第4讲 导数与极值
- 格式:ppt
- 大小:768.00 KB
- 文档页数:47
导数专题书目录第一篇独孤九剑——导数基础专题1总诀式——导数的前世今生第一讲导数基本定义第二讲导数运算法则第三讲复合函数求导第四讲同构函数求导专题2破剑式——数形结合遇导数第一讲导数的几何意义第二讲在点的切线方程第三讲过点的切线方程专题3破刀式——基本性质与应用第一讲单调性问题第二讲极值与最值第三讲恒能分问题专题4破枪式——抽象函数的构造第一讲求导法则与抽象构造第二讲幂函数及其抽象构造第三讲指数函数与抽象构造第四讲对数函数与抽象构造第五讲三角函数与抽象构造第六讲平移与奇偶抽象构造专题5破鞭式——分类讨论的策略第一讲不含参的四类问题第二讲含参数的五类问题专题6破索式——三次函数的探究第一讲基本性质第二讲切线问题第三讲四段论界定第四讲三倍角界定专题7破掌式——指对的破解逻辑第一讲指数模型第二讲对数模型专题8破箭式——六大同构函数论第一讲六大同构函数第二讲外部函数同构第三讲极值底层逻辑专题9破气式——零点与交点问题第一讲零点相关定理第二讲曲线交点问题第三讲零点个数问题第二篇如来神掌——导数选填的奇思妙解专题1心中有佛——秒解抽象函数构造第一讲抽象函数的积分构造第二讲“网红解法”的利弊专题2佛光初现——妙解参数取值范围第一讲零点比大小问题妙解双参比值问题第二讲零点比大小妙解指对单参数的问题第三讲恰到好处的取点妙解双参系列问题专题3金顶佛灯——数轴破整数个数解第一讲对数的取点技巧第二讲指数的取点技巧专题4佛动山河——平口单峰函数探秘第一讲平口二次函数问题第二讲平口对勾函数问题第三讲平口三次函数问题第四讲平口函数万能招数第五讲构造平口单峰函数第六讲必要探路最值界定第七讲倍角定理最值界定专题5佛问伽蓝——拉格朗日插值妙用第一讲三大微分中值定理简述第二讲拉格朗日中值定理应用专题6迎佛西天——构造函数速比大小第一讲构造基本初等函数第二讲构造母函数比大小第三讲构造混阶型比大小专题7天佛降世——琴生不等式破选填第一讲函数的凹凸性第二讲凹凸性的应用专题8佛法无边——极限思想巧妙应用第一讲前世今生论第二讲洛必达法则专题9万佛朝宗——选填压轴同构压制第一讲母函数原理概述第二讲同等双参需同构第三讲同构引出的秒解第三篇无涯剑道——导数三板斧升级篇专题1问剑求生——同类同构第一讲双元同构篇第二讲指对同构篇第三讲朗博同构篇第四讲零点同构篇第五讲同构保值篇第六讲同构导中切专题2持剑逆道——分类同构第一讲分而治之型第二讲端点效应型第三讲志同道合型第四讲分道扬镳型第五讲柳暗花明型专题3迎剑归宗——切点同构第一讲切线问题的进阶处理第二讲公切线问题几何探秘第三讲基本函数的切线找点第四讲跨阶函数的切线找点第五讲双变量乘积处理策略第四篇逍遥功——泰勒与放缩专题1逍遥剑法——泰勒展开第一讲泰勒基本展开式第二讲泰勒与切线找点第三讲泰勒与极值界定第四讲无穷阶极值界定第五讲泰勒与切线界定专题2逍遥刀法——京沪专线第一讲指数型“0”线第二讲对数型“0”线第三讲三角型“0”线专题3逍遥拳法——京九专线第一讲指数型“1”线第二讲对数型“1”线第三讲“e”线放缩论“n”线放缩论第四讲指对混阶放缩论第五讲指对三角放缩论第六讲高阶借位放缩论第七讲充分必要放缩论第八讲数列放缩系统论第五篇武当神功——点睛之笔专题1梯云纵——极点极值第一讲极值点本质第二讲唯一极值点第三讲存在极值点第四讲莫有极值点专题2太和功——隐点代换第一讲直接应用第二讲整体代换第三讲反代消参第四讲降次留参第五讲矛盾区间专题3峰回掌——跨阶找点第一讲找点初步认识第二讲找点策略阐述第三讲高次函数找点第四讲指对函数找点第五讲三角函数找点专题4太极剑——跳阶找点第一讲指对混阶找点第二讲指数三角找点第三讲对数三角找点第四讲终结混阶找点专题5八卦阵——必要探路第一讲端点效应第二讲极点效应第三讲显点效应第四讲隐点效应第五讲内点效应第六讲外点效应第七讲拐点效应第八讲弧点效应第六篇六脉神剑——明元之家专题1少商剑——三三来迟第一讲飘带函数减元第二讲点差法第三讲韦达定理的应用专题2商阳剑——四曾相识第一讲极值点偏移第二讲构造法第三讲拐点偏移第四讲泰勒公式专题3中冲剑——不讲五德第一讲换元构造第二讲对数平均不等式第三讲指数平均不等式第四讲广义对均第五讲深度剖析专题4関冲剑——七晴六遇第一讲零点差模型第二讲极值模型第三讲混合模型专题5少泽剑——第一讲复数三角形式第二讲棣莫弗定理第三讲复数的应用专题6少冲剑——第一讲斜率成等差等比问题第一讲数据逻辑及相关定理第二讲破解逻辑及突破压轴。
导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。
第1课时:极值的定义与计算(一)函数的极值的定义:一般地,设函数()f x 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有0()()f x f x <,则0()f x 是函数()f x 的一个极大值,记作0()y f x =极大值;(2)若对0x 附近的所有点,都有0()()f x f x >,则0()f x 是函数()f x 的一个极小值,记作0()y f x =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.备注:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数()y f x =在0x x =及其附近有定义,否则无从比较,于是,定义域优先原则(2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 二.求函数的极值 ①确定函数的定义域; ②求导数()f x '; ③求方程()0f x '=的根;④检查()f x '在方程根左右的值的符号,如果左正右负,则()f x 在这个根处取得极大值;如果左负右正,则()f x 在这个根处取得极小值.(极值点一定必须是导函数的变号零点.) 注:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数()f x 在点0x 取得极值的必要非充分条件.例如函数3y x =,在0x =处,(0)0f '=,但0x =不是函数的极值点.②可导函数()f x 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧()f x '的符号相异.二.题型分析题型1.计算函数(不含参数)的极值点与极值 例1.已知函数21f xx x ,则( )A .()f x 有极小值,无极大值B .()f x 有极大值,无极小值C .()f x 既有极小值又有极大值D .()f x 无极小值也无极大值解析:由题意函数21f x x x ,可得()2341(1)(31)f x x x x x '=-+=--,当1(,)3x ∈-∞时,0fx ,()f x 单调递增;当1(,1)3x ∈时,()0f x '<,()f x 单调递减; 当(1,)x ∈+∞时,0fx,()f x 单调递增,所以当13x =时,函数取得极大值;当1x =时,函数取得极小值. 故选:C.例2.函数()y f x '=的图像如图所示,则关于函数()y f x =的说法正确的是( )A .函数()y f x =有3个极值点B .函数()y f x =在区间(,4)-∞-上是增加的C .函数()y f x =在区间(2,)-+∞上是增加的D .当0x =时,函数()y f x =取得极大值【详解】结合导数与函数单调性的关系可知,当5x <-时,0f x ,函数单调递增, 当52x -<<-时,()0f x '<,函数单调递减,当2x >-时,0fx,函数单调递增,故当5x =-时,函数取得极大值,当2x =-时,函数取得极小值.所以D 错误; 故函数()y f x =有2个极值点,所以A 错误;函数()y f x =的单调性为:单增区间()()52-∞-+∞,,,;单减区间()52--,.故B 错误,C 正确.故选:C.例3.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+的图象如图所示,则下列结论中正确的是( )A .函数()f x 有极大值()3f -和()3fB .函数()f x 有极小值()3f -和()3fC .函数()f x 有极小值()3f 和极大值()3f -D .函数()f x 有极小值()3f -和极大值()3f解:由图可知,当3x <-时,10x +<,当()0f x '<,当31x -<<-时,10x +<,则0f x,当13x -<<时,10x +>,则0fx,当3x >时,10x +>,则()0f x '<,所以函数()f x 有极小值()3f -和极大值()3f . 故选:D. 题型2.求(含参数)函数的极值由于参数的引入会导致导函数的变号零点的存在性与大小关系不定,所以需要进行分类讨论. 故解极值点的过程同上,只是多了一步分类讨论罢了.例4.已知函数()()ln 1f x x x a x a =-++,0x >.求()f x 的极值; 【详解】(1)()()ln 1f x x x a x a =-++,()0,x ∈+∞,则()ln f x x a ='- 令()0f x '=,解得e a x =.当0e a x <<时,()0f x '<;当e a x >时,0fx,所以()f x 在区间()0,e a 上单调递减,在区间()e ,a+∞上单调递增, 所以()f x 有极小值,无极大值,且极小值为()e e a af a =-.例5.已知函数()1e xaf x x =++,求函数()f x 的极值.【详解】()1e x a f x x =++,定义域为R ,()e 1e ex x x a af x -=-='.①当0a ≤时, 0fx, ()f x 在R 上为增函数, ()f x 无极值.②当0a >时,令()0f x '=,得e x a =, ln x a =. 当(),ln x a ∈-∞, ()0f x '<;当 ()ln ,x a ∈+∞, 0fx;∴()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,()f x 在ln x a =取得极小值,极小值为()ln ln 2f a a =+,无极大值.综上所述,当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值()ln ln 2f a a =+,无极大值.例6.已知函数()()21e xf x x ax =++.求函数()y f x =的极值.解:因为()()21e x f x x ax =++,x ∈R ,则()()()11e xf x x a x '=+++,当0a =时()()21e 0x f x x '+≥=,所以()f x 在定义域上单调递增,不存在极值;当a<0时令()0f x '=,解得1x a =--或=1x -,又11a -->-, 所以当1x a >--或1x <-时0fx,当11x a -<<--时()0f x '<,所以()f x 在(,1)-∞-上单调递增,在(1,1)a ---上单调递减,在(1,)a --+∞上单调递增,故()f x 在=1x -处取得极大值,()()21eaf x f -=-=极大值,()f x 在1x a =--处取得极小值,()()121e a a f x f a ++=--=极小值, 当0a >时令()0f x '=,解得1x a =--或=1x -,又11a --<-, 所以当1x a <--或1x >-时0fx,当11a x时()0f x '<,所以()f x 在(),1a -∞--上单调递增,在()1,1a ---上单调递减,在()1,-+∞上单调递增,故()f x 在1x a =--处取得极大值,()()121ea a f x f a ++=--=极大值,()f x 在=1x -处取得极小值,()()21eaf x f -=-=极小值, 综上可得:当0a =时无极值, 当a<0时,()2e a f x -=极大值,()12ea a f x ++=极小值,当0a >时,()12e a a f x ++=极大值,()2eaf x -=极小值. 三.习题演练1.已知定义域为(0,)+∞的函数()f x 的导函数为()f x ',且函数3()(log 1)()g x x f x ⋅'=-的部分图象如图所示,则下列说法中正确的是( )A .()f x 有极小值(6)f ,极大值(1)fB .()f x 有极小值(6)f ,极大值(10)fC .()f x 有极小值(1)f ,极大值(3)f 和(10)fD .()f x 有极小值(1)f ,极大值(10)f 【详解】观察图象知,当()0g x >时,01x <<或310x <<且6x ≠,当()0g x <时,13x <<或10x >,而当03x <<时,3log 10x -<,当3x >时,3log 10x ->,因此当01x <<或10x >时,()0f x '<,当110x <<时,()0f x '≥,当且仅当6x =时取等号,则()f x 在(0,1),(10,)+∞上单调递减,在(1,10)上单调递增,所以()f x 有极小值(1)f ,极大值(10)f ,A ,B ,C 不正确;D 正确. 故选:D2.函数()21e 22xx y x x =+--的极小值为( )A .212e- B .1 C .2D .E【详解】解:由()()21e 22xx y f x x x ==+--,得()()e (1)e 2(2)e 1x x xf x x x x '=++--=+-,当<2x -或0x >时,0fx,当20x -<<时,()0f x '<,所以函数()21e 22xx y x x =+--在(),2-∞-上单调递增,在()2,0-上单调递减,在()0,∞+上单调递增,所以函数()()21e 22xx f x x x =+--的极小值为()01f =.故选:B.3.若函数()21()2e x f x x ax +=--有两个极值点且这两个极值点互为相反数,则()f x 的极小值为( ) A .36e -B .32e -C .4e -D .2e-【详解】由题意,()()212112()2e 2()[(2)2]e e x x x x a x a f x x ax x ax +++''=-----'+=+--, 令()0f x '=,即2(2)20x a x a +---=,若函数()f x 有两个极值点且这两个极值点互为相反数,即2(2)20x a x a +---=的两个根互为相反数,不妨设两个根为12,x x ,则120,20x x a ∆>+=-=,解得:2a =,故12()e (4)x f x x +'=-,令()0,2f x x '>∴>或<2x -;令()0,22f x x '<∴-<<,即函数()f x 在(,2),(2,)-∞-+∞单调递增;在(2,2)-单调递减. 故函数在2x =取得极小值(2)f =32e -.故选:B 4.函数21(1)e22x x y x x +=+--的极小值为___________. 【详解】由()21(1)e22x x f x x x +=+--,得()()()()111e 1e 22e 1x x xf x x x x +++=++--=+-', 令()0f x '=得122,1x x =-=-,当<2x -或1x >-时,0f x,当2<<1x --时,()0f x '<,所以函数()211e22x x y x x +=+--在(,2)-∞-上单调递增,在(2,1)--上单调递减,在(1,)-+∞上单调递增,函数的极小值点为-1, 所以函数21(1)e 22x x y x x +=+--的极小值为3(1)2f -=. 故答案为:325.已知函数()3223f x x mx nx m =+-+在=1x -时有极值0,则mn = ______ .【详解】∵()3223f x x mx nx m =+-+,()236f x x mx n '=+-,函数()3223f x x mx nx m=+-+在=1x -时有极值0, 可得()()1010f f -⎧⎪⎨'-⎪⎩==即2130360m n m m n ⎧-+++=⎨--=⎩,解得29m n =⎧⎨=-⎩或13m n =⎧⎨=-⎩, 若13m n =⎧⎨=-⎩时,函数()32331f x x x x =+++,()()22363310f x x x x '=++=+≥ 所以函数()f x 在R 上单调递增,函数无极值,故舍,所以29m n =⎧⎨=-⎩,所以18mn =-故答案为:18-.课时2已知极值求参数的两种手法一.基本原理1.已知函数()f x 有极值点0x ,求参数的值或范围,一般有两种情况:(1)由()00f x '=可以解出参数的值,这类题较为简单,只需由()00f x '=求出参数的值,再代回()f x '去研究()f x 的单调性,确认()f x 在0x x =处取得极值即可.(2)由()00f x '=不能解出参数的值,这类题一般需要对参数进行分类讨论,研究函数的单调性,当()f x '的表达式较为复杂时,可能需要用到二阶导数,甚至三阶导数.当我们知道函数的具体极值点是极大值还是极小值求参数时,也可以利用下面高观点方法,当然,这个方法仅供有兴趣的同学了解,并非通法,它在解决一些问题时要方便一些.2.极值第二充分条件:若0)(],[0'0=⇒∈∃x f b a x ,且0)(0''≠x f ,则若0)(0''<x f ,则)(x f y =在0x 处取得极大值;若0)(0''>x f ,则)(x f y =在0x 处取得极小值.证明:将函数)(x f 在0x x =处二阶泰勒展开可得:200''00'0)(2)())(()()(x x x f x x x f x f x f -+-+= 由于)(x f 在0x x =存在极值,故0)(0'=x f 且对x 求导数可得)('x f ))((2)()(00''0''x x x f x f x f -+= 由0)(0'=x f 代入上式可知:))((2)(00'''x x x f x f -=显然,若0)(0''<x f ,则0x x <时0)('>x f ,0x x >时0)('<x f ,故0x x =为)(x f 的极大值点,证毕.注:此证明方法仅供需要弄清结论原理的读者使用,若不需,则可直接记住结论内容就行. 二.典例分析例1.若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=( )A .6B .15-C .6-或15D .6或15-解析: ()322f x x ax bx a =--+,2()32f x x ax b ∴=-'-,又1x = 时()f x 有极值10∴ 232010a b a b a --=⎧⎨--+=⎩,解得411a b =-⎧⎨=⎩ 或33a b =⎧⎨=-⎩ ,当3,3a b ==- 时,22()3633(1)0f x x x x =-+=-≥',此时()f x 在1x = 处无极值,不符合题意经检验,4,11a b =-= 时满足题意,15a b ∴-=-,故选:B例2.已知函数()()3sin xf x e x a =-有极值,则实数a 的取值范围为( )A .()2,2-B .()1,1-C .2,2⎡⎤-⎣⎦D .[]1,1-解析:()3(sin )3cos 3(sin cos )x x x f x e x a e x e x x a '=-+=+-3[2sin()]4xe x a π=+-,∵22sin()24x π-≤+≤,∴当2a ≥时,()0f x '≤恒成立,2a ≤-时,()0f x '≥恒成立,当22a -<<时,()0f x '=有解,且在解的两侧()f x '的符号相反,即()f x 有极值. 故选:A .例3.(2021年乙卷第10题)1.设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A .a b <B .a b >C .2ab a <D .2ab a >分析1:分类讨论若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b .依题意,x a =为函数()()()2f x a x a x b =--的极大值点,当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示: 由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D点评:按照传统的解法,此题应该先求一阶导数)('x f ,再分析)('x f 在a x =处何时出现左负右正,引入分类讨论,而对于多数中等水平学生而言,分类讨论是他们痛处,所以我们有必要思考如何避免上述做法. 分析2:第二充分条件依题,2')())((2)(a x a b x a x a x f -+--=再次求导 )(4)(2)(''a x a b x a x f -+-=由于a x =为极大值点,故0)(''<a f ,代入上式可得:2a ab >,故选D.点评:二阶导方法显然更加具有实用性,不用分类讨论,步骤也很明确,考试必备的好帮手.小结:已知0x x =为函数)(x f 的极大值或极小值,求参数问题. 第一步:求二阶导数;第二步:若0)(0''<x f ,则)(x f y =在0x 处取得极大值;若0)(0''>x f ,则)(x f y =在0x 处取得极小值.例4.已知函数()()21ln 12f x x x ax a x =-+-,其中a ∈R .(1)若2a =,求()f x 在1x =处的切线方程; (2)若()1f 是()f x 的极大值,求a 的取值范围.解析:(1)若2a =,则()2ln f x x x x x =-+,所以()ln 121ln 22f x x x x x '=+-+=-+,故()10f '=,又()10f =,所以()f x 在1x =处的切线方程0y =.(2)解法1:由题意,()()ln 0f x x ax a x '=-+>,()1f x a x ''=-,()21f x x'''=-,所以()11f a ''=-,若1a =,则()()110f f '''==,()110f '''=-≠,所以()1f 不是()f x 的极值,不合题意; 若1a >,则()10f '=,()10f ''<,所以()1f 是()f x 的极大值,满足题意;若1a <,则()10f '=,()10f ''>,所以()1f 是()f x 的极小值,不合题意; 综上所述,a 的取值范围是()1,+∞.解法2:由题意,()()ln 0f x x ax a x '=-+>,()1f x a x''=- ①当0a ≤时,()0f x ''>,所以()f x '在()0,+∞上单调递增, 又()10f '=,所以()01f x x '=⇔>,()001f x x '<⇔<<,从而()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()1f 是()f x 的极小值,不合题意;②当0a >时,()100f x x a ''>⇔<<,()10f x x a''<⇔> 所以()f x '在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,且()10f '=,若01a <<,则11a >,可知当01x <<时,()0f x '<,当11x a<<时,()0f x '>, 所以()f x 在()0,1上单调递减,在11,a ⎛⎫⎪⎝⎭上单调递增,故()1f 是()f x 的极小值,不合题意;若1a =,则11a=,()0f x '≤恒成立,从而()f x 在()0,+∞上单调递减,故()f x 无极值,不合题意;若1a >,则101a <<,可知当11x a<<时,()0f x '>,当1x >时,()0f x '<, 所以()f x 在1,1a ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,故()1f 是()f x 的极大值,满足题意;综上所述,a 的取值范围是()1,+∞. 三.习题演练1.已知函数321()23f x x ax x =+-在区间(1,)+∞上有极小值无极大值,则实数a 的取值范围( ) A .12a <B .12a >C .12a ≤D .12a ≥解析:∵函数()32123f x x ax x =+-,∴()2'22f x x ax =+-,∵函数()32123f x x ax x =+-在区间()1,+∞上有极小值无极大值,∴()2'220f x x ax =+-=在区间()1,+∞上有1个实根,(],1-∞上有1个根.()2480'1210a f a ⎧∆=+>⎪⎨=-<⎪⎩,解得12a <.故选A .2.已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1B .2C .-3D .4解析:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e e x x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e xf x x a ∴=-,()()()()22e 222=e 2x xf x x a x a a x a x a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦, 令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,0fx,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,0fx,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B3.已知函数()313ln x a f x x a=-在其定义域()0,+∞内既有极大值也有极小值,则实数a 的取值范围是( ) A .()20,11,ee e⎛⎫⋃ ⎪ ⎪⎝⎭B .()0,1C .2,e e ⎛⎫+∞ ⎪⎝⎭D .21,ee e⎛⎫ ⎪ ⎪⎝⎭解析:因为()313ln x a f x x a =-,所以()2x f x x a '=-. 因为函数()313ln xa f x x a=-在其定义域()0,+∞内既有极大值也有极小值,所以只需方程20x x a -=在()0,+∞有两个不相等实根.即2ln ln x a x =,令()2ln x g x x =,则()()221ln x g x x-'=.()g x 在()0,e 递增,在(),e +∞递减.∴2ln 0,a e ⎛⎫∈ ⎪⎝⎭, 故选D.4.已知函数()212f x axlnx x a =-+有且只有一个极值点,则实数a 构成的集合是( )A .{0|a a >且1}a ≠B .{}0a a >C .{0a a <或1}a =D .{}0a a <解析:由题意,求得函数()f x 的导数()()'1ln f x a x x =+-,令'0f x,即()1ln 0a x x +-=.则10,1ln e x x a x x ⎛⎫=>≠ ⎪+⎝⎭且.设1()0,1ln x g x x x x e ⎛⎫=>≠ ⎪+⎝⎭且,得2ln ()(1ln )x g x x '=+. 当()'0g x >时,得1x >;当()'0g x <时,得10x e <<或11x e<<,所以函数()g x 在区间10,e ⎛⎫ ⎪⎝⎭和1,1e ⎛⎫⎪⎝⎭上单调递减,在区间()1,+∞上单调递增.因为函数()212f x axlnx x a =-+有且只有一个极值点,所以直线y a =与函数1()0,1ln x g x x x x e ⎛⎫=>≠ ⎪+⎝⎭的图象有一个交点,所以a<0或1a =. 当1a =时()()'1ln 0f x x x =+-<恒成立,所以()y f x =无极值,所以{}0a a <.故选D .课时3函数的最值一.基本原理(一)函数的最大值与最小值定理若函数()y f x =在闭区间[,]a b 上连续,则()f x 在[,]a b 上必有最大值和最小值;在开区间(,)a b 内连续的函数()f x 不一定有最大值与最小值.如1()(0)f x x x =>.知识点诠释:①函数的最值点必在函数的极值点或者区间的端点处取得. ②函数的极值可以有多个,但最值只有一个. (二)求函数最值的的基本步骤:若函数()y f x =在闭区间[,]a b 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在[,]a b 上的最大值和最小值的步骤如下: (1)求函数()f x 在(,)a b 内的导数()f x '; (2)求方程()0f x '=在(,)a b 内的根;(3)求在(,)a b 内使()0f x '=的所有点的函数值和()f x 在闭区间端点处的函数值()f a ,()f b ;(4)比较上面所求的值,其中最大者为函数()y f x =在闭区间[,]a b 上的最大值,最小者为函数()y f x =在闭区间[,]a b 上的最小值. 知识点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若()f x 在开区间(,)a b 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.(三)最值与极值的区别与联系①函数的最大值和最小值是比较整个定义域上的函数值得出的(具有绝对性),是整个定义域上的整体性概念.最大值是函数在整个定义域上所有函数值中的最大值;最小值是函数在整个定义域上所有函数值中的最小值.函数的极大值与极小值是比较极值点附近两侧的函数值而得出的(具有相对性),是局部的概念;②极值可以有多个,最大(小)值若存在只有一个;极值只能在区间内取得,不能在区间端点取得;最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值;③有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值. 二.题型分析题型1.求函数(不含参)的最值例11.(2022·广东·雷州市白沙中学高二阶段练习)函数()3243185f x x x x =--+,则()f x 在[]1,2-上的最大值为___________.【解析】由题意2()126186(1)(23)f x x x x x '=--=+-,()0f x '=得=1x -,32x =, 312x -<<时,()0f x '<,()f x 递减,322x <<时,()0f x '>,()f x 递增, 所以3()(2)2f f <,又(1)f -=16,(2)11f =-,所以最大值为16.故答案为:16. 求函数最值的步骤 (1)求函数的定义域.(2)求()f x ',解方程()0f x '=.(3)列出关于x ,()f x ,()f x '的变化表. (4)求极值、端点处的函数值,确定最值.注意:不要忽略将所求极值与区间端点的函数值进行比较. 例2.已知函数()e cos x f x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.解析:(1)因为()e cos x f x x x =-,所以()()()e cos sin 1,00xf x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(2)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x xh x x x x x x =--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<.所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭.例3.已知函数()2cos sin 2=-f x x x ,则()f x 的最小值是( )A .B .C .D .解析:函数()2cos sin 22cos 2sin cos f x x x x x x =-=-;显然cos 0x <,sin 0x <,函数值才取最小;由2()2sin 2cos 22sin 24sin f x x x x x '=--=--+.令()0f x '=,可得:1sin 2x =-或sin 1x =.当sin 1x =,可得cos 0x =;当1sin 2x =-,cos x =1sin 2x ∴=-,cos x =时,函数()f x 取得最小值为题型2.求函数(含参)的最值参数的引入会导致函数的单调区间会随着参数而改变,进而极值(最值)都会变,所以此时求最值的步骤依然与前面相同,只是需要对导数的正负号进行讨论,讨论清楚原函数的单调性后再去求相应的极值(最值).例4.(2022·陕西·西安中学高二期中)已知函数()()e 1xf x x a =--.(1)当=0a 时,求曲线()=y f x 在()()0,0f 处的切线方程; (2)求()f x 的单调性;(3)求函数()f x 在[]0,1上的最小值.解析:(1)当=0a 时,()()e 1x f x x =-,则()()e 1e e x x x f x x x '=-+=,所以()01f =-,()00f '=,所以曲线()=y f x 在()()0,0f 处的切线方程为1y =-.(2)由题意得()()e x f x x a '=-,因为e 0x >恒成立,所以当(),x a ∈-∞时,()0f x '<,()f x 单调递减,当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(3)由(2)得,①当1a >时,()f x 在[]0,1上单调递减,()()min 1e f x f a ==-;②当01a <≤时,()f x 在[)0,a 单调递减,在(],1a 单调递增,()()min e af x f a ==-;③当0a ≤时,()f x 在[]0,1上单调递增,()()min 01f x f a ==--.例4.已知函数()()ln 1f x x x a x =+-,R a ∈.函数()f x 在区间[]1,e 上的最小值. 解析:(2)由()()ln 1f x x x a x =+-,可得()ln f x x a '=+, 由()ln 0f x x a '=+=,可得e a x -=,当e 1a -≤,即0a ≥时,[]1,e x ∈时,()0f x '≥恒成立,()f x 单调递增, 所以函数()f x 在区间[]1,e 上的最小值为()11f a =-;当e e a -≥,即1a ≤-时,[]1,e x ∈时,()0f x '≤恒成立,()f x 单调递减, 所以函数()f x 在区间[]1,e 上的最小值为()e e f a =; 当1e e a -<<,即10a -<<时,)e1,ax -⎡∈⎣时,()0f x '<,()f x 单调递减,(e ,e a x -⎤∈⎦时,'()0f x >,()f x 单调递增,所以函数()f x 在区间[]1,e 上的最小值为()e e a af --=-;综上,当0a ≥时,函数()f x 在区间[]1,e 上的最小值为1a -; 当10a -<<时,函数()f x 在区间[]1,e 上的最小值为e a --; 当1a ≤-时,函数()f x 在区间[]1,e 上的最小值为e a ;例5.已知函数()()e 1xf x x a =--.(1)当=0a 时,求曲线()=y f x 在()()0,0f 处的切线方程; (2)求()f x 的单调性;(3)求函数()f x 在[]0,1上的最小值.(2)由题意得()()e xf x x a '=-,因为e 0x >恒成立,解析:所以当(),x a ∈-∞时,()0f x '<,()f x 单调递减, 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(3)由(2)得,①当1a >时,()f x 在[]0,1上单调递减,()()min 1e f x f a ==-;②当01a <≤时,()f x 在[)0,a 单调递减,在(],1a 单调递增,()()min e af x f a ==-;③当0a ≤时,()f x 在[]0,1上单调递增,()()min 01f x f a ==--. 三.习题演练1.已知函数1()ln f x m x x =+的最小值为m -, 则 m =( )A .21e B .1eC .eD .2e解析:由1()ln f x m x x =+,得2211()m mx f x x x x -=-=',当0m ≤时,则0fx,函数()f x 在()0,+∞上为减函数,函数无最小值,不合题意,当0m >时,当10x m <<时,()0f x '<,函数()f x 单调递减,当1x m >时,()0f x '>,函数()f x 单调递增,∴ 1x m =时,函数()f x 有最小值1ln m m m m+=-, 解得2e m =.故选:D.2.设2(),0()ln ,0x a x f x x a x x ⎧-≤=⎨->⎩,若函数()f x 的最小值为2a ,则实数a 的取值范围为( )A .[]2,1-B .[]0,1C .[]0,2D .[)1,+∞解析:若a<0,当0x >时,()ln f x x a x =-为增函数,且()(,)f x ∈-∞+∞,不符合题意.若()0,a f x =2,0,0x x x x ⎧≤=⎨>⎩,最小值为()200f a ==.若0a >,当0x 时,()f x 的最小值为()20f a =.当0x >时,()af x x x'-=,若0x a <<,则()0f x '<,若x a >,则0f x ,()f x 在(0,)a 在,在(,)a +∞上递增,故()f x 的最小值为()()1ln f a a a =-.由20(1ln )a a a a >⎧⎨-≥⎩,1ln a a -≥,ln 10a a +-≤,设()ln 1g x x x =+-,它在(0,)+∞上是增函数,且(1)0g =,所以ln 10a a +-≤的解是01a <≤.可得0 1.a <综上,常数a 的取值范围为[]0,1.故选:B .3.已知函数()()2ln ,2f x x g x x ==+,若()()12f x g x =,则212x x -的最大值为___________. 解析:设()()12f x g x m ==,R m ∈,则21mx =e ,22x m =-,221222mx x m -=--e , 令()222x h x x =--e ,则()21x h x '=-e ,令()0h x '>,解得0x <,所以()h x 在(),0∞-上单调递增,()0,∞+上单调递减,()()max 04h x h ==-,所以212x x -的最大值为-4. 故答案为:-4.4.设函数()e 2xf x x =-,直线=+y ax b 是曲线()=y f x 的切线,则2a b +的最大值是__________解析:因为()e 2x f x x =-,所以()e 2xf x '=-,设切点()(),t f t ,则()e 2tf t t =-,()e 2t f t '=-,则切线方程为()())e 2e 2(t t y t x t --=--,即()()e 2e 1t ty x t =-+-,又因为=+y ax b 是曲线()=y f x 的切线,所以()=e 2=e 1tta b t --⎧⎪⎨⎪⎩,则243e e t t a b t +=-+-, 令()43e e t t g t t +=--,则()()2e tg t t '=-,当2t >时,()0g t '<,()g t 在()2,+∞上单调递减,当2t <时,()0g t '>,()g t 在(),2-∞上单调递增,所以=2t 时,()g t 取最大值()222243e 2e 4e g =-+-=-+,即2a b +的最大值为24e -+.故答案为:24e -+5.函数()cos2sin f x x x =在π0,2⎛⎫⎪⎝⎭上的最大值为______.解析:()()2cos 2sin 12sin sin x x x x x f =⋅=-⋅.又(0,)2x π∈,故令()sin 0,1t x =∈,()()23122g t t t t t ∴=-=-+.()261g t t '=-+,()0,1t ∈,当x ⎛∈ ⎝⎭时,()0g x '>;当x ⎫∈+∞⎪⎪⎝⎭时,()0g x '<,()g t ∴在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭单调递减.()max g t g ∴=⎝⎭.6.已知函数()=e sin ,,03xf x x x π∈-⎡⎤⎢⎥⎣⎦,则()f x 的最小值为___________.解析:()(sin cos )sin 4x xf x x x x π⎛⎫=+=+ ⎪⎝'⎭e ,当,34x ππ⎛⎫∈-- ⎪⎝⎭时,()0f x '<,()f x 递减;,04x π⎛⎫∈- ⎪⎝⎭时,()0f x '>,()f x 递增;则4min ()4f x f ππ-⎛⎫=-= ⎪⎝⎭.故答案为:4π-.。
导数综合讲义(含答案)(总55页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数综合讲义第1 讲导数的计算与几何意义 (3)第2 讲函数图像 (4)第3 讲三次函数 (7)第4 讲导数与单调性 (8)第5 讲导数与极最值 (9)第6 讲导数与零点 (10)第7 讲导数中的恒成立与存在性问题 (11)第8 讲原函数导函数混合还原(构造函数解不等式) (13)第9 讲导数中的距离问题 (17)第10 讲导数解答题 (18)10.1导数基础练习题 (21)10.2分离参数类 (24)10.3构造新函数类 (26)10.4导数中的函数不等式放缩 (29)10.5导数中的卡根思想 (30)10.6洛必达法则应用 (32)10.7先构造,再赋值,证明和式或积式不等式 (33)10.8极值点偏移问题 (35)10.9多元变量消元思想 (37)10.10导数解决含有ln x 与e的证明题(凹凸反转) (39)10.11导数解决含三角函数式的证明 (40)10.12隐零点问题 (42)10.13端点效应 (44)10.14其它省市高考导数真题研究 (45)导数【高考命题规律】2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。
近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。
高中物理解题方法之导数法在物理解题中用导数法,首先要把物理问题化归为数学问题。
在分析物理状态和物理过程的基础上,找到合适的物理规律,即函数,再求函数的导数,从而求解极值问题或其他问题,然后再把数学问题回归到物理问题,明确其物理意义。
例1、两等量同种电荷在两点电荷连线的中垂线上电场的分布图1•两等量正点电荷的电场强度在y坐标轴上的点的合成以两点电荷的连线的中点为原点,以两点电荷的连线的中垂线为y轴,则各点的电场强度可表示为:E = J ) • cos& 二Zk(Q J • //2+员/2+/ 7^+7因为原点的电场强度£0=0,往上或往下的无穷远处的电场强度也为0,所以,从0点向上或向下都是先增大后减小,这是定性的分析。
那么,在哪儿达到最大呢,需要定量的计算。
方法用三角函数法求导数E = 2k( ° O J・cos& 屮把y = ——代入得 E = ^g・sin2&cos&。
厂+十tan 0 rz = sin20cos &,求导数z'= 2sin&cos2& — sin'& 二sin0 (2cos,O-sin,0),欲使z = 0,需sin 0 = 0(舍去)或2cos2& —sii?& = 0 即tan/9 = V2,此处,将其代入得£max 普•誉 方法2.用代数法求导数3nZj/=(/24-/P-3/(/2+/p ,令其分子为0,得y =空,代入得 24V3 kQ• II9 I 23 •图象用Excel 作图,得到关于等量同种电荷的电场在其屮垂线上的分布的图象,图象 的横轴y 表示各点到原点的距离(以两点电荷的连线的中点为原点),纵轴表示 中垂线上各点的电场强度。
E图2.两等量正点电荷的电场强度在y 坐标轴上的分布令2=,・(厂+,2)2,对z 求导数得maxy此图象也验证了以上所得的结果:图象中令心5,则当汴孚誓亠处电场强度最大。
专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。