个几何体中只有2个面涂色的小立方体共有5×4=20个.故答案为:4,20;(2)观察图形可知:图①中,只有2个面涂色的小立方体共有4个;图②中,只有2个面涂色的小立方体共有12个;图③中,只有2个面涂色的小立方体共有20个.4,12,20都是4的倍数,可分别写成4×1,4×3,4×5的形式,因此,第n个图中两面涂色的小立方体共有4(2n﹣1)=8n﹣4,则第100个几何体中只有2个面涂色的小立方体共有8×100﹣4=796;(3)(8×1﹣4)+(8×2﹣4)+(8×3﹣4)+(8×4﹣4)+(8×5﹣4)+…+(8×100﹣4)=8(1+2+3+4+…+100)﹣100×4=40000故前100个图形的点数和为40000.【点评】本题考查了认识立体图形,图形的变化规律;得到所求块数与4的倍数的关系是解决本题的关键.22.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥△.(2)这个几何体有4个面▲.(3)这个几何体有5个顶点△.(4)这个几何体有8条棱△.(5)请你再说出一个正确的结论底面是正方形.【分析】观察几何体从正面、左面、上面看得到的平面图形,确定出所求结果即可.【解答】解:(1)这是一个棱锥△;(2)这个几何体有4个面▲;(3)这个几何体有5个顶点△;(4)这个几何体有8条棱△;(5)请你再说出一个正确的结论:底面是正方形,故答案为:(1)△;(2);(3)△;(4)△;(5)底面是正方形.【点评】此题考查了认识立体图形,根据三视图确定出几何体形状是解本题的关键.23.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.【分析】(1)根据图形可得侧面的个数,再加上上下底面即可;(2)顶点共有10个,棱有5×3条;(3)根据五棱柱顶点数、面数与棱的条数进行总结即可.【解答】解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.【点评】此题主要考查了认识立体图形,关键是掌握常见的立体图形的形状.24.在研究几何图形的过程中,经常需要运用一些方法加深对它们的认识.方法一:通过分别明确区别比如,要明确平面内两条不重合直线的位置的区别,课本上根据公共点个数的情况,将不重合的两条直线的位置关系分成两种﹣﹣﹣﹣﹣﹣相交(有一个公共点),平行(没有公共点).(1)小亮认为,根据公共点个数的情况,也可将平面内的一条直线和一个角的位置关系进行分类,请你按照他的想法完成分类,(要求画出每一种位置关系的示意图)方法二:通过画图揭示联系比如,要揭示几何体中的柱体、圆柱,含有曲面的几何体,三棱柱之间的联系,小明画出了如下结构图•(1)请你继续采用小明的方式揭示下面几个有关两个角的关系之间的联系:①“两个角互补“;②”两条互相垂直的直线所成的四个角中没有公共边的两个角”;③“两个角是对顶角”④“两个角中一个是锐角,另一个是钝角”,它们有一条公共边,且另一边互为反向延长线“.(请将上述各种关系的序号填进图②中的横线上,每条横线上只能填一个序号.【分析】根据对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角可得答案.【解答】解:如图所示:【点评】此题主要考查了邻补角和对顶角,关键是掌握邻补角和对顶角的定义.25.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图①),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图③),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图④,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图④的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图⑤,此时,形成一个新的长方体表面积最小,求c的取值范围.【分析】(1)由长方体的表面积=2×(长×宽+宽×高+长×高)求解即可.(2)确定新的长方体的表面积最小长是4,宽是3,高是2,再由长方体的表面积公式求解即可.(3)叠放在一块的是面积最大的图形,由此求解即可.【解答】解:(1)由长方体的表面积=2×(长×宽+宽×高+长×高),得长方体的表面积=2×(2×3+2×1+1×3)=22.(2)新的长方体的表面积最小长是4,宽是3,高是2,由长方体的表面积=2×(长×宽+宽×高+长×高),得长方体的表面积=2×(4×3+3×2+4×2)=52.(3)由叠放可知1≤c≤3.【点评】本题主要考查了几何体的表面积,解题的关键是叠放的图形是面积最大的图形.26.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【分析】根据图中的四个平面图形数出其顶点数、边数、区域数得题(1)的结果,再根据表(1)数据总结出归律得题(2)的结果,根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【解答】解:(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.。
苏科新版七年级上学期《5.1 丰富的图形世界》一.填空题(共1小题)1.如图所示是一种棱长分别为3cm,4cm,5cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用3块来搭,那么搭成的大长方体表面积最小是cm,如果用4块来搭,那么搭成的大长方体表面积最小是cm,如果用12块来搭,那么搭成的大长方体表面积最小是cm.二.解答题(共9小题)2.在同一个圆中,甲、乙、丙、丁四个扇形的面积之比为1:2:3:4,分别求出这四个扇形圆心角的度数.3.王彭做了一个底面积为72cm2,长、宽、高的比为4:3:1的长方体.(1)求这个长方体的长、宽、高;(2)求这个长方体的体积.4.如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)5.一长方体的体积为162cm3,它的长、宽、高的比为3:1:2,则它的表面积是多少?6.底面半径为10cm,高为40cm的圆柱形水桶中装满了水.小明先将桶中的水倒满3个底面半径为3cm,高为5cm的圆柱形杯子,如果剩下的水倒在长、宽、高分别为50cm,20cm和12cm的长方体容器内,会满出来吗?若没有满出来,求出长方体容器内水的高度(π取3).7.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱等分.8.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.9.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥.(2)这个几何体有4个面.(3)这个几何体有5个顶点.(4)这个几何体有8条棱.(5)请你再说出一个正确的结论.10.如图,OA,OB,OC是圆的三条半径.(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数.(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积.(保留π)苏科新版七年级上学期《5.1 丰富的图形世界》参考答案与试题解析一.填空题(共1小题)1.如图所示是一种棱长分别为3cm,4cm,5cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用3块来搭,那么搭成的大长方体表面积最小是202cm,如果用4块来搭,那么搭成的大长方体表面积最小是258cm,如果用12块来搭,那么搭成的大长方体表面积最小是484cm.【分析】如果用3块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用4块来搭,那么搭成的大长方体表面积最小是长4×2=8cm,宽3×2=6cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用12块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4×2=8cm,高5×2=10cm的长方体的表面积,根据长方体的表面积公式即可求解.【解答】解:长3×3=9cm,宽4cm,高5cm,(9×4+9×5+4×5)×2=(36+45+20)×2=101×2=202(cm2).答:如果用3块来搭,那么搭成的大长方体表面积最小是202cm2.长4×2=8cm,宽3×2=6cm,高5cm,(9×6+9×5+6×5)×2=(54+45+30)×2=129×2=258(cm2).答:如果用4块来搭,那么搭成的大长方体表面积最小是258cm2.长3×3=9cm,宽4×2=8cm,高5×2=10cm,(9×8+9×10+8×10)×2=(72+90+80)×2=242×2=484(cm2).答:如果用12块来搭,那么搭成的大长方体表面积最小是484cm2.故答案为:202;258;484.【点评】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.二.解答题(共9小题)2.在同一个圆中,甲、乙、丙、丁四个扇形的面积之比为1:2:3:4,分别求出这四个扇形圆心角的度数.【分析】根据扇形的面积比,求出各个扇形的圆心角之比,从而求出各个扇形的圆心角占整个圆的几分之几,进而确定出各个扇形的圆心角.【解答】解:∵甲、乙、丙、丁四个扇形的面积之比为1:2:3:4,∴各个扇形的面积分别占整个圆面积的,,,,∴各个扇形的圆心角的度数分别360°×=36°,360°×=72°,360°×=108°,360°×=144°,答:甲、乙、丙、丁四个扇形的圆心角的度数分别是36°,72°,108°,144°.【点评】本题考查了扇形统计图,关键是根据四个扇形的面积之比求出它们所占的圆心角的度数之比.3.王彭做了一个底面积为72cm2,长、宽、高的比为4:3:1的长方体.(1)求这个长方体的长、宽、高;(2)求这个长方体的体积.【分析】(1)设长方体的高为x,则长为4x,宽为3x,根据长方体的底面积等于长×宽列方程求得答案即可;(2)利用长方体的体积计算公式计算即可.【解答】解:(1)设长方体的高为x,则长为4x,宽为3x,由题意得4x×3x=72解得x=,则4x=4,3x=3.答:这个长方体的长、宽、高分别是4cm、3cm、cm.(2)4×3×=72(cm3)答:体积是72cm3.【点评】此题考查认识立体图形,二次根式的混合计算,掌握长方体的表面积和体积计算方法是解决问题的关键.4.如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)【分析】由底面圆的面积求出底面半径=3米,由勾股定理求得母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【解答】解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).【点评】此题主要考查了勾股定理,圆面积公式,扇形的面积公式,矩形的面积公式等,分别得出圆锥与圆柱侧面积是解题关键.5.一长方体的体积为162cm3,它的长、宽、高的比为3:1:2,则它的表面积是多少?【分析】设每份为xcm,根据题意列方程,求出长方体的长,宽,高,再求出它的表面积.【解答】解:设每份为xcm,则长为3xcm,宽为xcm,高为2xcm,据题意列方程3x•x•2x=162,解得x=3,长为3×3=9(cm),宽为3cm,高为2×3=6(cm),表面积为=(9×3+9×6+3×6)×2=198(cm2).答:它的表面积是198cm2.【点评】此题主要考查学生牢固掌握长方体的表面积公式、体积公式,并且能够利用公式正确迅速地计算它的表面积和体积.6.底面半径为10cm,高为40cm的圆柱形水桶中装满了水.小明先将桶中的水倒满3个底面半径为3cm,高为5cm的圆柱形杯子,如果剩下的水倒在长、宽、高分别为50cm,20cm和12cm的长方体容器内,会满出来吗?若没有满出来,求出长方体容器内水的高度(π取3).【分析】先求出圆柱形水桶中的水的容积和三个杯子的容积,再求出长方体容器的容积,用水桶的容积减去三个水杯的容积再与长方体的容积作比较就可以得出能否装满,最后用剩余的水的容积除以长方体容器的底面积就可以求出结论.【解答】解:3×102×40﹣3×32×5×3=12000﹣405=11595(cm3),长方体的容积为:50×20×12=12000cm3.∵12000>11595,∴不会满出来.11595÷(50×20)=11.595cm.∴长方体容器内水的高度11.595cm.【点评】本题考查了认识立体图形,运用数学知识解决生活中的实际问题的运用,涉及有理数的乘方运算、乘除运算和加减运算的运用,在解答的过程中要注意运算的顺序和正确确定结果的符号.7.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,各面都没有涂色的小正方体有1个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有8个,各面都没有涂色的有(n﹣2)3个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱7等分.【分析】(1)三面涂色的为8个角上的正方体,两面涂色的为八条棱上除去三面涂色的正方体的个数,没有涂色的用正方体总数减去三面、两面及一面涂色的正方体;(2)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,列方程即可得到结论【解答】解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7.【点评】此题主要考查了图形的变化类问题及立体图形的认识和用特殊归纳一般规律的方法.关键是通过正方体的特点来得到有关涂色情况的规律.8.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.【分析】结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点.【解答】解:(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.【点评】此题考查了认识立体图形,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,3n条棱和2n个顶点.9.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥△.(2)这个几何体有4个面▲.(3)这个几何体有5个顶点△.(4)这个几何体有8条棱△.(5)请你再说出一个正确的结论底面是正方形.【分析】观察几何体从正面、左面、上面看得到的平面图形,确定出所求结果即可.【解答】解:(1)这是一个棱锥△;(2)这个几何体有4个面▲;(3)这个几何体有5个顶点△;(4)这个几何体有8条棱△;(5)请你再说出一个正确的结论:底面是正方形,故答案为:(1)△;(2);(3)△;(4)△;(5)底面是正方形.【点评】此题考查了认识立体图形,根据三视图确定出几何体形状是解本题的关键.10.如图,OA,OB,OC是圆的三条半径.(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数.(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积.(保留π)【分析】(1)根据按比例分配,可得扇形的圆心角;(2)根据按比例分配,可得扇形的面积.【解答】解:(1)∠AOB的度数是360×=60°,∠AOC的度数是360×=120°,∠BOC的度数是360×=180°;(2)这三个扇形的面积分别是:4π×=π(cm2),4π×=π(cm2),4π×=2π(cm2).故这三个扇形的面积分别是:πcm2,πcm2,2πcm2.【点评】本题考查了认识平面图形,利用按比例分配是解题关键.第11页(共11页)。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、三通管的立体图如图所示,则这个几何体的左视图是( )A. B. C. D.2、如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?()A.11个B.14个C.13个D.12个3、如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()A. B. C. D.4、如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A. B. C. D.5、如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.4B.2C.D.6、如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A. B. C. D.7、如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.8、如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0B.0,-2,1C.-2,0,1D.-2,1,09、如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )A. B.2 C.3 D.510、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个B.13个C.11个D.5个11、M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( )A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN 上D.点P可能在直线MN上,也可能在直线 MN外12、如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是()A. B. C. D.13、下列几何图形与相应语言描述相符的个数有()A.1 个B.2 个C.3 个D.4 个14、如图,是一个小正方体的展开图,把展开图折叠成小正方体后,有“新”字一面的相对面上的字是()A.代B.中C.国D.梦15、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图:三角形有________个.17、如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是________.18、三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为________cm.19、如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________.20、如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有________ (填编号).21、长方体有________ 个顶点,有________ 个面,有________ 条棱.22、如图,在棱长分别为、、的长方体中截掉一个棱长为的正方体,则剩余几何体的表面积为________.23、长方体的主视图、俯视图如图,则其左视图面积为________ .24、如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为________.25、用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②正三棱锥;③圆柱;④圆锥________(写出所有正确结果的序号)三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.28、由几个小立方体叠成的几何体的主视图和左视图如图所示,求组成几何体的小立方体个数的最大值与最小值,并画出相应的俯视图.29、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?30、如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出x﹣y的值.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、B5、D7、D8、A9、C10、A11、D12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
七年级上册数学单元测试卷-第5章走进图形世界-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示的是三通管的立体图,则这个几何体的俯视图是()A. B. C. D.2、如图是由若干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是()A. B. C. D.3、下列图形不是正方体展开图的是( )A. B. C. D.4、如图所示的几何体的俯视图是()A. B. C. D.5、仔细观察图所示的两个物体,则它的俯视图是()A. B. C. D.6、如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于()A.108°B.114°C.126°D.129°7、用半圆围成一个几何体的侧面,则这个几何体的左视图是()A.钝角三角形B.等腰直角三角形C.等边三角形D.圆8、下列图形不是正方体的展开图的是()A. B. C.D.9、下面图形不能折成一个正方体的表面的是()A.①B.②C.③D.④10、如图是一个圆柱,它的左视图是()A. B. C. D.11、下列几何体中,俯视图不是圆的是()A. 四面体B. 圆锥C. 球D.圆柱12、如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A. B. C. D.13、如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )A. B. C. D.14、一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5C.1D.学15、一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有()A.4个B.5个C.6个D.7个二、填空题(共10题,共计30分)16、如图是一个几何体的展开图,则这个几何体是________17、如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________.18、如图是一个正方体的展开图,和C面的对面是________面.19、一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积为________ .20、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是________。
七年级数学上5.1丰富的图形世界同步测试题(苏科版带答
案)
5.1 丰富的图形世界
知识点 1 常见几何体的分类
1.观察下列实物模型,其形状是圆柱的是( )
图5-1-1
2.下列各几何体中,三棱锥是( )
图5-1-2
3.如图5-1-3所示的陀螺是由下列哪两个几何体组合而成的( )
图5-1-3
A.长方体和圆锥
B.长方形和三角形
c.圆和三角形
D.圆柱和圆锥
4.你能否将如图5-1-4所示的几何体进行分类?并说出分类的依据.
知识点 2 图形的组成
5.下面几何体中,全是由曲面围成的是( )
A.圆柱 B.圆锥
c.球 D.正方体
6.直棱柱的侧面都是( )
A.正方形 B.长方形
c.五边形 D.三角形
7.下列立体图形中,有五个面的是( )
A.四棱锥 B.五棱锥。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥2、由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A. B. C. D.3、下列哪个图形是正方体的展开图()A. B. C. D.4、如图,由3个大小相同的正方体搭成的几何体,其主视图是()A. B. C. D.5、仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是()A.6B.7C.8D.96、一个由完全相同的小正方体组成的几何体三视图如图所示,若在这个几何体的基础上增加几个相同的小正方体,将其补成一个大正方体,则需要增加的小正方体的最少个数为()A.4B.3C.6D.57、已知一种户外帐篷的几何体及其主视图如图所示,则它的左视图为()A. B. C. D.8、某几何体的三种视图如图所示,则此几何体是()A.圆台B.圆锥C.圆柱D.棱柱9、2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B. C. D.10、如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.左视图C.俯视图D.主视图和俯视图11、如图是由4个相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.12、如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A镶有一圈金属丝,已知此三棱镜的高为5cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cmB.13cmC.12cmD.15cm13、如图所示的几何体的左视图是()A. B. C. D.14、一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.615、如图,是一个小正方体的展开图,把展开图折叠成小正方体后,有“新”字一面的相对面上的字是()A.代B.中C.国D.梦二、填空题(共10题,共计30分)16、用一个平面截一个正方体,截面形状可能是________(写一个即可).17、如图是一个正方体纸盒的展开图,当折成纸盒时,与点1重合的点是________.18、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的方式滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的点数是________.19、一个直棱柱共有21条棱,则这个直棱柱共有________个面.20、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm2.21、用一个平面去截一个圆柱,图甲中截面的形状是________ ,图乙中截面的形状是________.22、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.23、一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有________种.24、如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是________.25、如图,是一个正方体的平面展开图,把展开图折叠成正方体后“美”字一面相对的字是________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.28、如图,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色.问:(1)小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色的面呢?(2)如果每面切三刀,情况又怎样呢?(3)每面切n刀呢?29、如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?30、有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、C5、B6、A7、A8、C9、D10、B11、B12、B13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A. B. C. D.2、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是()A.36cm 2B.33cm 2C.30 cm 2D.27 cm 23、如图所示几何体的左视图是()A. B. C. D.4、若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()A.球B.圆柱C.圆锥D.棱锥5、如图为一个正方体的表面展开图,则该正方体的六个表面中,与“善”字相对的面上的字是()A.敬B.业C.诚D.信6、球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,则它的三视图中俯视图应该是()A.两个相交的圆B.两个外切的圆C.两个内切的圆D.两个外离的圆7、如图,由3个大小相同的正方体搭成的几何体,其主视图是()A. B. C. D.8、汽车的雨刷把玻璃上的雨水刷干净,是属于()的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对9、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2B.3C.4D.510、如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9B.10C.11D.1211、如图,这是一个机械模具,则它的俯视图是( )A. B. C. D.12、如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥13、用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能14、如图是由若干个大小相同的小正方体堆砌而成的几何体,其三视图中面积最小的是()A.左视图B.俯视图C.主视图D.一样大15、水平放置的下列几何体,主视图不是长方形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为________.17、薄薄的硬币在桌面上转动时看上去象球,这说明了________点线面体的关系.18、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要________个小立方体,王亮所搭几何体的表面积为________.19、五棱柱有________个面,________个顶点,________条棱.20、如图,纸板上有19个无阴影的小正方形,从中选涂1个,使它与图中5个有阴影的小正方形一起能折叠成一个正方体纸盒,一共有________种选法.21、一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用________块小正方体.22、长方体从正面看和从上面看所得到的图形如图所示,则这个长方体的体积是________.23、如图,是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出其主视图:________24、小明用彩纸给爸爸做一顶生日帽,其左视图和俯视图如图所示,其中AB=24 cm,AC=36 cm,则至少需用彩纸________cm2(接口处重叠面积不计).25、一个几何体由若干个大小相同的小正方体组成,从正面和从上面看到的形状图如图所示,则这个几何体中小正方体的个数最多是________.三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、如图,把一个木制正方体的表面涂上颜色,然后将正方体的棱分成相等的四份,并做上标记,得到许多小正方体.问(1)有个小正方体;(2)有个小正方体只有两面涂有颜色(3)有个小正方体只有3面都涂了颜色.(4)有个小正方体6面都未涂色.28、一个长方体从三个不同的方向看到的形状如图所示,若其从上面看到的图形为正方形,求这个长方体的表面积和体积.29、根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.30、请写出下列几种情形所形成的图形:(1)手电筒的光线;(2)雷达扫描在屏幕上形成的图形;(3)光线所经过的路径;(4)一个直角三角形绕一条直角边旋转一周所形成的图形.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、C5、C6、B7、C8、B9、C10、C11、C12、C13、A14、A15、B16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、。
第五章丰富图形世界一、单选题(每题4分,共40分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是() A.三棱柱B.四棱柱C.三棱锥D.四棱锥【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D2.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A.B.C.D.【详解】解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选:C.3.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.4.给出以下3种说法:①长方形绕着它的一条边所在直线旋转一周,形成圆柱;②梯形绕着它的下底所在直线旋转一周,形成圆柱;③直角三角形绕着它的一条直角边所在直线旋转一周,形成圆锥.其中正确的是()A.①②B.①③C.②③D.①②③【详解】解:①长方形绕着它的一条边旋转一周,形成圆柱,正确;②梯形绕着它的下底旋转一周,不形成圆柱,错误;③直角三角形绕着它的一条直角边旋转一周,形成圆锥,正确;正确的是①③故选B5.下列哪个图形是正方体的展开图()A.B.C.D.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选D.7.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和8【详解】解:当把这个平面图形折成正方体时,与4重合的数字是2、8.故选:D.8.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.【详解】选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,与正方体三个画一条线段的三角形交于一个顶点不符.故选B.9.用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图,其中正方形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是()A.B.C.D.【详解】从左边看时,有两列,左边一列最高层有2层,右边一列最高层有3层.故选B.10.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【详解】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,选项D的左视图从左往右正方形个数为2,1,1,故选:D.二、填空题(每题4分,共20分)11.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.【详解】解:根据棱柱的概念和定义,可知12个顶点的棱柱是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为:8.12.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.【详解】由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,则搭成这个几何体的小正方体的个数是2+1+1=4个.13.如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【详解】解:∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为19,48.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是________cm3【详解】如图所示:∵四边形ABCD是正方形,表面积是________.主视图左视图俯视图【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6-8=22,故答案为22.三、解答题(16题8分,17-19题每题9分,20题11分,21题14分)16.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.【详解】如图所示:17.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.【详解】(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n 棱柱有(n+2)个面,3n 条棱,2n 个顶点.故答案为(1)6,12,8;(2)8,18,12;(3)()2,3,2.n n n +18.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.【详解】(1)根据题意,这个几何体是圆柱;(2)该圆柱的高为40,底面直径为20,表面积为:2×π×102+20π×40=1000π.19.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【详解】解:20.把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,如图所示.问长方体的下底面共有多少朵花?颜色红黄蓝白紫绿花的朵数123456【详解】因为长方体是由大小相同,颜色、花朵分布也完全相同的四个立方体拼成,所以根据图中红色的面,可以确定出一个小立方体各个面的颜色为:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有17朵.21.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.解:(1)小明共剪了8条棱,故答案为8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000cm3。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图,是一个正方形的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.家D.园2、如图是一个表面写有数字的正方体,其表面展开图可能是()A. B. C. D.3、如图所示的几何体的主视图是()A. B. C. D.4、如图,是从不同的方向看一个物体得到的平面图形,该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱5、如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A. B. C. D.6、如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是()A. B. C. D.7、将一包卷卫生纸按如图所示的方式摆在水平桌面上,则它的俯视图是()A. B. C. D.8、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是( )A.3个或 4个或 5个B.4个或 5个C.5个或 6个D.6个或7个9、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港10、用一个平面按照如图所示的位置与正方体相截,则截面图形是()A. B. C. D.11、一个几何体的三视图如图所示,根据图中的相关数据求得该几何体的侧面积为()A.πB.2πC.3πD.4π12、已知一个几何体如图所示,则该几何体的主视图是()A. B. C. D.13、下列左视图正确的是()A. B. C. D.14、图中不是正方体展开圈的是()A. B. C. D.15、如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是A. B. C. D.二、填空题(共10题,共计30分)16、一个正方体有________个面.17、已知圆锥如图所示放置,.其主视图面积为12,俯视图的周长为6π,则该圆锥的侧面积为________.18、如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,﹣3,A,B,相对面上是两个数互为相反数,则A=________.19、小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有________.20、一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要________个这样的小立方块,最多需要________个这样的小立方块.21、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有________条.22、n个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n的最大值与最小值的和是________.23、如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为________.24、如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.25、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为________.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图所示的是一个正方体,试在下列3×5方格中,画出它的平面展开图(要求:画出3种不同的情形)28、(1)如图1,贤贤同学用手工纸制作一个台灯灯罩,请画出这个几何体的左视图和俯视图.(2)如图2,已知直线AB与CD相交于点O,EO⊥AB,OF是∠AOC的平分线,∠EOC=∠AOC,求∠DOF的度数.29、已知长方形纸片的长为31.4厘米,宽为5厘米,用它围成一个高为5厘米的圆柱体,求圆柱的一个底面的面积.(π取3.14)30、一个几何体及它的表面展开图如图所示.(几何体的上、下底面均为梯形)(1)写出这个几何体的名称;(2)计算这个几何体的侧面积和左视图的面积.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、A7、D8、A9、D10、A11、B12、A13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图所示是机器零件的立体图,从左面看到的平面图形是()A. B. C. D.2、下图是由多个相同小立方体搭成的几何体,则它的左视图为()A. B. C. D.3、下列同一个几何体中,主视图与俯视图不同的是()A. 圆柱B. 正方体C. 圆锥 D. 球4、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是()A.长方体B.球C.圆柱D.圆锥5、如图所示的几何体的左视图是()A. B. C. D.6、图是边长为的六个小正方形组成的图形,它可以围成图的正方体,则在图中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0B.1C.2D.37、小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个8、三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱9、下列四个几何体中,主视图与其它三个不同的是()A. B. C. D.10、已知某几何体的三视图如图所示,那么这个几何体是()A.长方体B.圆柱C.四棱锥D.四棱台11、如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A. B. C. D.12、如图是一空心圆柱,其主视图正确的是( )A. B. C. D.13、铅球的左视图是()A.圆B.长方形C.正方形D.三角形14、如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.15、如图所示的几何体,左视图是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为________.17、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是________.18、如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.19、如图为四边形、平行四边形、矩形、正方形、菱形、梯形(B)集合示意图,请将字母所代表的图形分别填入下表:A B C D E F________ ________ ________ ________ ________ ________20、已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________21、用小立方体搭一个几何体,从左面和上面看如图所示,这样的几何体它最少需要________块小立方体,最多需要________块小立方体.22、飞机表演的“飞机拉线”用数学知识解释为:________.23、薄薄的硬币在桌面上转动时,看上去象球,这说明了________.24、如图,这是一个正方体的展开图,则“喜”代表的面所相对的面的字是________.25、一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如下:那么桌上共有________枚硬币.三、解答题(共5题,共计25分)26、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.27、把图中图形绕虚线旋转一周,指出所得几何体与下面A~E中几何体的对应关系.28、如图,甲、乙、丙、丁四个扇形的圆心角度数比为1:2:4:5,请完成下面问题:(1)求出扇形丁的圆心角度数;(2)如果圆的半径r为2,请求出扇形乙的面积.29、如图为一个几何体的三视图.(1)写出这个几何体的名称;(2)若俯视图中等边三角形的边长为4cm,主视图中大长方形的周长为28cm,求这个几何体的侧面积.30、如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、B6、B7、B8、A9、D10、A11、D12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
苏科版七年级上册数学第5章走进图形世界含答案一、单选题(共15题,共计45分)1、如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同2、一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个3、若一个几何体的三视图都是正方形,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥4、如图,是一个正方体的展开图,每个面内都标注了字每,则展开前与面E相对的是()A.A面B.C面C.B面D.D面5、将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.6、如图是一个由3个相同的正方体组成的立体图形,则它的主视图为()A. B. C. D.7、下列立体图形中,俯视图是三角形的是()A. B. C. D.8、从左面看如图中的几何体,得到的平面图形正确的是A. B. C. D.9、如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A. B. C. D.10、如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A. B. C. D.11、下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体12、如果有一个正方体,它的展开图可能是下列四个展开图中的A. B. C. D.13、桌子上摆放了若干碟子,分别从三个方向上看其三视图如图所示,则桌子上共有碟子().A.17个B.12个C.9个D.8个14、如图是某几何题的三视图,下列判断正确的是()A.几何体是圆柱体,高为2B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2D.几何体是圆锥体,半径为215、用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱B.圆锥C.三棱柱D.正方体二、填空题(共10题,共计30分)16、一个几何体的三视图如图所示,则该几何体的表面积为________.(π取3)17、若一个棱柱有7个面,则它是________棱柱.18、如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为________.19、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为________.20、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中“国”字所在面相对的面上的汉字是________.21、如图,圆锥的母线长为,侧面展开图的面积为,则圆锥主视图的面积为________.22、一个平面去截球,截面的形状一定是________.23、近日,以“奋斗40载”为主题的大型无人机灯光表演在深圳龙岗上演,小刚把其中一句祝福“致敬奋斗的你”写在了正方体的各个面上,展开图如图所示,请问“敬”的相对面是________。
七年级数学上5 1丰富的图形世界同步测试题苏科版带答案
5.1 丰富的图形世界
知识点 1 常见几何体的分类
1.观察下列实物模型,其形状是圆柱的是( )
图5-1-1
2.下列各几何体中,三棱锥是( )
图5-1-2
3.如图5-1-3所示的陀螺是由下列哪两个几何体组合而成的( )
图5-1-3
A.长方体和圆锥
B.长方形和三角形
C.圆和三角形
D.圆柱和圆锥
4.你能否将如图5-1-4所示的几何体进行分类?并说出分类的依据.
知识点 2 图形的组成
5.下面几何体中,全是由曲面围成的是( )
A.圆柱 B.圆锥
C.球 D.正方体
6.直棱柱的侧面都是( )
A.正方形 B.长方形
C.五边形 D.三角形
7.下列立体图形中,有五个面的是( )
A.四棱锥 B.五棱锥
C.四棱柱 D.五棱柱
8.下列说法中,不正确的是( )
A.棱锥的侧面都是三角形
B.棱柱的上、下底面一样大
C.正方体、长方体都是棱柱
D.四棱锥与四棱柱的棱数一样多
9.一个六棱柱共有________条棱,如果六棱柱的底面边长都是2 cm,侧棱长都是4 cm,那么它所有棱长的和是________cm.
10.正方体有______个面,______个顶点,经过每个顶点有______条棱,这些棱的长度______(填“相等”或“不相等”).
11.观察如图5-1-5所示的直棱柱.
图5-1-5
(1)这个棱柱的底面是______形;
(2)这个棱柱有______个侧面,侧面是________;
(3)侧面的个数与底面的边数________(填“相等”或“不相等”);
(4)这个棱柱有______条侧棱,一共有______条棱;
(5)如果CC′=3 cm,那么BB′=________cm.
知识点 3 七巧板
12. 七巧板的七块板中,没有的图形是( )
A.正方形 B.梯形
C.等腰直角三角形 D.平行四边形
13.用边长为10厘米的正方形做了一套七巧板,拼成如图5-1-6所示的一座桥,则桥中阴影部分的面积为________平方厘米.
图5-1-6
14.下列说法正确的是( )
A.棱柱的所有侧面都相等
B.棱柱的侧面都是长方形
C.棱柱的所有棱长都相等
D.棱柱的两个底面平行
15.用M,N,P,Q各代表四种简单几何图形(线段、等边三角形、正方形、圆)
中的一种.如图5-1-7①~④是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示).
那么,下列组合图形中,表示P&Q的是( )
图5-1-8
16.将一个四棱柱(六面体)形橡皮泥只切一刀,截去一个顶点,会变成一个几面体?它的顶点数和棱数将变成多少?
17.观察如图5-1-9所示的直四棱柱.
(1)它有几个面?几个底面?底面与侧面分别是什么图形?
(2)侧面的个数与底面多边形的边数有什么关系?
(3)若底面的周长为20 cm,侧棱长为8 cm,则它的侧面积为多少?
18.如图5-1-10所示是由27个小正方体堆成的一个正方体,现将它的表面涂成黄色.
问:(1)有三个面涂成黄色的小正方体有几个?
(2)有一个面涂成黄色的小正方体有几个?
(3)有两个面涂成黄色的小正方体有几个?
1.D [解析] 圆柱的上下底面都是圆.故选D.
2.C [解析] 根据三棱锥的定义,选项C中的几何体由四个三角形组成,是三棱锥.故选C.
3. D [解析] 由组成几何体的特征知,上面是圆柱,下面是圆锥.故选D. 4.[解析] 可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,分类方法不同,答案不同,只要合理即可.下面给出一种分类方法做参考.
解:(答案不唯一)观察图形,按柱体、锥体、球划分,则有:(1)(3)(4)(5)(6)(8)为柱体;(2)为锥体;(7)为球.
5.C [解析] A项,圆柱由两个平面(上、下底面)和一个曲面(侧面)组成;B 项,圆锥由一个曲面(侧面)和一个平面(底面)组成;C项,球只由一个曲面组成;D项,正方体由六个平面组成.故选C.
6.B [解析] 直棱柱的侧面都是长方形.故选B.
7.A [解析] 四棱锥由一个底面,四个侧面组成,共五个面.故选A.
8.D [解析] A.棱锥的侧面都是三角形,正确,不符合题意;B.棱柱的上、下底面一样大,正确,不符合题意;C.正方体、长方体都是棱柱,正确,不符合题意;D.四棱锥比四棱柱的棱数少,错误,符合题意.故选D.
9.18 48 [解析] 一个六棱柱共有12条底边,6条侧棱,共有18条棱,所有棱长的和=12×2+6×4=48(cm).
10.6 8 3 相等
11.(1)三角(2)3 长方形
(3)相等(4)3 9 (5)3
[解析] 图中的棱柱由2个三角形的底面和3个四边形的侧面围成,其中侧面的个数与底面的边数相等.有3条侧棱,且3条侧棱长度相等,共有9条棱.12.B
13.50 [解析] 由图可得,阴影部分的面积为原正方形的面积的一半,则阴影部分的面积为10×10÷2=50(厘米2).故答案为50.
14.D
15.B
16.解:如图,只切一刀,截去四棱柱一个顶点,会得到以下几种情况:
可列表如下:
截得的多面体顶点数面数棱数
图①10715
图②9714
图③8713
图④7712
将一个四棱柱(六面体)形橡皮泥只切一刀,截去一个顶点,会变成一个七面体,它的顶点数和棱数将分别是10,15或9,14或8,13或7,12.
17.解:(1)它有6个面,2个底面,底面是梯形,侧面是长方形.
(2)侧面的个数与底面多边形的边数相等,都为4.
(3)它的侧面积为20×8=160(cm2).
18.解:(1)三个面涂成黄色的小正方体在8个顶点上,有8个.
(2)一个面涂成黄色的小正方体在每个面的正中间,有6个.
(3)两个面涂成黄色的小正方体在12条棱上,有12个.。