2光的衍射
- 格式:ppt
- 大小:3.71 MB
- 文档页数:87
第二章光的衍射(Diffraction of light)§1衍射现象、惠更斯─菲涅耳原理一.光的衍射衍射屏观察屏一般地说来,上面装置中波长λ~10-3a或更大时,就能用肉眼观察到明显的衍射条纹。
透过手指缝看灯,也能看到衍射条纹。
2.定义:光在传播过程中能绕过障碍物的边缘而偏离直线传播的现象叫光的衍射。
3.分类:(1)菲涅耳衍射(Fresnel diffraction)──光源和观察屏(或二者之一)离衍射屏的距离有限时的衍射。
它也称近场衍射,其衍射图形会随观察屏到衍射屏的距离而变,情况较复杂。
(2)夫琅禾费衍射(Fraunhofer diffraction)──光源和观察屏都离衍射屏无限远时的衍射。
它也称远场衍射,这种衍射实际上是菲涅耳衍射的极限情形。
此后我们仅讨论夫琅禾费衍射。
二.惠更斯─菲涅耳原理(Huygens─Fresnel principle)菲涅耳(1788-1827)对波动光学的贡献…惠更斯─菲涅耳原理:波传到的任何一点都是子波的波源,各子波在空间某点的相干叠加,就决定了该点波的强度。
该原理的数学表达式如下:)(Q a 取决于波前上Q 点处的强度。
)2cos()()((P)λπωθrt dS r K Q a dE -⋅⋅=dS rt r K Q a E S ⋅-⋅⋅=⎰⎰)2cos()()((P)λπωθdS r K Q a dE )()((P)θ∝ ⎪⎪⎩⎪⎪⎨⎧=≥↓↑→==02)(0maxK K K K ,,πθθθθ )cos((P)(P)0ϕω+⋅=t E方向因子)(θK 令P 处波的强度 2(P )0P E I 。
1882年以后,基尔霍夫(Kirchhoff )解电磁波的波动方程,也得到了E (p) 的表示式,这使得惠更斯─菲涅耳原理有了波动理论的根据。
E (p) 的计算相当复杂,下节将介绍菲涅耳提出的一种简便的分析方法─波带法,它在处理一些有对称性的问题时,既方便,物理图象又清晰。
第二章光的衍射§1 惠更斯——菲涅耳原理一、衍射现象即不沿直线传播而向各方向绕射的现象。
定义:光绕过障碍物偏离直线传播而进入几何阴影,并在屏上出现光强不均匀的分布现象——光的衍射。
当障碍物或孔隙的线度比波大很多,通常都显示光的直线传播现象。
声波和水波的衍射可常见。
例:人在房间说话,另一房间的人能听见。
又,把杨氏装置中的两孔之一遮蔽,使光束通过单孔照射,仔细观察,屏上明亮区比直线传播所估计的要大且出现明暗不均匀的现象。
二、惠更斯——菲涅耳原理惠更斯:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波,在以后时刻,所有这些次波波面的包络面形成整个波在该时刻的新波面。
原理较粗糙,不能解释干涉、衍射甚至还有倒退波的存在。
它不涉及波的时空周期特性——位相、波长、振幅,而衍射现象有明暗相间的条纹出现。
波动有两个基本性质:(1)振动在空间的传播;(2)具有时空周期性,能够相干迭加。
“次波”概念反映前一基本性质,也是成功之处。
但当时对波动性认识肤浅,惠更斯并不知光速有多大,只把光看成空气中的声波(纵波),其“振动”也是非周期性的无规则脉冲,因而原理中并没反映出波的时空周期性.菲涅耳的改进因牛顿威望极高,微粒说影响极大,光的波动理论停滞不前,几乎过了一百年,到了十九世纪,杨反用波的迭加原理解释了薄膜的颜色,首先提出“干涉"一词概括波与波的相互作用,为了验证自己的理论,做了一个双缝干涉,即杨氏干涉实验,他并对出现于阴影边缘附近的衍射条纹给出了正确解释,但这些富有价值的光学研究并没被重视,直到1818年,在巴黎科学院举行的以解释衍射现象为内容的有奖竞赛会上,年青的菲涅耳出人意料地获胜,才开始了光的波动说的兴旺时期,那次竞赛会上,评委中有许多著名的学者,如毕奥、拉普拉斯、泊松,他们都是微粒说的拥护者,竞赛题目的具体表达式带有明显的有利于微粒说的倾向性.然而,菲涅耳吸收了惠更斯的次波概念,阐述的次波相干迭加的新观点具有极大说服力,使反对派马上接受了,会后泊松又仔细审核菲涅理论,并用圆盘衍射,屋圆盘中心轴线上应有亮斑,看来似乎不可思议离奇的结论,不久,在实际中阿喇果果真发现了这一惊人的理论,这一发现对惠——菲原理是十分有力的支持. 惠-—菲原理:波面上每个面元ds 都可看成是新的振动中心,它们又发出次波,在空间某一点p 的振动是所有这些次波在该点的相干迭加。
第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022r r k k +=ρ 而20λk r r k +=20λk r r k =- 20202λρk r r k =-+将上式两边平方,得 422020202λλρk kr r rk++=+略去22λk 项,则 λρ0kr k =将 cm 104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论 ρρ0kr k =将cm 105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为 cm 2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意 m 1=R 500nm mm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式 ⎪⎪⎭⎫⎝⎛+=+=R r R Rr r R R k h h 11)(02002λλ 得 11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ 按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时 210a a =所以42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。