高考数学总复习解题策略:数列与探索性新题型(2021)
- 格式:doc
- 大小:2.08 MB
- 文档页数:42
二、探索性问题近年来,随着社会主义经济建设的迅速发展,要求学校由“应试教育”向“素质教育”转化,培养全面发展的开拓型、创造型人才。
在这种要求下,数学教学中开放型问题随之产生。
于是,探索性问题成了近几年来高考命题中的热点问题,它既是高等学校选拔高素质人材的需要,也是中学数学教学培养学生具有创造能力、开拓能力的任务所要求的。
实际上,学生在学习数学知识时,知识的形成过程也是观察、分析、归纳、类比、猜想、概括、推证的探索过程,其探索方法是学生应该学习和掌握的,是今后数学教育的重要方向。
一般地,对于虽给出了明确条件,但没有明确的结论,或者结论不稳定,需要探索者通过观察、分析、归纳出结论或判断结论的问题(探索结论);或者虽给出了问题的明确结论,但条件不足或未知,需要解题者寻找充分条件并加以证明的问题(探索条件),称为探索性问题。
此外,有些探索性问题也可以改变条件,探讨结论相应发生的变化;或者改变结论,探讨条件相应发生的变化;或者给出一些实际中的数据,通过分析、探讨解决问题。
探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。
猜想归纳型问题是指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。
它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。
其主要体现是解答数列中等与n有关数学问题。
存在型问题是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。
解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。
代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。
分类讨论型问题是指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。
此种题型常见于含有参数的问题,或者情况多种的问题。
数列创新题的基本类型及求解策略高考创新题,始终是高考试题中最为亮丽的风景线.这类问题着重考查观看发觉,类比转化以及运用数学学问,分析和解决数学问题的力气.当然数列创新题是高考创新题重点考查的一种类型.下举例谈谈数列创新题的基本类型及求解策略. 一、创新定义型例1.已知数列{}n a 满足1log (2)n n a n +=+(n *∈N ),定义使123k a a a a ⋅⋅⋅⋅为整数的数叫做企盼数,则区间[1,2005]内全部的企盼数的和M =________.解:∵1log (2)n n a n +=+(n *∈N ),∴1232312......log 3log 4log (2)log (2)k k a a a a k k +=⋅⋅⋅+=+.要使2log (2)k +为正整数,可设1()22n k n ++=,即1()22n k n +=-(n *∈N ).令11222005n +-≤≤⇒19n ≤≤(n *∈N ).则区间[1,2005]内全部企盼数的和9912341011()(22)(22)(22)(22) (22)n n n M k n +====-=-+-+-++-∑∑29234102(21)(222.......2)2918205621-=+++++⨯=-=-,∴2056M =.评析:精确 理解企盼数的定义是求解关键.解题时应将阅读信息与所学学问结合起来,侧重考查信息加工力气.二、性质探求型例2.已知数列{}n a 满足31,2,3,4,5,67n n n n a a n +=⎧=⎨-⎩≥,则2005a =______.解:由3n n a a +=-,7n ≥知,63n n n a a a ++=-=.从而当n ≥6时,有6n n a a +=,于是知20053346111a a a ⨯+===.评析:本题主要通过对数列形式的挖掘得出数列特有的性质,从而达到化归转化解决问题的目的.其中性质探求是关键.三、学问关联型例3.设是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点(1,2,3,)i P i =,使123,,,PF PF PF 组成公差为的等差数列,则的取值范围为_______.解析:由椭圆其次定义知eii iPF PP ='e i i iPF PP '⇒=,这些线段长度的最小值为右焦点到右顶点的距离即11FP =,最大值为右焦点到左顶点的距离即211PF =+,故若公差0d >,11(1)n d +=-+-,∴2121n d >+≥,∴1010d <≤.同理,若公差0d <,则可求得1010d -<≤. 评析: 本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有确定的难度,可见命题设计者的良苦认真.解决的关键是确定该数列的最大项、最小项,然后依据数列的通项公求出公差的取值范围. 四、类比联想型例4.若数列{}()n a n *∈N 是等差数列,则有数列123nn a a a a b n ++++=()n *∈N 也是等差数列;类比上述性质,相应地:若数列{}n c 是等比数列,且0n c >,则有数列n d =_______也是等比数列.解析:由已知“等差数列前n 项的算术平均值是等差数列”可类比联想“等比数列前n 项的几何平均值也应当是等比数列”不难得到3n nd c =也是等比数列.评析:本题只须由已知条件的特征从形式和结构上对比猜想不难挖掘问题的突破口. 五、规律发觉型例5.将自然数1,2,3,4,排成数陈(如右图),在处转第一个弯,在转其次个弯,在转第三个弯,….,则第2005个转弯处的数为____________. 21―22 ―23―24―25-26| | 20 7 ― 8 ―9 ―10 27 | | | 19 6 1 ―2 11 …… | | | | 18 5 ― 4 ―3 12 | | 17―16 ―15―14 ―13解:观看由起每一个转弯时递增的数字可发觉为“1,1,2,2,3,3,4,4,”.故在第2005个转弯处的数为:12(1231002)10031006010++++++=.评析:本题求解的关键是对图表转弯处数字特征规律的发觉.具体解题时需要较强的观看力气及快速探求规律的力气.因此,它在高考中具有较强的选拔功能. 六、图表信息型例6.下表给出一个“等差数阵”:。
数列与探索性新题型的解题技巧引言数列问题是高中数学中的重要部分,也是考试中经常出现的题型。
解决数列问题需要掌握一定的解题技巧,特别是对于探索性新题型,更需要灵活运用已有的知识来解决。
本文将介绍一些数列问题的常见解题技巧,并提供一些探索性新题型的解题思路。
常见数列问题的解题技巧等差数列问题等差数列是一种最常见的数列形式,其特点是每个项与前一项之间有相同的公差。
解决等差数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = (n/2)(2a₁ + (n-1)d)。
2.求第n项:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。
3.求公差:设等差数列的首项为a₁,第n项为aₙ,公差为d,则有d = (aₙ -a₁)/(n-1)。
等比数列问题等比数列是一种常见的数列形式,其特点是每个项与前一项之间有相同的公比。
解决等比数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(1 - qⁿ)/(1 - q)。
2.求第n项:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ =a₁qⁿ⁻¹。
3.求公比:设等比数列的首项为a₁,第n项为aₙ,公比为q,则有q = aₙ/a₁。
递推数列问题递推数列是一种通过前几项计算后一项的数列形式,常见的形式有Fibonacci数列和差分数列。
解决递推数列问题的关键是找到递推公式。
常见的解题技巧包括:1.Fibonacci数列:Fibonacci数列的递推公式为Fₙ = Fₙ₋₁ + Fₙ₋₂,其中F₁ = 1,F₂ = 1。
可以通过循环或递归的方式计算Fibonacci数列的第n项。
2.差分数列:差分数列是一种通过前几项的差值计算后一项的数列形式。
可以通过观察前几项的差值规律,推导出递推公式。
数列与探索性新题型的解题技巧【命题趋向】1.等差(比)数列的基本学问是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中an与sn之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类争论思想等数学思想方法在解决问题中经常用到,解答试题时要留意敏捷应用.4.解答题的难度有逐年增大的趋势,还有一些新奇题型,如与导数和极限相结合等.因此复习中应留意:1.数列是一种特别的函数,学习时要擅长利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),把握好设未知数、列出方程、解方程三个环节,常通过"设而不求,整体代入"来简化运算.3.分类争论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要留意q=1和q≠1两种状况等等.4.等价转化是数学复习中经常运用的,数列也不例外.如an与sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要准时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要擅长总结基本数学方法.如观看法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关学问的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前几项.2.理解等差数列的概念,把握等差数列的通项公式与前n项和公式,并能运用公式解答简洁的问题.3.理解等比数列的概念,把握等比数列的通项公式与前n项和公式,并能运用公式解决简洁的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维力量,解决问题的力量,试题大多有较好的区分度.有关数列的试题常常是综合题,常常把数列学问和指数函数、对数函数和不等式的学问综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
数 列一、高考要求理解数列的有关概念,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前n 项.理解等差(比)数列的概念,把握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些学问来解决一些实际问题.了解数学归纳法原理,把握数学归纳法这一证题方法,把握“归纳—猜想—证明”这一思想方法. 二、热点分析1.数列在历年高考中都占有较重要的地位,一般状况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列全部项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式学问的综合性试题,在解题过程中通常用到等价转化,分类争辩等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻生疏函数和数列的重要工具,三者的综合求解题是对基础和力气的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新毁灭的命题热点.以往高考常使用主体几何题来考查规律推理力气,近两年在数列题中也加强了推理力气的考查。
(3)加强了数列与极限的综合考查题3.娴熟把握、机敏运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用格外广泛,且格外机敏,主动发觉题目中隐含的相关性质,往往使运算简洁秀丽 .如243546225a a a a a a ++=,可以利用等比数列的性质进行转化:从而有223355225a a a a ++=,即235()25a a +=. 4.对客观题,应留意寻求简捷方法 解答历年有关数列的客观题,就会发觉,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②机敏运用等差数列、等比数列的有关性质,可更加精确 、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有机敏、简捷的解法5.在数列的学习中加强力气训练 数列问题对力气要求较高,特殊是运算力气、归纳猜想力气、转化力气、规律推理力气更为突出.一般来说,考题中选择、填空题解法机敏多变,而解答题更是考查力气的集中体现,尤其近几年高考加强了数列推理力气的考查,应引起我们足够的重视.因此,在平常要加强对力气的培育。
数列与探索性新题型的解题技巧引言数学是一门充满魅力的学科,其中数列是中学数学中的重要内容。
数列不仅有着广泛的应用领域,而且在解题过程中也需要一定的技巧。
同时,随着教育的改革和学生思维的培养,新的探索性问题也逐渐受到重视。
本文将介绍数列与探索性新题型的解题技巧,以帮助学生更好地应对这些问题。
数列的基础知识在开始介绍解题技巧之前,我们先来回顾一下数列的基础知识。
数列是由一系列按照某种规律排列的数所组成的序列。
通常表示为:a1,a2,a3,...,a n其中,a1为首项,a n为第n项,而n为项数。
常见的数列类型包括等差数列,等比数列和斐波那契数列。
等差数列的特点是每一项与前一项之差相等;等比数列的特点是每一项与前一项之比相等;而斐波那契数列的特点是每一项等于前两项的和。
了解这些常见数列类型的特点,对于解题过程的把握有着重要的意义。
解题技巧观察法在面对一道数列问题时,可以尝试通过观察数列中的规律来解答问题。
这种方法常用于发现数列中的特点和性质,并进一步推导解题过程。
举例来说,考虑以下数列:1, 3, 6, 10, 15, … 题目要求找出第10项的值。
通过观察可知,该数列中每一项的差值递增,即差值为2、3、4、5…。
因此,第n项的值为前n-1项的和。
可以通过简单的计算得知第10项的值为55。
代入法对于某些复杂的数列问题,我们可以采用代入法来求解。
这种方法常用于验证推测结果和找出规律性方法。
假设我们需要求解以下数列:1, 4, 9, 16, 25, … 题目要求找出第n项的值。
观察可知,该数列的每一项均为前一项的平方。
我们可以验证这一规律。
当n=1时,a1=1;当n=2时,a2=4;当n=3时,a3=9…依次类推。
通过代入法,我们可以确定数列的规律为a n=n2。
因此,第n项的值为n2。
列表法列表法是一种常用的解决复杂数列问题的方法。
通过列举数列中的前几项,我们可以发现其中的规律,并据此推导出解题思路。
第二讲数列与探索性新题型的解题技巧【命题趋向】从2007年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中a n与S n之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
第四讲数列与探索性新题型【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式.典型例题例1.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n)表示第n 堆的乒乓球总数,则()f 3_____=;()_____f n =(答案用n 表示)思路启迪:从图中观察各堆最低层的兵乓球数分别是12,3,4,……推测出第n 层的球数。
解答过程:显然()f 310=.第n 堆最低层(第一层)的乒乓球数,()n12n n n 1aa a a 2+=+++=,第n堆的乒乓球数总数相当于n 堆乒乓球的低层数之和,即()()22212n n n 111f n a a a (12n ).222+=+++=++++⋅所以:()()n n 1n 2f (n)6++=例2.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1第2行 1 0 1第3行 1 1 1 1第4行 1 0 0 0 1第5行 1 1 0 0 1 1…… ………………………………………思路启迪:计算图形中相应1的数量的特征,然后寻找它们之间的规律。
解:第1次全行的数都为1的是第21-=1行,第2次全行的数都为1的是第221-=3行,第3次全行的数都为1的是第321-=7行,······,第n 次全行的数都为1的是第21n -行;第61行中1的个数是521-=32.应填21n -,32考点2 数列的递推关系式的理解与应用在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形 ,转化为常见的类型进行解题。
如“逐差法”若n n 1a a n,--=且1a 1=;我们可把各个差列出来进行求和,可得到数列{}n a 的通项.()()()n n n 1n 1n 2211a a a a a a a a ---=-+-++-+()()n n 1n n 121.2+=+-+++=再看“逐商法”即n 1na n 1a +=+且1a 1=,可把各个商列出来求积。
()()n n 12n 1n 1n 21a a a a a n n 1n 221n!a a a ---==--=另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。
例3.数列{}n a 中,12a =,1n n aa cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.思路启迪:(1)由123a a a ,,成公比不为1的等比数列列方程求c ;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解:(I )12a =,22a c =+,323a c =+,因为123a a a ,,成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于21a a c -=, 322a a c -=,,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=.又12a =,2c =,故22(1)2(23)nan n n n n =+-=-+=,,.当1n =时,上式也成立,所以22(12)nan n n =-+=,,.小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4.已知数列{}n x 满足122x x =,()1212nn n xx x --=+,3,4,n =….若lim 2n n x →∞=, 则 ( B )(A) 32(B) 3 (C) 4 (D) 5思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用.解答过程:n n 1n 12x x x --=+, nn 1n 2n x x x x --∴-=-.32134324n 1n 2n 3n 1n n 1n 2n x x x x x x x x x x x x x x x x -------=-⎫⎪-=-⎪⎪⎬⎪-=-⎪-=-⎪⎭相叠加n 212n n 1x x x x x x --=+--.12x x 2=, n n 112x x 2x -∴+=.()n n 11n n lim 2x x lim 2x -→∞→∞+=, n n lim x 2→∞=,12x 6∴= ,1x 3=.解答过程2:由()1212n n n x x x --=+得:n n 1n 1n 2211111x +x x x x x x 222---=+==+=,n n 11n 1lim x x x 2-→∞⎛⎫+= ⎪⎝⎭,因为n n lim x 2→∞=.所以:1x 3=.解答过程3:由()1212nn n x x x --=+得:()()2n n 1n 1n 2n 2n 311x x x x x x 22-----⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭…………()n 2n 121111x x x 22--⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭,从而 23211x x x 2⎛⎫-=- ⎪⎝⎭;34311x x x 2⎛⎫-=- ⎪⎝⎭;……;n 1n n 111x x x 2--⎛⎫-=- ⎪⎝⎭.叠加得:23n 1n 21111x x x 222-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.n 2n 2111x x x 162-⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, n 2n 21n n 11lim x lim x x 162-→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫=+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭.11x 12x 26=+ , 从而1x 3=.小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。
对连续两项递推()n n-1a ka d n 2,k 1=+≥≠,可转化为n n 1d d a k a 1k 1k -⎛⎫-=- ⎪--⎝⎭;对连续三项递推的关系()n 1n n-1a ka da n 2+=+≥如果方程2xkx d=0--有两个根αβ、,则上递推关系式可化为()n 1n n n 1a a a a αβ+--=-或()n 1n n n 1aa a a βα+--=-.考点3 数列的通项n a 与前n 项和n S 之间的关系与应用n a 与n S 的关系:1n n n 1S n=1a S S n 2-⎧=⎨-≥⎩,数列前n 项和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式n n n 1a S S -=-时,一定要注意条件n 2≥,求通项时一定要验证1a 是否适合。
解决含n a 与n S 的式子问题时,通常转化为只含n a 或者转化为只n S 的式子.例5. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n -命题目的:本题考查了等比数列的定义和求和公式,着重考查了运算能力。
过程指引因数列{}n a 为等比,则12n naq -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2na =,所以2n S n =,故选择答案C.例6.已知在正项数列{a n }中,S n 表示前n 项和且n n 2S a 1=+,求an .思路启迪:转化为只含n a 或者只含n S 的递推关系式.解答过程1:由已知n n 2S a 1=+,得当n=1时,a 1=1;当n ≥2时,a n = S n -S n -1,代入已知有n n n 12S S S 1-=-+,n 1n n S S 2S 1-=-+.()2n 1n S S 1-=-,又nn n 1a0,S S ->>,故n 1n S S 1-=-.n n 1S S 1--=,{}nS 是以1为首项,1为公差的等差数列,n S n =故n a 2n 1=-.。