第一类对面积的曲面积分
- 格式:pptx
- 大小:639.63 KB
- 文档页数:32
曲线曲面积分公式总结
以下是曲线曲面积分的一些基本公式:
1. 曲线积分公式:
- 第一类曲线积分(对弧长的曲线积分):∫(L) f(x,y) ds = ∫(a) (b)
f(x,y)√[(dx)^2 + (dy)^2]。
- 第二类曲线积分(对坐标的曲线积分):∫(L) P(x,y) dx + Q(x,y) dy = ∫(a) (b) [∫(L1) P(x,y) dx + Q(x,y) dy] dσ。
2. 曲面积分公式:
- 第一类曲面积分(对面积的曲面积分):∫∫(Σ) f(x,y,z) dS。
- 第二类曲面积分(对坐标的曲面积分):∫∫(Σ) P(x,y,z) dydz + Q(x,y,z) dzdx + R(x,y,z) dxdy。
其中,f(x,y,z)、P(x,y,z)、Q(x,y,z)、R(x,y,z) 是定义在曲面Σ 上的函数,Σ 是积分曲面,L 是积分曲线,a、b 是积分上下限,dS 是面积元,ds 是线段元,dxdy、dydz、dzdx 是面元。
这些公式是积分学中的基本公式,也是解决复杂积分问题的关键。
对于具体的问题,需要选择合适的积分公式和计算方法。
对面积的曲面积分公式1. 对面积的曲面积分的概念。
- 设曲面∑是光滑的,函数f(x,y,z)在∑上有界。
把∑任意分成n小块Δ S_i(Δ S_i同时也表示第i小块曲面的面积),设(ξ_i,eta_i,ζ_i)是Δ S_i上任意取定的一点,作乘积f(ξ_i,eta_i,ζ_i)Δ S_i,并作和∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
- 如果当各小块曲面的直径的最大值λto0时,这和式的极限存在,则称此极限为函数f(x,y,z)在曲面∑上对面积的曲面积分或第一类曲面积分,记作∬_∑f(x,y,z)dS=limlimits_λto0∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
2. 对面积的曲面积分的计算方法。
- 一、利用曲面的方程化为二重积分计算。
- 设曲面∑的方程为z = z(x,y),∑在xOy面上的投影区域为D_xy,函数z(x,y)在D_xy上具有连续偏导数,被积函数f(x,y,z)在∑上连续,则∬_∑f(x,y,z)dS=∬_D_{xy}f[x,y,z(x,y)]√(1 + z_x)^2+z_{y^2}dxdy。
- 类似地,如果曲面∑的方程为x = x(y,z),∑在yOz面上的投影区域为D_yz,则∬_∑f(x,y,z)dS=∬_D_{yz}f[x(y,z),y,z]√(1 + x_y)^2+x_{z^2}dydz。
- 如果曲面∑的方程为y = y(z,x),∑在zOx面上的投影区域为D_zx,则∬_∑f(x,y,z)dS=∬_D_{zx}f[x,y(z,x),z]√(1 + y_z)^2+y_{x^2}dzdx。
- 二、利用曲面的参数方程计算(略高于一般要求)- 设曲面∑的参数方程为<=ft{begin{array}{l}x = x(u,v) y = y(u,v) z =z(u,v)end{array}right.,(u,v)∈ D,且x(u,v),y(u,v),z(u,v)在D上具有连续偏导数,(∂(x,y))/(∂(u,v)),(∂(y,z))/(∂(u,v)),(∂(z,x))/(∂(u,v))不全为零,则dS=√(EG - F^2)dudv,其中E=x_u^2+y_u^2+z_u^2,F = x_ux_v+y_uy_v+z_uz_v,G=x_v^2+y_v^2+z_v^2。
第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。
物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。
定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。
物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。
二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。
对面积的曲面积分和对坐标的曲面积分曲面积分是多元函数的积分扩展,用于计算曲面上某个量的总和。
它分为对面积和对坐标的曲面积分。
对面积的曲面积分
对面积的曲面积分是通过将曲面分割成小面元,并对每个小面元的贡献进行求和得到的。
每个小面元的贡献取决于曲面上某个标量场的值以及该面元的面积。
计算对面积的曲面积分的一般步骤如下:
1.将曲面分割成小面元,可以使用直角坐标系、极坐标系或其他合适的坐标
系。
2.计算每个小面元的面积。
3.计算每个小面元上标量场的值。
4.将每个小面元的贡献相加,并对所有小面元求和。
对坐标的曲面积分
对坐标的曲面积分是通过将曲面分割成小面元,并对每个小面元的贡献进行求和得到的。
每个小面元的贡献取决于曲面上某个向量场的分量以及该面元的面积。
计算对坐标的曲面积分的一般步骤如下:
1.将曲面分割成小面元,可以使用直角坐标系、极坐标系或其他合适的坐标
系。
2.计算每个小面元的面积。
3.计算每个小面元上向量场的分量。
4.将每个小面元的贡献相加,并对所有小面元求和。
通过对面积的曲面积分和对坐标的曲面积分,我们可以计算曲面上各种量的总和,这在物理学、工程学等领域中有广泛的应用。
关于在曲线曲⾯上积分的⽅法公式与技巧第⼀类曲线积分与第⼀类曲⾯积分从命名分析:第⼀类曲线曲⾯积分⼜被称为对弧长的曲线积分与对⾯积的曲⾯积分,这也表明第⼀类积分实际上是将我们熟悉的定积分(⼀元定积分与⼆重积分)中积分区域限定在⼀定长度的曲线上或⼀点⾯积的曲⾯上。
由于曲线与曲⾯是分段光滑的,被积函数在定义域上是对应⾜够连续的,这使得我们处理这类问题时关键问题是如何将弧长元素与⾯积元素转换为定积分中的d x 与⼆重积分中的d σ.计算公式:1、关于第⼀类曲线积分当使⽤参数⽅程描述三维曲线时,Γ:{x =x (t );y =y (t );z =z (t )} α≤t ≤β,弧长元素: ds =x ′2(t )+y ′2(t )+z ′2(t )dt 从⽽在指定区域上的第⼀类曲线积分可转换为,计算指定区间(α≤t ≤β)上对⼀元被积函数F (t )=f (x ,y ,z )关于微元ds =x ′2(t )+y ′2(t )+z ′2(t )dt 的定积分问题。
2、关于第⼀类曲⾯积分:当给定的曲⾯是关于Σ:z =z (x ,y )的显化表达式时,⾯积元素dS =1+z ′2x +z ′2y d σ从⽽在指定区域上的第⼀类曲⾯积分可转化为,计算指定区域(D =Pri z =0Σ)上对⼆元被积函数F (x ,y )=f (x ,y ,z (x ,y ))关于微元dS =1+z ′2x +z ′2y d σ的⼆重积分问题。
第⼆类曲线积分与第⼆类曲⾯积分从命名分析:第⼆类曲线曲⾯积分⼜被称为对坐标的曲线曲⾯积分,在实际问题上关于空间⼀点(x ,y ,z )∈R 3⽮量函数→A (x ,y ,z )沿着⼀定区域的积分结果。
在数学上常常将该⽮量→A 的对应分量表⽰为P (x ,y ,z ),Q (x ,y ,z ),R (x ,y ,z )他们都是关于位置坐标的函数,从⽽第⼆类积分有五种形式,⽽辨别它们并相互转化⼗分重要。