函数的极值与导数
- 格式:ppt
- 大小:152.50 KB
- 文档页数:19
《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
对于函数 y = f(x),其在点 x = x₀处的导数定义为:f'(x₀) = limₕ→₀ f(x₀+ h) f(x₀) / h导数的几何意义是函数曲线在该点处的切线斜率。
如果导数存在,则函数在该点处可导。
二、函数的极值1、极值的定义函数在某区间内的极大值和极小值统称为极值。
极大值是指在该区间内比其附近的函数值都大的函数值;极小值则是指在该区间内比其附近的函数值都小的函数值。
2、极值点的判别方法(1)导数为零的点:若函数 f(x) 在点 x₀处可导,且 f'(x₀) = 0,则 x₀可能是极值点。
(2)导数不存在的点:函数在某些点处导数不存在,但也可能是极值点。
3、第一导数判别法设函数 f(x) 在点 x₀的某个邻域内可导,且 f'(x₀) = 0。
(1)如果当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x) 在 x₀处取得极大值。
(2)如果当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x) 在 x₀处取得极小值。
4、第二导数判别法设函数 f(x) 在点 x₀处具有二阶导数,且 f'(x₀) = 0,f''(x₀) ≠ 0。
(1)若 f''(x₀) < 0,则函数 f(x) 在 x₀处取得极大值。
(2)若 f''(x₀) > 0,则函数 f(x) 在 x₀处取得极小值。
三、函数的最值1、最值的定义函数在某个区间内的最大值和最小值分别称为函数在该区间内的最值。
2、求最值的步骤(1)求函数在给定区间内的导数。
(2)找出导数为零的点和导数不存在的点。
(3)计算这些点以及区间端点处的函数值。
(4)比较这些函数值,最大的即为最大值,最小的即为最小值。
导数与函数的极值、最值一、基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.二、常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](优质试题·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极小值点及极大值.[解](1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1.因此曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f (x )的极小值点为x =t 2+3,极大值为f (t 2-3)=(-3)3-9×(-3)=6 3.[解题技法] 求函数的极值或极值点的步骤 (1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (优质试题·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x , 得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). [解题技法]已知函数极值点或极值求参数的2个要领[专题训练]1.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x +ln x (x >0), ∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(优质试题·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选C f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧ a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1; 由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫13,1上单调递减,所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43. 故a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点二 利用导数解决函数的最值问题[典例] (优质试题·北京高考)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x .当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2,有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [专题训练]1.(优质试题·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝ ⎛⎭⎪⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3).答案:1442.已知函数f (x )=ln x -ax .(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2, 因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32, 所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32, 所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a ,当1<x<-a时,f′(x)<0,所以f(x)在(1,-a)上单调递减;当-a<x<e时,f′(x)>0,所以f(x)在(-a,e)上单调递增,所以f(x)min=f(-a)=ln(-a)+1=32,所以a=- e.综上,a=- e.[课时跟踪检测]A级1.(优质试题·辽宁鞍山一中模拟)已知函数f(x)=x3-3x-1,在区间[-3,2]上的最大值为M,最小值为N,则M-N=()A.20B.18C.3 D.0解析:选A∵f′(x)=3x2-3=3(x-1)(x+1),∴f(x)在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,∴M=1,N=-19,M-N=1-(-19)=20.2.(优质试题·梅州期末)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的单调递增区间B.(3,5)为函数y=f(x)的单调递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或3<x<5时,f′(x)<0,y=f(x)单调递减;当x>5或-1<x<3时,f′(x)>0,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C 错误.3.(优质试题·湖北襄阳四校联考)函数f(x)=12x2+x ln x-3x的极值点一定在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.(3,4)内解析:选B函数的极值点即导函数的零点,f′(x)=x+ln x+1-3=x+ln x -2,则f′(1)=-1<0,f′(2)=ln 2>0,由零点存在性定理得f′(x)的零点在(1,2)内,故选B.4.已知函数f(x)=x3+3x2-9x+1,若f(x)在区间[k,2]上的最大值为28,则实数k的取值范围为()A.[-3,+∞) B.(-3,+∞)C.(-∞,-3) D.(-∞,-3]解析:选D由题意知f′(x)=3x2+6x-9,令f′(x)=0,解得x=1或x=-3,所以f′(x),f(x)随x的变化情况如下表:又f(-3)=28,f(1)=-4,f(2)=3,f(x)在区间[k,2]上的最大值为28,所以k≤-3.5.(优质试题·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12 C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t , 令f ′(t )=0,得t =22,当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0.∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22.7.(优质试题·江西阶段性检测)已知函数y =ax -1x 2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,。
导数与函数的极值函数的极值是指函数在某个区间上取得的最大值或最小值。
导数是函数变化率的度量,通过导数我们可以研究函数的极值情况。
在本文中,我们将讨论导数与函数的极值之间的关系以及如何运用导数来确定函数的极值。
1. 导数的定义导数表示函数在某一点上的变化速率。
对于可导函数f(x),其导数定义为:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx其中,Δx表示x的增量,Δx→0表示Δx趋近于0。
导数的值代表了函数在该点的瞬时变化率。
2. 极值的定义函数的极值包括最大值和最小值。
在某个区间上,如果函数在某一点的导数为0,那么该点可能是函数的极值点。
具体而言,若函数在该点的导数由正变负,这个点就是极大值点;若函数在该点的导数由负变正,这个点就是极小值点。
3. 导数与函数极值的关系函数的极值点必然是函数的驻点,即导数为0的点。
然而,只有导数为0的点不一定是极值点。
根据导数的定义,我们可以利用导数判断函数的极值点。
具体来说:- 如果函数在某一点的导数为0,并且导数的符号在此点前后改变,那么该点就是函数的极值点。
- 如果函数在某一点的导数为0,并且导数的符号在此点前后不改变,那么该点可能是函数的驻点但不是极值点。
4. 导数的应用利用导数判断函数的极值点可以帮助我们解决许多实际问题。
例如,在经济学中,我们可以通过求解某种产品的利润函数来确定最大化利润的产量。
通过求解利润函数的导数,我们可以找到使利润最大化的产量。
同样地,在物理学中,我们可以使用导数来分析物体的运动情况。
通过求解位置函数的导数,我们可以找到物体的最大速度和最大加速度的时刻。
此外,在数学建模和优化问题中,导数也是一种重要的工具。
通过确定函数的极值点,我们可以优化函数的性能,以满足特定需求。
5. 导数与极值的例子例如,我们考虑函数f(x) = x^2在区间[0, 2]上的极值问题。
首先,我们求解函数的导数f'(x) = 2x。
导数与函数的极值引言:导数与函数的极值是微积分中的重要概念,它们被广泛应用于最优化问题、求解方程和曲线的特点等数学和实际问题中。
本文将详细介绍导数和函数的极值以及它们之间的关系。
一、导数的概念和计算方法1.1 导数的定义在数学中,导数是用来描述函数变化率的概念。
对于函数y=f(x),在某点x处的导数可以定义为函数在该点处的切线斜率。
导数的定义可以表示为:\[f'(x)=\lim_{{\Delta x\to 0}} \frac{{f(x+\Delta x)-f(x)}}{{\Delta x}}\]其中,f'(x)表示函数f(x)在x点处的导数。
1.2 导数的计算方法常见的计算导数的方法有以下几种:(1)使用导数的定义进行计算,即通过求极限的方式;(2)利用函数的基本性质和导数的基本运算法则,如加减法、乘法法则、链式法则等;(3)应用求导法则,例如幂函数、指数函数、对数函数等的导数公式;(4)利用导数的几何意义,例如求直线与曲线的切点等。
二、函数的极值及其判定方法2.1 极大值和极小值在函数的定义域上,如果函数在某一点附近取到最大值或最小值,那么这个点就被称为函数的极大值点或极小值点。
2.2 极值的判定方法常见的判定函数极值的方法有以下几种:(1)利用导数的性质,根据导数的正负可以判断函数在某一点处的增减性。
当导数在极值点处变号时,可以判定函数在该点处取得极值;(2)利用函数的二阶导数,通过判断二阶导数的正负可以确定函数的极值点。
当二阶导数大于零时,函数在该点处取得极小值,当二阶导数小于零时,函数在该点处取得极大值。
三、导数与函数的极值的关系3.1 极值与导数的关系在函数的极值点处,导数必然为零或不存在。
这是因为在极值点附近,函数的变化率为零,即切线的斜率为零。
因此,可以通过导数的零点来确定函数的极值点。
3.2 函数极值点的判定方法如果函数在某点处的导数为零或不存在,那么该点可能是函数的极值点。
《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义介绍函数极值的概念,解释局部极值和全局极值的区别。
通过图形和实例来说明函数极值的存在性。
1.2 极值的判定条件介绍导数与极值的关系,讲解导数为零的必要性和充分性。
分析一阶导数和二阶导数在极值判定中的作用。
1.3 极值的性质探讨极值的单调性,解释局部极值和全局极值之间的相互关系。
研究极值点的稳定性,分析函数在极值点附近的behavior。
第二章:导数的基本概念与计算2.1 导数的定义引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
通过图形和实例来说明导数的几何意义。
2.2 导数的计算介绍导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。
讲解和练习四则运算、链式法则和高阶导数的计算。
2.3 导数的应用探讨导数在函数图像上的应用,分析函数的单调性、凹凸性和拐点。
引入洛必达法则,讲解其在函数极限计算中的应用。
第三章:函数的单调性与凹凸性3.1 单调性的判定介绍单调性的概念,讲解单调递增和单调递减的定义。
分析导数与函数单调性的关系,给出单调性的判定条件。
3.2 凹凸性的定义与判定引入凹凸性的概念,解释函数凹凸性的几何意义。
讲解凹凸性的判定条件,分析函数图像的凹凸特征。
3.3 单调性与凹凸性的应用探讨单调性和凹凸性在实际问题中的应用,例如最优化问题。
通过实例讲解如何利用单调性和凹凸性来分析函数的性质。
第四章:函数的极值问题4.1 局部极值的判定与计算讲解局部极值的判定条件,分析一阶导数和二阶导数在局部极值问题中的应用。
通过实例来说明局部极值的计算方法。
4.2 全局极值的判定与计算介绍全局极值的概念,讲解全局极值的判定方法。
分析函数在不同区间上的单调性,确定全局极值的存在性和位置。
4.3 实际问题中的应用通过实际问题来探讨函数极值的应用,例如最值问题、优化问题等。
讲解如何利用函数极值来解决实际问题。
第五章:函数的拐点与曲线的凹凸性5.1 拐点的定义与判定引入拐点的概念,解释拐点表示函数图像的凹凸性变化。
高中数学公式大全导数与函数的极值与最值的计算公式高中数学公式大全:导数与函数的极值与最值的计算公式在高中数学中,导数与函数的极值与最值是比较重要的概念和计算方法。
它们与函数的变化趋势和最高点或最低点的确定密切相关。
下面将介绍导数与函数极值与最值的计算公式。
一、导数的计算公式导数是函数在某一点的变化速率。
对于常见的函数类型,我们可以使用以下公式来计算导数。
1. 常函数的导数:对于函数f(x)=c(c为常数),其导数为f'(x)=0。
2. 幂函数的导数:对于函数f(x)=x^n(n为实数),其导数为f'(x)=nx^(n-1)。
3. 三角函数的导数:常见的三角函数有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
它们的导数分别为:sin'(x)=cos(x)cos'(x)=-sin(x)tan'(x)=sec^2(x)4. 对数函数的导数:常见的对数函数有自然对数函数ln(x)和以10为底的对数函数log(x)等。
它们的导数分别为:ln'(x)=1/xlog'(x)=1/(xln(10))以上是常见函数的导数计算公式,根据需要可以使用链式法则、乘法法则等来计算复杂函数的导数。
二、函数的极值与最值的计算公式函数的极值和最值是指函数图像上的最高点或最低点。
这些点在数学中具有重要的意义,可以用于解决各种实际问题。
下面是函数极值与最值计算的公式。
1. 极值的计算公式:函数在极值点处的导数为0。
因此,要计算函数的极值,需要先找出函数的导数,然后解方程f'(x)=0,求出满足条件的x值,再带回原函数中计算对应的y值。
这些(x, y)即为函数的极值点。
2. 最值的计算公式:函数的最值是在定义域内的取值最大或最小的点。
对于连续函数,可以采用以下方法来计算最值:a. 求出函数在定义域内的导数;b. 计算导数为0点的函数值,以及定义域的两个端点处的函数值;c. 比较上一步骤中的函数值,取最大或最小值的点即为函数的最值点。