人教版八年级数学上册整式的乘法与因式分解知识点总结及同步练习(20200710102803)
- 格式:pdf
- 大小:26.43 KB
- 文档页数:4
八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。
八年级数学整式的乘除与因式分解知识点总结:1、单项式的观点:由数与字母的乘积组成的代数式叫做单项式。
独自的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:2a 2 bc 的系数为 2 ,次数为 4 ,独自的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
22 ab x 1 ,项有 a 22ab 、x、1,二次项为22ab ,一次项为x ,常如:a 、 a 、数项为 1 ,各项次数分别为 2 , 2, 1, 0,系数分别为 1 , -2 , 1, 1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂摆列:3 2 2 3如: x 2 x y xy 2 y 13 2 2 3按 x 的升幂摆列:1 2 y xy 2 x y x3 2 2 3按 x 的降幂摆列: x 2 x y xy 2 y 13 2 2 3按 y 的升幂摆列:1 x xy 2 x y 2 y3 2 2 3按 y 的降幂摆列:2 y 2 x y xy x 15、同底数幂的乘法法例:m na a am n( m, n 都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数能够是多项式或单项式。
2 3 5如: (a b) ( a b) ( a b)m n mn6、幂的乘方法例:( a ) a ( m, n 都是正整数)幂的乘方,底数不变,指数相乘。
如:5 2 10 ( 3 ) 3幂的乘方法例能够逆用:即mn m n n m a (a ) ( a )6 2 3 3 2 如: 4 (4 ) (4 )7、积的乘方法例:n n n( ab) a b ( n 是正整数)积的乘方,等于各因数乘方的积。
如:(3 2 5 5 3 5 2 5 5 15 10 52 x y z) = ( 2) ( x ) ( y ) z 32 x y zm n m n0, m, n 都是正整数,且 m n)8、同底数幂的除法法例:a a a(a同底数幂相除,底数不变,指数相减。
人教版八年级数学上册整式乘法与因式分解知识点总结范文及同步练习(20220710102803)整式乘除与因式分解一.知识点(重点)1.幂的运算性质:mn=am+n(m、n为正整数)a·a同底数幂相乘,底数不变,指数相加.例:(-2a)2(-3a2)32.amn=amn(m、n为正整数)幂的乘方,底数不变,指数相乘.例:(-a5)5nnn3.abab(n为正整数)积的乘方等于各因式乘方的积.例:(-a2b)3练习:1)4)322(3)3ab2a5某2某y(2)3ab(4b)yz2y2z2(5)(2某2y)3(4某y2)(6)1a3b6a5b2c(ac2)23mn(a≠0,m、n都是正整数,且m>n)4.aa=am-n同底数幂相除,底数不变,指数相减.例:(1)某8÷某2(2)a4÷a(3)(ab)5÷(ab)25(5)(-b)5÷(-b)2(4)(-a)7÷(-a)5.零指数幂的概念:a0=1(a≠0)任何一个不等于零的数的零指数幂都等于l.0例:若(2a3b)1成立,则a,b满足什么条件?6.负指数幂的概念:pa-p=a(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的幂的倒数.pmpn也可表示为:mn(m≠0,n≠0,p为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.223324例:(1)分享赏。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
(名师选题)人教八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、下列运算正确的是()A.(−m2n)3=−m6n3B.m5−m3=m2C.(m+2)2=m2+4D.(12m4−3m)÷3m=4m3答案:A分析:根据积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则计算即可.解:A、(−m2n)3=−m6n3,故此选项正确;B、m5和m3不属于同类项,不能相加,故此选项错误;C、(m+2)2=m2+4m+4,故此选项错误;D、(12m4−3m)÷3m=4m3−1,故此选项错误;故选:A.小提示:本题主要考查积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则等知识点,运用以上知识点正确计算每个选项的值是解题关键.2、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a−b)2=a2−2ab+b2C.a2−b2=(a+b)(a−b)D.(a+2b)(a−b)=a2+ab−2b2答案:C分析:图甲中根据阴影部分面积等于大正方形减去小正方的面积,图乙中直接求长方形的面积即可,根据两个图形中阴影部分的面积相等,即可求解.解:图甲阴影部分的面积为a2−b2,图乙中阴影部分的面积等于(a+b)(a−b)∵两个图形中阴影部分的面积相等,∴a2−b2=(a+b)(a−b)故选C.小提示:本题考查了平方差公式与图形面积,正确的求出阴影部分面积是解题的关键.3、计算:(−a)2⋅a4的结果是()A.a8B.a6C.−a8D.−a6答案:B分析:根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.解:原式=a2⋅a4=a2+4=a6.故选B.小提示:此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4、已知(x-2021)2+(x-2023)2=50,则(x-2022)2的值为()A.24B.23C.22D.无法确定答案:A分析:先变形为[(x-2022)+1]2+[(x-2022)-1]2=50,然后利用完全平方公式展开即可得到(x-2022)2的值.解:∵(x-2021)2+(x-2023)2=50,∴[(x-2022)+1]2+[(x-2022)-1]2=50,∴(x-2022)2+2(x-2022)+1+(x-2022)2-2(x-2022)+1=50,∴(x-2022)2=24.故选:A.小提示:此题考查了完全平方公式的运用,解题的关键是能根据完全平方公式灵活变形.5、若2x+4y−5=0,则4x⋅16y的值是()A.16B.32C.10D.64答案:B分析:先根据2x+4y−5=0,得出2x+4y=5,再将4x⋅16y变形为22x+4y,最后将2x+4y=5整体代入,求值即可.解:∵2x+4y−5=0,∴2x+4y=5,∴4x⋅16y=(22)x⋅(24)y=22x⋅24y=22x+4y=25=32故选:B.小提示:本题主要考查了同底数幂的乘法和幂的乘方运算,熟练的逆用同底数幂的乘法运算公式和幂的乘方运算公式进行变形,将4x⋅16y变形为22x+4y,是解题的关键.6、若(8×106)×(5×102)×(2×10)=M×10a,则M、a的值为()A.M=2,a=10B.M=8,a=8C.M=2,a=9D.M=8,a=10答案:D分析:根据单项式的乘法法则,乘号前面的数相乘,乘号后面的数相乘,再转化成科学记数法表示数,即可求出M,a的值.解:(8×106)×(5×102)×(2×10)=(8×5×2)×(106×102×10)=80×109=8×1010.∴M=8,a=10故选D.小提示:本题考查了单项式的乘法,同底数幂的乘法,科学记数法.熟练掌握各个运算法则和科学记数法表示数的计算方法是解题的关键.7、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x )答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案.x ﹣x 3=x (1﹣x 2)=x (1﹣x )(1+x ).故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.8、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( )A .12B .−12C .2D .﹣2 答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0, ∴a =12,b =2, 即ab =1,则原式=(ab)2015•b=2,故选:C .小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.9、已知a +b =4,则代数式1+a 2+b 2的值为( )A .3B .1C .0D .-1答案:A分析:通过将所求代数式进行变形,然后将已知代数式代入即可得解.由题意,得1+a 2+b 2=1+a +b 2=1+42=3 故选:A.小提示:此题主要考查已知代数式求代数式的值,熟练掌握,即可解题.10、已知5x=3,5y=2,则52x ﹣3y=( )A .34B .1C .23D .98答案:D分析:首先根据幂的乘方的运算方法,求出52x 、53y 的值;然后根据同底数幂的除法的运算方法,求出52x ﹣3y 的值为多少即可.∵5x =3,5y =2, ∴52x =32=9,53y =23=8, ∴52x ﹣3y =52x 53y =98. 故选D .小提示:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.填空题11、因式分解:(x +2)x ﹣x ﹣2=_____.答案:(x +2)(x ﹣1)分析:通过提取公因式(x +2)进行因式分解即可.解:(x +2)x ﹣x ﹣2=(x+2)x-(x+2)=(x+2)(x﹣1),故答案为(x+2)(x﹣1).小提示:考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12、若x2−4x+a=(x−2)2−1成立,则a的值为________.答案:3分析:根据完全平方公式展开,然后根据对应位置的系数相同即可解题.∵(x−2)2−1=x2−4x+4−1=x2−4x+3∴a=3所以答案是:3.小提示:本题考查完全平方公式,解题的关键是根据完全平方公式展开化简.13、计算:(3x5y3−x6y2+x4y3z)÷(−2x2y)2=__________________;答案:34xy−14x2+14yz分析:先计算积的乘方,然后根据多项式除以单项式进行计算即可求解.解:原式=(3x5y3−x6y2+x4y3z)÷(4x4y2)=34xy−14x2+14yz.所以答案是:34xy−14x2+14yz.小提示:本题考查了积的乘方,多项式除以单项式,正确的计算是解题的关键.解答题14、因式分解:1﹣a2﹣4b2+4ab.答案:(1+a−2b)(1−a+2b)分析:先分组,再逆用完全平方公式、平方差公式进行因式分解.解:1﹣a2﹣4b2+4ab=1﹣(a2+4b2﹣4ab)=1﹣(a﹣2b)2=(1+a﹣2b)[1﹣(a﹣2b)]=(1+a﹣2b)(1﹣a+2b).小提示:本题考查因式分解,涉及分组分解法、逆用完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题关键.15、先化简,再求值:[(a−2b)2−(a−2b)(a+2b)+4b2]÷(−2b),其中a=1,b=−2.答案:2a-6b,14.分析:先根据平方差公式和完全平方公式进行计算,再合并同类项,算除法,最后代入求出答案即可.解:[(a-2b)2-(a-2b)(a+2b)+4b2]÷(-2b)=(a2-4ab+4b2-a2+4b2+4b2)÷(-2b)=(-4ab+12b2)÷(-2b)=2a-6b,当a=1,b=-2时,原式=2×1-6×(-2)=2+12=14.小提示:本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .整式的乘法同底数幂的乘积注意点:(1)必须清楚底数、指数、幂这三个基本概念的涵义。
( 2)前提必须是同底数,指数才可以相加( 3)底可以是一个具体的数或字母,也可以是一个单项式或多项式,( 4)指数都是正整数( 5)三个或三个以上的同底数幂相乘,即a m?a n ?a p a m n p m n p 为正整数)( , ,( 6)不要与整式加法相混淆。
( 7)这个公式是可逆的 a m n a m ? a n ( m,n 为正整数)34=xn 4a3a________类型一: x ·x· x =a a 2a 3________ ; 3x 2n 4· x · x =22 25 22y 2n ? y n 1;xm-nx 2n+111y m-1 4-n 52类型二: (1)已知 · x, 且 · y=y, 求 mn的值。
=(2)2mn, 则 n=若 2 · 8=2类型三: (1) 、 (-)(-)2( - )3(2)4 45、 -a · (-a)· (-a)36(-2)20112012(3)、 (x-y) (y-x)(y-x) ( 4)、(- 2)类型四:已知2a =3, 2b =6, 2c =12,试探究 a 、 b 、 c 之间的关系;1. 幂的乘方 注意点:( 1)幂的底数 a 可以是具体的数也可以是多项式。
( 2)不要和同底数幂的乘法法则相混淆( 3)公式的可逆性:a m n( a m n m n 为正整数) ;(a m n(a n m a mnm n 为正整数)) (,) ) ( ,( 4)公式的扩展 :类型一: ( a 3) 5 =;3(x m )3;( a 2 ) 3 ?a n;2 3; [(2 5 3[( a+b ) ]=a )] = ;类型二:【例 1】若 5x2 ,5 y 3, 求 5 2x3y【例 2】若 10n4,10 m 5, 求 102 n103m , 的值;【例 3】已知 a355 , b 444 , c 533 ,试比较 a,b,c 的大小 ;2. 积的乘方注意点:( 1)注意与前二个法则的区别:( 2)积的乘方推广到 3 个以上因式的积的乘方a 1 ? a 2 ? a 3 a m n a 1 n a 2 n a 3 a m n (n 为正整数)( 3)每个因式可以是单项式,多项式,或者其他代数式 ( 4)每个因式都要乘方,然后将所得的幂相乘 ( 5)公式的可逆性: a n b n ab n ( n 为正整数)(6) 幂的乘方 , 积的乘方的可逆性:a mn =(a m )n =( a n )m类型一: ( ab)3________ ; ( 2a 2b) 3 ________ ; ( 5a 3b 2 )2________m m n类型二:【例 1】当 ab=,m=5, n=3,求(a b)的值。
人教版八年级上第十四章《整式的乘法与因式分解》知识点总结一、整式的乘法1、同底数塞相乘,底数不变,指数相加。
a m a n=a m+n(rn,八都是正整数)2、当基的指数是和的形式时,可以逆运用同底数零乘法法则,将塞指数和转化为同底数累相乘,然后把塞作为一个整体带入变形后的累的运算式中求解。
都是正整数)0m+n=0m.α,m,n3、塞的乘方,底数不变,指数相乘。
(Qmyl—aτnn(m,n都是正整数)4、与幕的乘方有关的混合运算中,一般先算累的乘方,再算同底数事的乘法,最后算加减,然后合并同类项。
5、比较底数大于1的事的方法有两种:(1)底数相同,指数越大,塞就越大。
(2)指数相同,底数越大,塞就越大。
6、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的塞相乘。
(而广=QRnm为正整数)7、运用积的乘方法则时要注意:公式中a,b代表任何代数式,每一个因式都要"乘方",注意结果的符号、幕指数及其逆向运用。
8、单项式与单项式的乘法法则:单项式与单项式相乘,把它们的系数、同底数事分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
9、单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加。
10、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
11、同底数塞的除法:同底数累相除,底数不变,指数相减。
a rn÷a n=a m n(m,m都是正整数,并且m>n)12、单项式除以单项式的法则:单项式相除,把系数与同底数基分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
13、多项式除以单项式的法则:多项式除以单项式,就是用多项式的每一项除以这个单项式,再把所得的商相加。
二、乘法公式1.平方差公式:两数和与这两数差的积,等于这两个数的平方差。
整式乘除与因式分解
一.知识点(重点)
1.幂的运算性质:
a m ·an =a m +n (m 、n 为正整数)
同底数幂相乘,底数不变,指数相加.
例:(-2a)2(-3a 2)3
2.n
m a =a mn (m 、n 为正整数)
幂的乘方,底数不变,指数相乘.
例:(-a 5)5
3.n n n b a ab (n 为正整数)
积的乘方等于各因式乘方的积.
例:(-a 2b)3
练习:
(1)(2)(3)y x x 2325)4(32b ab a
ab 23(4)(5)(6)222z y yz )4()2(232xy y x 222
53)(
631ac c
b a b a 4.n m a a =a m -n (a ≠0,m 、n 都是正整数,且m >n )
同底数幂相除,底数不变,指数相减.
例:(1)x 8÷x 2(2)a 4÷a (3)(ab )5÷(ab )2
(4)(-a )7÷(-a )5 (5)(-b) 5÷(-b)2
5.零指数幂的概念:
a 0=1 (a ≠0)
任何一个不等于零的数的零指数幂都等于l .
例:若成立,则满足什么条件?1)32(0b a b a,
6.负指数幂的概念:
a -p =p a 1
(a ≠0,p 是正整数)
任何一个不等于零的数的-
p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.
也可表示为:p
p n m m n (m ≠0,n ≠0,p 为正整数)
7.单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
例:(1)(2)2231
23abc abc b a 4
233
)2()21(n m n m 8.单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
例:(1)(2))35(222b a ab ab ab
ab ab 21
)232
(2(3)(4))32()5(-22n m n n m xyz
z xy z y x )(23229.多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
例:(1)(2)(3))6.0(1x x )())(2(y x y x 2
)2n m (
练习:
1.计算2x 3·(-2xy)(-xy) 3的结果是
1
22.(3×10 8)×(-4×10 4)=
3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为
4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是
5.-[-a 2(2a 3-a)]=
6.(-4x 2+6x -8)·(-x 2)=
1
27.2n(-1+3mn 2)=
8.若k(2k -5)+2k(1-k)=32,则k =
9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=
10.在(ax 2+bx -3)(x 2-x +8)的结果中不含x 3和x 项,则a =,b =
1
211.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
12.一个长方形的长是10cm ,宽比长少6cm ,则它的面积是
,若将长方形的长和都扩大了2cm ,则面积增大了。
10.单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
例:(1)28x 4y 2÷7x 3y (2)-5a 5b 3c ÷15a 4b (3)(2x 2y )3·(-7xy 2)÷14x 4y 3
11.多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
例:练习:
1.计算:
xy xy y x 6)63()1(2)5()15105()2(3223ab ab b a b a
(1); (2)
;2232471
73
y x z y x 2232232y x y x (3).(4)26416b a b
a 3
22324n n xy y x (5)391021042.计算:
(1); 33233212
116xy y x y x (2)3223251215
2xy y x y x (3)2222152
41
25
n
n n n b a b a b a 3.计算:
(1);
234564y x x y y x y x (2).
235616b a b a b a b a 4.若(ax 3my 12)÷(3x 3y 2n )=4x 6y 8 , 则 a = , m = ,= ;
易错点:在幂的运算中,由于法则掌握不准出现错误;
有关多项式的乘法计算出现错误;
误用同底数幂的除法法则;
用单项式除以单项式法则或多项式除以单项式法则出错;。