超高层建筑中的钢管砼
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
浅谈超高层建筑中钢-混凝土混合结构的应用摘要:现如今,建筑行业的发展越来越好,尤其是当代中国高层建筑的结构设计发展取得了长足进步,钢-混凝土结构在国内高层建筑中的地位已经日渐重要,为适应建筑风格和社会发展的需求,必须对这种建筑结构体系拥有一个更加全面的认识与了解,以保证这种体系的不断提高与发展。
关键词:超高层建筑;钢;混凝土;混合结构;应用引言混凝土和钢材是现代建筑工程中广泛应用的材料,有其自身的优缺点。
混凝土抗压性能较好,而其抗拉性能却很差;钢材抗拉及抗压强度高、塑性好,但其在受压时常取决于稳定承载力,强度不能充分利用。
钢-混凝土组合结构是在在构件层次上由钢材和混凝土两种不同性质的材料组合的一种新型结构形式。
它充分发挥了混凝土抗压性能好,钢材抗拉强度高、塑性好的的优点,弥补了彼此各自的缺点,是一种合理的组合方式。
1钢-混凝土混合结构体系钢-混凝土混合结构主要是以钢梁(或型钢混凝土梁)、钢柱(或型钢混凝土柱、钢管混凝土柱)代替混凝土梁、柱。
因此,钢筋混凝土结构体系原则上都可以设计成钢-混凝土混合结构体系,但考虑到这种结构体系主要用于超限高层建筑。
目前应用较广泛的结构体系主要有筒中筒体系、框架-核心筒结构体系和核心筒-翼柱体系等。
1.1筒中筒结构体系筒中筒结构由心腹筒、框筒及桁架筒组合,一般心腹筒在内,框筒或桁架筒在外,由内外筒共同抵抗水平力作用。
由剪力墙围成的筒体称为实腹筒,在实腹筒墙体上开有规则排列的窗洞形成的开孔筒体称为框筒;筒体四壁由竖杆和斜杆形成的桁架组成,称为桁架筒。
1.2框架-核心筒体系框架-核心筒是由周围密柱深梁、内部剪力墙围合而成的筒体结构,在结构上剪力滞后是它与其他结构的主要区别。
1.3核心筒-翼柱体系核心筒-翼柱体系是由钢筋混凝土或型钢混凝土、核心筒与建筑周边型钢混凝土以及巨形翼柱所组成的结构体系。
核心筒通过各层楼盖大梁以及每隔若干楼层由核心筒外伸的伸臂桁架(或大梁)与周边巨型翼柱相连,形成一个整体抗侧力结构体系。
超高层建筑钢管混凝土施工技术摘要:钢管混凝土结构由于具有结构刚度大、承载力高、韧性好、施工效率高等优点,为高层和超高层建筑所广泛采用,但同时也带来了施工和检测上的难度。
通过对钢管混凝土不同施工方法的分析和对比,给出了不同情况下钢管混凝土施工的技术路线和检测方法。
关键词:超高层建筑;钢管混凝土;泵送压入浇筑法;立式手工浇筑法;立式高位抛落无振捣法1钢管混凝土结构及其特点钢管混凝土是指在钢管中填充混凝土而形成的构件,按截面形式的不同,可以分为圆形、正方形、矩形和多边形截面钢管混凝土等,其中圆形截面和矩形截面钢管混凝土结构应用较为广泛。
钢管混凝土充分利用了钢管和混凝土两种材料在受力过程中的相互作用,即钢管对其核心混凝土的约束作用,在提高了混凝土的抗压强度的同时,也使其塑性和韧性得到改善。
混凝土对钢管的约束作用避免和延缓了钢管过早地发生局部屈曲,从而提高了结构的可靠度和强度。
因此钢管混凝土具有承载高、塑性和韧性好、施工方便、经济性好等优点。
在超高层建筑结构中,钢管混凝土柱由于具有承载力高,抗震性能好等特点,因此得到了广泛的应用。
与钢筋混凝土结构相比,钢管混凝土结构可解决超高层建筑结构中普通钢筋混凝土结构底部的柱截面大的问题和高强钢筋混凝土结构中柱的脆性破坏问题;与钢结构相比,钢管混凝土结构可以减少钢材用量,提高结构的抗侧移刚度和降低结构自重,可以减小基础的负担,降低基础的造价。
同时在目前发展较快的全逆作法、半逆作法施工的高层和超高层建筑中,钢管混凝土的应用优势更加明显。
因此,在近十几年中,钢管混凝土结构在高层和超高层建筑中得到了迅猛的发展。
2钢管混凝土结构施工方法钢管混凝土在本质上属于套箍混凝土,钢管可以作为混凝土浇筑的模板。
因此采用钢管混凝土就无需支模和拆模等工序,从而简化了施工工序和措施,加快了施工的进度。
目前比较成熟的钢管混凝土浇筑方法主要有:泵送压入浇筑法、立式手工浇筑法、立式高位抛落无振捣法等三种。
浅谈钢管混凝土在土木工程中应用摘要:随着我国经济的快速发展,建设事业的迅速发展,现代建筑工程对其材料和结构的要求越来越高。
钢管混凝土施工技术符合现代施工技术工业化要求,被广泛的应用到土木工程中,已经取得良好的经济效益和建筑效果,是结构工程科学的重要发展方向,有广阔的应用前景。
本文重点评述钢管混凝土结构的特点和在高层建筑中的应用现状,指出高层钢管钢管混凝土结构的发展方向。
关键词:钢管混凝土;土木工程;应用一、钢管混凝土的定义钢管混凝土是混凝土的一种特殊形式,钢管混凝土结构是由混凝土填入钢管内形成的一种新型组合结构。
将混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土。
混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土。
混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。
钢管混凝土结构可以更有效地发挥钢材和混凝土材料的优点,并克服钢管结构容易发生局部屈曲的缺点。
钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。
二、钢管混凝土在建筑施工中优点?1.承载力高?在建筑工程中对于薄壁钢管来说,其临界承载力极不稳定,因为它对局部缺陷很敏感。
在钢管中填充形成混凝土后,钢管约束了混凝土,在轴心受压荷载作用下,混凝土三向受压,延缓了受压时的纵向开裂。
而混凝土的存在却可以避免或延缓薄壁钢管过早地局部屈曲,两种材料相互弥补了彼此的弱点,却可以充分发挥彼此的长处,从而使钢管混凝土具有很高的承载力,大大高于组成钢管混凝土的钢管和核心混凝土单独承载力之和。
?2.塑性和韧性好?混凝土脆性较大,对于高强度混凝土(各国对高强混凝土的定义有所不同,我国目前一般指立方试块强度fc>60MPa的混凝土为高强混凝土)更是如此,其工作的可靠性因此大为降低。
如果将混凝土灌入钢管中形成钢管混凝土,核心混凝土在钢管的约束下,不但在使用阶段改善了它的弹性性质,而且在破坏时具有很大的塑性变形。
钢管混凝土结构在高层建筑中的应用关键词:钢管混凝土; 应用; 发展一、钢管混凝土结构自代引入我国以来,迄今已有三十多年。
它在我国的应用和发展历经了两个阶段:代至代中期为推广应用阶段,代后期至今为发展提高阶段。
钢管混凝土是指在钢管中填充混凝土后形成的构件,它是在型钢混凝土及螺旋配筋混凝土的基础上发展起来的.钢管混凝土利用钢管和混凝土在受力过程中的相互作用使混凝土处于复杂应力状态下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善;同时由于混凝土的存在可以避免或延缓钢管发生局部屈曲,从而保证材料性能的充分发挥.可见,二者相互贡献,协同互补,共同工作,提高了钢管混凝土构件的整体性,使其具有承载力高、塑性和韧性好、抗震性能好、施工方便、较好的耐火性能和良好的灾后可修复性以及经济指标先进等优点,因而得到了广泛的应用。
钢管混凝土结构的特点钢管混凝土结构利用钢管和混凝土2种材料在受力过程中相互间的组合作用充分发挥2种材料的优点与其他结构形式相比,有其很大的优越性。
1.承载力提高一方面,钢管混凝土构件轴心受压时,混凝土的横向变形受到钢管的约束而处于三向受压状态,从而提高了核心混凝土抗压强度,大大改善了混凝土的力学性能,改善了混凝土的脆性的弱点。
而填于钢管之内的混凝土,又增强了钢管管壁的稳定性,以致其不易屈曲另一方面,承载力高,可使构件截面减小,增加使用空间,且构件自重减轻,从而减小基础负担,降低基础造价。
2.变形能力好钢管混凝土结构中,核心混凝土在钢管的约束下,既使其在使用阶段的变形能力改善了,同时在其破坏时产生很大的塑性变形。
试验表明,钢管混凝土柱被破坏时可以压缩到原长的2/B钢管中的混凝土已经由脆性破坏转变为塑性破坏,使整个构件呈现出弹性工作塑性破坏的特征。
3.防火能力好钢管混凝土柱在吸热后一些热量会传给混凝土,减慢钢管的升温速度,并且一旦钢管部分屈服混凝土可以继续承受轴向荷载,防止结构倒塌。
而且钢管混凝土构件在急骤降温(如消防冲水)时又不像钢筋混凝土那样爆裂,说明其防火性能比钢结构和钢筋混凝土结构更加优越。
超高层钢管混凝土结构建筑施工技术分析摘要:超高层建筑过程中,整体工艺较为复杂,需要各个工种的全面配合,才能完成建设任务。
钢结构就是最为主要的内容,钢结构强度高、自重轻、节能环保、施工速度快,成为了越来越多超高层建筑的首选。
文章主要通过对超高层钢结构施工特性进行论述,全面提出测量、吊装、焊接等超高层钢结构关键技术。
关键词:超高层;钢结构施工;施工特性;技术准备;施工技术要点控制引言随着城市的全面发展,更多的超高层建筑出现在我们的视野,超高层建筑施工技术严格,标准较高,只有全面做好质量控制,才能保证建筑安全稳定。
钢结构是超高层建筑不可缺少的重要施工内容,进行钢结构施工过程中,要科学合理控制加工与安装流程,有效保证建筑的稳定牢固,作为超高层建筑中的重要施工环节,要全面做好质量控制与流程管理,做好钢结构施工相关工作,不仅可使超高层建筑工程质量有所保障,更能够保护人民群众生命和财产安全。
1超高层钢管混凝土结构设计和施工的特点钢管混凝土是新型的组合结构,根据形状可分为不同类型,如圆钢管混凝土、方钢管混凝土。
钢管混凝土结构是在薄壁钢管内部填充混凝土,形成牢固的整体结构。
对混凝土材料和钢管进行组合能够结合钢材的抗拉性能和混凝土的抗压性能优势,弥补彼此的不足,提升结构整体的工程性能。
钢管混凝土结构比传统钢筋混凝土结构具有更大的承载能力,结构整体具有较好的稳定性,结构的延展性和抗震性也得到有效提升。
钢管混凝土三向受压,对提升该结构的整体抗压强度具有重要意义,可提升结构塑形、抗压的能力。
钢管混凝土的结构设计特点如下:(1)使用钢管混凝土进行超高层建筑施工,能够提高结构的抗压、抗剪承载力。
(2)钢管混凝土柱比钢筋混凝土柱截面面积减少60%,能够显著扩大建筑物的使用空间。
(3)使用钢管混凝土结构能减少建筑整体结构的截面面积和自重,有助于提升建筑的整体抗震性能。
(4)钢管混凝土柱中的混凝土可以吸收大量热能,所以该结构比传统钢柱具有更高的耐热性。
钢管柱混凝土在超高层结构中的优势以及混凝土的浇筑及质量控制摘要:最近几年来,许多超高层建筑施工工程增加了对钢管柱混凝土浇筑工艺的关注与分析,并且对工艺的运用理念、特点与关注要点等做出了深入的探讨,进一步给工程的顺利实施进行有利的准备。
钢管混凝土柱拥有着承载重量大、防震功能强等优点,在如今高层建筑工程施工中运用得逐渐广泛起来,但对具体情况下完成的工程钢管混凝土柱的混凝土品质检验方式和准确程度有一定的局限性。
本文对钢管混凝土柱检验方法进行阐述,对处于测试阶段的施工计划和整个实施环节进行了分析,达到借助测试来确定混凝土配合比例、浇筑技术和建立措施等的具体标准,希望可以给业内的相关人员的研究提供帮助。
关键词:超高层建筑;钢管柱;混凝土;技术前言科学技术在如今这个社会环境中成为了第一生产力,也在现代改造客观世界的环节发挥了不可替代的作用,创造了巨大的价值。
钢管混凝土的由来就是把混凝土灌入钢管中并捣实,为的是增强钢管的力度和硬度,而钢管柱混凝土浇筑工程技术在超高层建筑施工环节中占据着十分重要的地位,全面的增强了超高层建筑的安全性与坚固性。
在最近几年的发展中,大多数超高层施工工程项目都对钢管柱混凝土浇筑操作中关联到的工艺进行重视与分析。
一方面是因为以往的浇筑工艺已经无法达到现阶段超高层建筑施工标准,得将新型的浇筑工艺引入到其中。
另一方面是因为钢管柱混凝土浇筑工艺在具体应用环节中,会遭到某些因素的影响而发生状况,需要施工队伍制定有效的应对措施或控制计划,用来提升工程整体水准。
1.钢管混凝土柱的技术结构钢管混凝土的工程操作框架一般涵盖钢管的生产和安装、钢管内部混凝土浇筑和钢管外部外钢筋混凝土的操作等三个关键的组成方法。
三大部分的施工应该在实际的测验施工环节中呈现无形的格局,经过相互关联与密切结合,把混凝土柱的实际价值和工艺效果发挥得淋漓尽致。
而探究其中的原理应具体表现为彼此之间产生的一种粘合力的牵制作用,在整个施工建设的系统中也让产品的稳固程度大大提高了。
超高层建筑中的钢管砼一、钢管砼的结构特点钢管砼在高层建筑工程中,主要是作为受压管柱的建筑构件使用,与钢梁和梁柱节点等共同构成建筑物的框架结构体系。
钢管砼柱因其结构特征,同时具备了钢管和混凝土两种材料的性质。
即管柱外部包裹钢管材料,管柱内部充填混凝土材料,因钢管壁对管内混凝土形成的刚性拘束作用,防止了管内混凝土的脆性破坏。
实验和理论分析证明,钢管混凝土在轴向压力作用下,钢管的轴向和径向受压而环向受拉,混凝土则三向皆受压,钢管和混凝土皆处于三向应力状态。
三向受压的混凝土抗压强度大大提高,同时塑性增大,其物理性能上发生了质的变化,由原来的脆性材料转变为塑性材料。
正是这种结构力学性质的根本变化,决定了钢管砼的基本性能和特点,并作为新型的第五种建筑组合结构显示出巨大的生命力和发展前景。
在高层建筑中,钢管砼的特征与优势如下:1、钢管砼柱的抗压和抗剪承载力高,相当于钢管和混凝土二者之和的2倍以上;2、钢管砼柱截面比钢筋混凝土柱可减少60%以上,轮廓尺寸也比钢柱小,扩大了建筑物的使用空间和面积;3、柱子截面减小,自重减小,有利于结构抗震,相当于设防烈度下降一级;4、钢管砼柱自重减少,减轻了地基承受的荷载,相应降低了地基基础造价;5、钢管壁薄便于选材、制造与现场焊接,是施工最为快捷的建筑结构;6、钢管砼柱内的混凝土可大量吸收热能,其耐火性优于钢柱,从而比钢柱可节省耐火涂料50%以上;7、钢管砼具有的核心混凝土三向受压特性,利于刚刚问世的C60~80高强度混凝土安全可靠地推广应用。
由于上述各项优点,采用钢管砼柱时可节省大量的建筑材料,且素混凝土无须振捣,施工方便,工期短。
根据计算,与钢筋混凝土柱相比,可节约混凝土60~70%,同时降低造价。
若与全钢结构的钢柱相比,则可节约钢材50%,其工程造价也可降低45%。
在高层建筑设计中,钢管砼柱可以仅控制长细比而不必限制轴压比。
此外因其整体性能好,还克服了普通钢结构钢柱存在的局部失稳的缺点。
超高层建筑的承重结构与设计分析随着城市化的发展,对城市土地使用的需求愈加紧迫,建筑也开始向垂直方向发展。
超高层建筑的出现为城市空间的合理利用提供了更多的空间选择,同时也为建筑结构设计提出了更高的要求。
承重结构是超高层建筑设计的核心,因此它的设计也显得尤为重要。
本文将深入探讨超高层建筑承重结构的设计分析。
一、超高层建筑的承重结构类型超高层建筑的承重结构主要分为框架结构、钢管混凝土结构、钢结构和混凝土核心筒结构四种类型。
1. 框架结构框架结构是一种常用于高层建筑的结构形式。
该结构主要由钢筋混凝土框架所组成,结构柱、横梁和地基等部件连接成一个整体,承受建筑自重及外部荷载,为高层建筑提供足够的承载能力。
框架结构适用于高层住宅、办公楼等建筑,其设计方法简单,施工方便,而且具有很高的抗震性能和承载能力。
2. 钢管混凝土结构钢管混凝土结构是一种由圆形或方形钢管和混凝土组成的结构,其承载能力较强,抗震能力好。
钢管混凝土结构可以与框架结构形成混合结构,以适应不同建筑的设计要求。
3. 钢结构钢结构是一种采用钢材作为主要承重构件,其结构轻巧,操作方便,施工速度较快,且易于拆除和重建。
钢结构的使用广泛,适用于各种类型的建筑,比如桥梁、体育馆、展览馆等等。
4. 混凝土核心筒结构混凝土核心筒结构是一种常见的超高层建筑承重结构类型。
其核心部分由混凝土构成,在核心周围设置框架结构或钢结构,在承受建筑自重及外部荷载的同时,为建筑提供强大的抗震能力和稳定性。
二、超高层建筑承重结构设计的基本要素超高层建筑承重结构设计的基本要素包括荷载、受力特点、结构形式、结构件尺寸及材料,以及结构施工方式等。
1. 荷载荷载是超高层建筑承重结构设计的基础。
建筑的自重、住户或办公人员等的荷载、风荷载、地震荷载等都是超高层建筑承重结构设计需要考虑的荷载,设计师需要根据这些荷载合理确定建筑的承载能力。
2. 受力特点超高层建筑承重结构受力特点和受力形式是构造设计方案的基础,这是因为建筑的承重远远超出了其重量所需要承受的荷载。
超高层建筑中的钢管砼
摘要:人类建筑史上传统的结构形式主要有:木结构、砖石(砌体)结构、钢筋混凝土结构和钢结构等四类。
关键词:高层结构设计钢管砼
随着建筑科学技术的发展,近20年来又推出了第五种结构类型,即全新的钢-混凝土组合结构。
该种新型建筑结构,充分发挥了钢材和混凝土的材料特性及优点,按其组合方式又可分为:钢管混凝土结构、钢-混凝土组合梁、外包钢组合结构和劲性钢筋混凝土结构等四种。
它们的共同特点是:施工简便、工期短、结构性能好且大大节约建筑材料。
钢-混凝土组合结构之一的钢管混凝土(即钢管砼-CFST),就是在钢管中充填素混凝土制成的建筑构件。
它具有承载力高、抗震性能好、节约钢材和施工简捷等突出优点,因而在高层和超高层建筑中得到了日益广泛的应用。
其推广与发展的速度十分迅猛,并将成为二十一世纪高层和超高层建筑群最为实用和主要的结构形式。
一、钢管砼的结构特点
钢管砼在高层建筑工程中,主要是作为受压管柱的建筑构件使用,与钢梁和梁柱节点等共同构成建筑物的框架结构体系。
钢管砼柱因其结构特征,同时具备了钢管和混凝土两种材料的性质。
即管柱外部包裹钢管材料,管柱内部充填混凝土材料,因钢管壁对管内混凝土形成的刚性拘束作用,防止了管内混凝土的脆性破坏。
实验和理论分析证明,钢管混凝土在轴向压力作用下,钢管的轴向和径向受压而环向受拉,混凝土则三向皆受压,钢管和混凝土皆处于三向应力状态。
三向受压的混凝土抗压强度大大提高,同时塑性增大,其物理性能上发生了质的变化,由原来的脆性材料转变为塑性材料。
正是这种结构力学性质的根本变化,决定了钢管砼的基本性能和特点,并作为新型的第五种建筑组合结构显示出巨大的生命力和发展前景。
在高层建筑中,钢管砼的特征与优势如下:
1、钢管砼柱的抗压和抗剪承载力高,相当于钢管和混凝土二者之和的2倍以上;
2、钢管砼柱截面比钢筋混凝土柱可减少60%以上,轮廓尺寸也比钢柱小,扩大了建筑物的使用空间和面积;
3、柱子截面减小,自重减小,有利于结构抗震,相当于设防烈度下降一级;
4、钢管砼柱自重减少,减轻了地基承受的荷载,相应降低了地基基础造价;
5、钢管壁薄便于选材、制造与现场焊接,是施工最为快捷的建筑结构;
6、钢管砼柱内的混凝土可大量吸收热能,其耐火性优于钢柱,从而比钢柱可节省耐火涂料50%以上;
7、钢管砼具有的核心混凝土三向受压特性,利于刚刚问世的C60~80高强度混凝土安全可靠地推广应用。
由于上述各项优点,采用钢管砼柱时可节省大量的建筑材料,且素混凝土无须振捣,施工方便,工期短。
根据计算,与钢筋混凝土柱相比,可节约混凝土60~70%,同时降低造价。
若与全钢结构的钢柱相比,则可节约钢材50%,其工程造价也可降低45%。
在高层建筑设计中,钢管砼柱可以仅控制长细比而不必限制轴压比。
此外因其整体性能好,还克服了普通钢结构钢柱存在的局部失稳的缺点。
因此,与钢筋混凝土柱相比,截面设计可以减少60%以上。
例如,北京国际贸易中心塔楼的原结构设计由美国提供,采用的是钢筋混凝土结构,钢筋混凝土柱的截面设计尺寸为2200×2200mm,十分庞重。
后改用了国内的钢管混凝土设计方案后,钢管砼柱的截面仅为φ1400×30mm,截面面积减少了2/3。
全国闻名的深圳赛格广场大厦,采用了钢管砼结构设计,其钢管砼柱最大截面仅为φ1600×28mm,若用钢筋混凝土柱,截面则应为2400×2200mm,柱截面面积减少了63%,粗略估算使整个大厦增加了使用面
积八千多平方米。
显然,采用钢管砼结构的高层建筑,其经济效益非常显著。
二、钢管混凝土的发展前景与工程应用
我国在钢-混凝土组合结构的学术研究与工程应用方面,一直处于国际领先地位。
1988年创立的"国际钢-混凝土组合结构合作研究协?quot;,其首届与第二届主席,即由我国的中国钢结构协会常务理事、中国钢协钢-混凝土组合结构协会理事长、博士及博士后导师、著名的建筑钢结构专家和学者、哈尔滨建筑大学钟善桐教授担任。
现已82岁高龄的钟善桐教授,至今仍担任着该国际学术组织的名誉主席。
与此同时,钟善桐教授居世界领先创立了"统一理论",并将其应用于钢管混凝土的理论研究与工程设计方面,使钢管混凝土结构演变成一个完整和独立的建筑新学科。
在此基础上,提出了一整套设计公式,并就钢管混凝土柱及节点的优化设计创编了CFST软件,现已被广泛应用于工程实践当中。
钢管混凝土的实际工程应用,最早见于19世纪80年代,曾用作桥墩,以后渐渐用于建筑物支柱的建造,并且其用途日益拓宽。
20世纪50年代始,前苏联、美国、日本和欧州部分先进国家对其进行了大量的试验研究,并在一些房屋建筑和桥梁工程中得到应用。
我国钢管混凝土的研究开发始于60年代中期,首例应用为北京的地铁工程,并成功地用于“北京站”和“前门站”站台柱的建造,之后环线地铁工程的站台柱全部采用了钢管混凝土结构。
70年代以后,我国的钢管混凝土逐渐应用于单层和多层工业厂房、高炉和锅炉构架、送变电构架及各种支架结构中,建成的建设工程超过百项。
80年代初,日本率先采取了先进的泵送混凝土施工方法,成功地解决了进行钢管柱的混凝土浇灌复杂工艺问题,既保证了工程质量,又降低了工程造价,从而促使钢管混凝土结构进入了一个新的发展阶段。
日本、澳大利亚和美国等国相继建成了一些钢管混凝土的高层建筑和拱桥。
80年代末至90年代,我国的钢管混凝土工程应用也进入成熟阶段,并居世界前列将其拓展为公路与城市拱桥和高层与超高层建筑的两大工程应用领域。
近10年来,我国达百米和超过百米的钢管砼结构的高层建筑已有20多座。
其中最高的是深圳72层的赛格广场大厦,结构高度291.6米,堪称世界之最。
至20世纪末,钢管混凝土无论是理论研究还是工程应用,我国均已处于世界前列。
三、钢管砼在高层建筑中应用的典型实例
澳大利亚墨尔本的联邦中心大厦
这是澳大利亚第一次采用钢管砼结构的高层建筑物, 钢管砼管柱50×8~16mm,为一座46层的办公大楼,于1991年建成。
美国西雅图的联合广场大厦
这是一座58层、高220米的的建筑物,在核心筒中采用四根φ3050mm钢管砼管柱,建筑物的用钢量仅为58公斤/平方米,于80年代末建成。
美国西雅图的太平第一中心大厦
这是一座44层高的建筑物,在核心筒中采用八根φ2300mm钢管砼管柱,周边采用φ760mm钢管砼管柱,于90年代初建成。
与全钢结构相比,该建筑物大致节约一半钢材左右。
日本琦玉县雄师广场高层住宅楼
这是日本第一座最高的采用钢管砼结构的高层建筑,设计55层、高185.8米,于1998年建成。
中国福建泉州市邮局大楼等15座高层建筑
中国福建泉州市的邮局大楼,是我国第一座采用钢管砼结构的高层建筑,16层,高87.5米,于1992年建成。
随后的短短的数年里,国内采用钢管砼结构先后建成了二十几幢高层建筑,主要有:厦门阜康大厦,25层,高86.5米,1994年建成;
厦门金源大厦,地下水层,30层,高96米,1995建成;
广州好世界广场,地下3层,地上22层,高116.3米,1995年建成;
天津工商银行办公大楼,地下2层,地上36层,高125.5米,1996年建成;
福州环球广场,地下3.5层,地上38层,1997年建成;
福州侨益大厦,地下2层,地上32层,高115.7米,1997年建成;
天津今晚报大厦,地下2层,地上38层,高137米,1997年建成;
北京世界金融中心大厦,地下3层,地上33层,高156米,1998年建成; 深圳邮电信息枢纽中心大厦,地下3层,地上48层,高180米,1998年建成; 广州新中国大厦,地下5层,地上43层,高200米,1999年建成;
重庆环球广场大厦,地下2层,地上31层,高110.6米,1998年建成;
昆明邦克大厦,地下3层,地上36层,高126.1米,1998年建成;
重庆世界贸易中心,地下5层,地上55层,高210米,1999年建成;
深圳赛格广场大厦,地下4层,地上72层,高291.6米,1999年建成。