3-4 向量空间
- 格式:ppt
- 大小:236.50 KB
- 文档页数:14
线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。
教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。
教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。
1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。
教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。
教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
空间向量的坐标表示与计算空间向量是三维空间中的一个重要概念,可以用来表示空间中的一个点或者空间中的两个点之间的位移向量。
为了方便计算和表示,我们可以使用坐标表示来描述和计算空间向量。
一、空间向量的坐标表示在三维坐标系中,可以使用三个坐标轴(通常是x轴、y轴、z轴)来表示一个空间向量的坐标。
这三个坐标轴是相互垂直的,构成一个直角坐标系。
对于一个空间向量v,可以使用v的起点在坐标原点的坐标表示来表示该向量。
假设v的坐标表示为(x, y, z),其中x、y、z分别表示v在x轴、y轴、z轴上的坐标值。
例如,对于一个空间向量v,如果它的起点在坐标原点,终点的坐标分别为(3, 4, 5),那么可以表示为v = (3, 4, 5)。
二、空间向量的计算1. 向量的加法空间向量的加法是指将两个向量相加得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的和向量c的坐标表示为(c1, c2, c3),其中c1 = a1 + b1,c2 = a2 + b2,c3 = a3 + b3。
+ b的坐标表示为(c1, c2, c3) = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
2. 向量的减法空间向量的减法是指将一个向量减去另一个向量得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的差向量c的坐标表示为(c1, c2, c3),其中c1 = a1 - b1,c2 =a2 - b2,c3 = a3 - b3。
例如,对于向量a = (1, 2, 3)和向量b = (4, 5, 6),它们的差向量c = a - b的坐标表示为(c1, c2, c3) = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
3. 向量的数量积空间向量的数量积是指将两个向量相乘得到一个标量(即一个数)。
线性代数的向量空间理论线性代数是数学中的一门重要学科,其中的向量空间理论是其核心内容之一。
向量空间理论主要研究数学对象之间的线性关系,通过定义和研究向量空间的性质和运算规则,揭示了各种数学结构和现象背后的共性和规律。
本文将通过介绍向量空间的定义、基本性质和相关定理,来阐述线性代数的向量空间理论。
一、向量空间的定义向量空间是指具有加法和数乘运算的集合,满足一定的性质。
具体而言,一个向量空间必须满足以下几个条件:1. 封闭性:对于集合中的任意两个元素,其和仍然属于该集合。
即对于向量x和y,x+y也是向量空间中的元素。
2. 结合律:向量空间中的加法满足结合律。
即对于任意的向量x、y 和z,(x+y)+z=x+(y+z)。
3. 零向量:向量空间中存在一个特殊的元素0,称为零向量,满足对于任意的向量x,x+0=x。
4. 负向量:对于向量空间中的任意元素x,存在一个负元素-x,满足x+(-x)=0。
5. 数乘运算:向量空间中的元素可以与标量相乘。
即对于向量x和标量a,存在一个元素ax,满足数乘运算的分配律和结合律。
通过这些定义和运算规则,我们可以建立起一个向量空间的抽象数学模型,便于对其进行研究和应用。
二、向量空间的基本性质在向量空间的理论中,还有一些基本性质是我们需要了解的。
1. 维度:向量空间的维度是指向量空间的基的个数。
一个向量空间的基是指一个线性无关的向量组,可以通过它们的线性组合来表示向量空间中的任意向量。
一个向量空间的维度等于其基的个数。
2. 线性无关性:如果一个向量组中的向量之间没有线性关系,即不能通过它们的线性组合来表示零向量,那么称这个向量组是线性无关的。
一个向量空间的基一定是线性无关的向量组。
3. 基变换矩阵:对于一个向量空间的两个不同的基,它们之间存在一个线性变换关系,并可以用一个矩阵来表示。
这个矩阵称为基变换矩阵。
4. 子空间:一个向量空间的子集,如果本身也是一个向量空间,则称为原向量空间的子空间。
空间向量考点(全)1、空间向量的坐标及基本运算空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标).=(a 1,a 2,a 3),),,(321b b b =, ),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a ++=⋅ ,向量平行:a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 。
向量垂直:0332211=++⇔⊥b a b a b a b a 。
222321a a a ++===⇒•=空间两个向量的夹角公式:232221232221332211||||,cos bb b a a a b a b a b a b a ba b a ++⋅++++=⋅•>=<ρρρρρ空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=. 2、法向量若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量a 叫做平面α的法向量. 3、向量的应用①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||n ②.利用向量求异面直线间的距离d =(12,l l 是两异面直线,其公垂向量为n r,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.利用向量求直线AB 与平面所成角sin ||||AB m arc AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④.利用法向量求二面角的平面角定理 21,n n 分别是二面设角βα--l 中平面βα,的法21,n 所成的角就向量,则是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||m narc m n π⋅-u r ru r r (m u r ,n r 为平面α,β的法向量). ⑤.证直线和平面平行定理已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交). 4、向量的基本概念(1) 共线向量共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量,,共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立] ④若a 为非零向量,则0=.(√)[这里用到)0(≠b b λ之积仍为向量] (2) 共线向量定理AB对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3) 共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4) 证明四点共面的常用方法.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC四点共面的充要条件.(证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)4、向量的基本定理如果三个向量....c b a ,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用+=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r,则四点P 、A 、B 、C 是共面⇔1x y z ++=OABCD。
空间向量及其运算习题答案空间向量及其运算习题答案引言:空间向量是三维空间中的一种数学概念,它可以用来描述物体在空间中的位置、方向和运动状态。
空间向量的运算是空间几何中的重要内容,掌握空间向量的运算方法对于解决实际问题具有重要意义。
本文将通过一些典型的空间向量运算习题,来讲解空间向量的运算方法和答案。
一、向量的加法和减法1. 已知向量A(1, 2, 3)和向量B(4, -1, 2),求向量A + 向量B的结果。
答案:向量A + 向量B = (1+4, 2+(-1), 3+2) = (5, 1, 5)2. 已知向量C(2, -3, 1)和向量D(-1, 4, -2),求向量C - 向量D的结果。
答案:向量C - 向量D = (2-(-1), -3-4, 1-(-2)) = (3, -7, 3)二、向量的数量积和夹角3. 已知向量E(1, 2, 3)和向量F(4, -1, 2),求向量E和向量F的数量积。
答案:向量E·向量F = 1*4 + 2*(-1) + 3*2 = 4 - 2 + 6 = 84. 已知向量G(2, -3, 1)和向量H(-1, 4, -2),求向量G和向量H的夹角的余弦值。
答案:向量G·向量H = 2*(-1) + (-3)*4 + 1*(-2) = -2 - 12 - 2 = -16|向量G| = √(2^2 + (-3)^2 + 1^2) = √(4 + 9 + 1) = √14|向量H| = √((-1)^2 + 4^2 + (-2)^2) = √(1 + 16 + 4) = √21cosθ = (向量G·向量H) / (|向量G| * |向量H|) = -16 / (√14 * √21)三、向量的向量积和平面方程5. 已知向量I(1, 2, 3)和向量J(4, -1, 2),求向量I和向量J的向量积。
答案:向量I × 向量J = (2*2 - (-1)*3, 3*4 - 1*2, 1*(-1) - 2*4) = (4 + 3, 12 - 2, -1 - 8) = (7, 10, -9)6. 已知平面P过点(1, 2, 3),且平面P的法向量为向量K(2, -1, 3),求平面P的方程。