【解析版】巢湖市无为三中2015届九年级上月考数学试卷
- 格式:doc
- 大小:313.00 KB
- 文档页数:16
2014-2015学年安徽省巢湖市无为三中高二(上)期中数学试卷一、选择题(每小题 5分,共50分)1 •水平放置的△ ABC 的直观图如图,其中一个()A •等边三角形B •直角三角形C •三边中只有两边相等的等腰三角形D •三边互不相等的三角形2.平行六面体 ABC O A 1B 1C 1D1中,既与 AB 共面也与CC 共面的棱的条数为()A • 3B • 4C • 5D • 63•已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A • 16 nB •20 n C • 24 n D •32 n4 •将正方体的纸盒展开如图,直线 AB CD 在原正方体的位置关系是()C •相交成60°角D •异面且成60°角a,下面命题中的真命题是( ) a, m n 是异面直线,那么 n //a a 相交,那么 m n 是异面直线 n 共面,那么 m// n n 共面,那么 m// n 6 .将边长为a 的正方形沿对伴 AC 折起,使得BD=a 则三棱锥D- ABC 的体积为()A • 6a 3B • 12a 3C •a 3 D •:a 3B 1 O' =C' O' =1, A O=;,那么原厶ABC 是25 .对于直线m n 和平面 A•如果 m ? a ,n? B•如果 m ?a ,n 与 C•如果 m ?a ,n // D• 如果 m //a ,n //a, m a, m12 127.给出下列关于互不相同的直线I、m n和平面a、B、丫的三个命题:①若I与m为异面直线,I ? a,m? Ua//B;②若a/B, I ? a, m? B,贝U I // m;③若aAB =I , B^Y =m Y^a =n, I //丫,贝U m// n.其中真命题的个数为()A . 3B . 2C . 1D . 0&有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10 , 12)内的频数为()9. 某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.则x+y的值为()甲乙89765 x08 1 1y6291 16A .7B .8C.9 D .1010. 执行如图所示的程序框图,则输出的S值是()二、填空题:(每题5分,共25分)11 •某学校高一、高二、高三年级的学生人数之比为3: 3: 4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取______________________________ 名学生.13.在正方体ABCt> ABGD中,AD与BD所成的角是12. —个正三棱柱的三视图如图所示,求这个正三棱柱的表面积_____________________________ .14. 圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__________________ cm.15. 如图,E、F分别是正方体的面ADDA M、面BCCB1的中心,则四边形BFDE在该正方体的面上的射影可能是___________________ .(要求:把可能的图的序号都填上)三、解答题:(共75分)16. (如图)在底面半径为2母线长为4的圆锥中内接一个高为一;的圆柱,求圆柱的表面积.17. 如图所示,四边形ABCD是矩形,P?平面ABCD过BC作平面BCFE交AP于E,交DP 于F.求证:四边形BCFE是梯形.18. 一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:(1)取出的1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率.A H19. 已知正方形ABCD勺边长是13,平面ABCD外一点P到正方形各顶点的距离都为13, M N分别是PA BD上的点且PM MA=BN ND=5 8,如图.(1)求证:直线MN/平面PBC(2)求线段MN的长.20. 随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用, 尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y (万元)有如下的数据资料:使用年限x 2 3 4 5 6总费用y 2.2 3.8 5.5 6.5 7.0AAA若由资料,知y对x呈线性相关关系.试求:线性回归方程 .二• x+ .的回归直线.21. 如图,四棱柱ABCD- A i BiGD的底面ABCD是正方形,AB=AA=二.(I) 证明:平面A i BD//平面CDB i;(H) 求三棱柱ABD- A i BiD的体积. O为底面中心,A i O丄平面ABCDA A -=-2014-2015学年安徽省巢湖市无为三中高二(上)期中数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1. 水平放置的△ ABC的直观图如图,其中B' O' =C O' =1, A O =;,那么原厶ABC是一个(A. 等边三角形B. 直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形考点:平面图形的直观图. 专题:计算题;转化思想.分析:由图形和A O = 通过直观图的画法知在原图形中三角形的底边BC=BC , AOL BC且AOVS,故三角形为正三角形. 解答:解:由图形知,在原△ ABC中,AOL BC,••• AO=:•/ B' O' =C' O' =1「. BC=2•AB=AC=2•△ ABC为正三角形.故选A点评:本题考查了平面图形的直观图的画法及其先关性质,把握好直观图与原图形的关系,是个基础题.2. 平行六面体ABC O A1B1C1D1中,既与AB共面也与CG共面的棱的条数为()A . 3B . 4C . 5D . 6考点:平面的基本性质及推论.专题:计算题.分析:根据平行六面体的结构特征和公理2的推论进行判断,即找出与AB和CG平行或相交的棱.解答:解:根据两条平行直线、两条相交直线确定一个平面,可得CD BG BB、AA、GD符合条件.故选G.点评:本题考查了平行六面体的结构特征和公理2的推论的应用,找出与AB和GG平行或相交的棱即可,考查了空间想象能力.3•已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A . 16 nB . 20 n G . 24 n D . 32 n考点:球的体积和表面积.专题:计算题;综合题.分析:先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积. 解答:解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2, 正四棱柱的对角线长即球的直径为2二,•••球的半径为:,球的表面积是24 n,故选G.点评:本题考查学生空间想象能力,四棱柱的体积,球的表面积,容易疏忽的地方是几何体的体对角线是外接球的直径,导致出错.4.将正方体的纸盒展开如图,直线AB CD在原正方体的位置关系是()CA .平行B . 垂直G .相交成60°角D .异面且成60°角考点:异面直线的判定.专题:探究型.分析:以AB所在平面为底面,将右侧正方形折起为右边的平面,因为DE// AB,所以/ GDE即为直线AB CD所成的角,在△ GDE中求解即可.解答:解:如图,直线AB, CD异面.因为DE/ AB,所以/ CDE即为直线AB, CD所成的角,因为△ CDE为等腰直角三角形,故/ GDE=60故选D.点评:本题以图形的折叠为载体,考查平面图形向空间图形的转化,考查折叠问题、异面 直线的判断及异面直线所成的角,考查空间想象能力和运算能力.a ,下面命题中的真命题是() a, m n 是异面直线,那么n //a 、a 相交,那么 m n 是异面直线 a, m n 共面,那么 mil n a, m n 共面,那么 mil n 考点:命题的真假判断与应用.专题:阅读型;空间位置关系与距离.分析:由线面的位置关系,即可判断 A ;由空间直线与直线的位置关系,即可判断 B ; 运用线面平行的性质定理,即可判断 C;由线面平行的性质和直线与直线的位置关系,即可 判断D.解答: 解:对于A.如果m? a, n? a, m n 是异面直线,则 n //a 或n 与a 相交,故 A 错; 对于B.如果m? a, n 与a 相交,则 m, n 是相交或异面直线,故 B 错; 对于C.如果m? a, n //a, m n 共面,由线面平行的性质定理,可得 m// n ,故C 对;对于D.如果 m//a, n //a, m n 共面,则 mil n 或m n 相交,故 D 错. 故选C.点评:本题考查空间直线与直线的位置关系和直线与平面的位置关系,考查线面平行的判 定定理和性质定理及运用,考查空间想象能力,属于基础题和易错题.6.将边长为a 的正方形沿对角线 AC 折起,使得BD=a 则三棱锥D- ABC 的体积为()A .6a 3 B . 12a 3 C .a 3 D . — a 312 12考点: 棱柱、棱锥、棱台的体积. 专题: 空间位置关系与距离.jl=分析: 首先利用几何体的边与边的关系求出 AE-CE- •「DE-BE-亠-,进一步证明 AC 丄平面DEE ,最后利用 V D -AB (=V D -DEB +V A-DEB ,求出几何体的体积. 解答: 解:依题意:先画出几何体 边长为a 的正方形折叠后,使得 BD=a 取AC 的中点E ,5.对于直线m n 和平面 A.如果 m ? a ,n? B.如果 m ? a ,n 与 C.如果 m ?a ,n // D. 如果 m //a ,n //根据三角形中边的关系,求得:AE=CE=:… DE=BE=]由于AC丄DE AC丄BEACL平面DEB所以:詁辱睜寻老显—V- DE=2*点评:本题考查的知识要点:平面图形与立体图形的转化,锥体的体积公式的应用.7.给出下列关于互不相同的直线I、m n和平面a、B、丫的三个命题:①若I与m为异面直线,I ? a, m? Ua//B;②若a/B, I ? a, m? B,贝U I // m;③若aAB =I , B^Y =m Y^a =n, I //丫,贝U m// n.其中真命题的个数为()A . 3B . 2C . 1D . 0考点:平面与平面之间的位置关系;空间中直线与平面之间的位置关系.分析:根据空间中平面平行的判定方法,平面平行的性质定理,线面平行的性质定理,我们逐一对已知中的三个命题进行判断,即可得到答案.解答:解:①中当a与B不平行时,也能存在符合题意的I、m故①错误;②中I与m也可能异面,故②错误;③中-1C ? I // m,同理I // n,贝U m// n,故③正确.故选C点评:本题考查的知识点是平面与平面之间人位置关系判断,及空间中直线与平面之间的位置关系判断,熟练掌握空间中线面之间关系判定的方法和性质定理是解答本题的关键.&有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10 , 12)内的频数为()解答:解:观察直方图易得 数据落在[10 , 12)的频率=(0.02+0.05+0.15+0.19 )X 2=0.82 ; 数据落在[10, 12)外的频率=1 - 0.82=0.18 ;•••样本数落在[10 , 12)内的频数为 200X 0.18=36 , 故选:B.点评:本题考查读频率分布直方图的能力和利用统计图获取信息的能力,同时考查频率、 频数的关系:频率9.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.则x+y 的值为()甲乙8 9 7 65 x0 81 1 V 629 1 1 6A . 7B . 8C.9 D .10考点: 茎叶图;众数、中位数、平均数. 专题: 计算题.分析:利用平均数求出x 的值,中位数求出y 的值,解答即可.解答: 解:由茎叶图可知甲班学生的总分为 70X 2+80X 3+90X 2+(8+9+5+x+0+6+2) =590+x ,又甲班学生的平均分是 85, 总分又等于85 X 7=595.所以x=5 乙班学生成绩的中位数是80+y=83,得y=3 .考点:频率分布直方图. 专题:计算题;阅读型.分析:从直方图得出数据落在[10, 12)外的频率后,再根据所求频率和为1求出落在[10 ,12)外的频率,再由频率频数,计算频数即得.••• x+y=8 .故选B.点评:本题考查数据的平均数公式与茎叶图,考查计算能力,基础题.10.执行如图所示的程序框图,则输出的S 值是(考点:循环结构. 专题:计算题.分析:直接利用循环结构,计算循环各个变量的值,当 出循环输出结果即可.解答:解:第1次判断后循环,s=- 1, i=2 , 第2次判断后循环,S= :, i=3 ,3 ?第3次判断后循环,S= , i=4 ,2第4次判断后循环,S=4, i=5 , 第5次判断后循环,S=- 1, i=6 , 第6次判断后循环,S= , i=7 ,3第7次判断后循环,S~, i=8 ,2第8次判断后循环,S=4, i=9 ,第9次判断不满足9V 8,推出循环,输出 4. 故选D.i=9 v 9,不满足判断框的条件,退二、填空题:(每题5分,共25分)11 •某学校高一、高二、高三年级的学生人数之比为3: 3: 4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解::•高一、高二、高三年级的学生人数之比为3:3:4,•••高二在总体中所占的比例是=',3+3+4 10•••用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,•要从高二抽取-—■,!■, -1 -10故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.12. 一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断几何体是一个一个正三棱柱,底面边长为4,高为2,再根据几何体求解面积.解答:解:三视图如图所示:根据三视图可判断几何体是一个一个正三棱柱,底面边长为2二,高为2,•••表面积:3 X 4X 2+2X 丄X( 4) 2=24+8 二;_ 4故答案为:24+8二;点评:本题考查了空间几何体的三视图,性质,面积公式,属于中档题.13. 在正方体ABCD- ABiGD中,AD与BD所成的角是60°考点:异面直线及其所成的角.专题:空间角.分析:通过平移直线作出异面直线AD与BD所成的角,在三角形中即可求得. 解答:解:如图,连结BG、BD 和DG,在正方体ABC—A1B1G1D1中,由AB=DG i, AB// DC,可知AD// BG,所以/ DBG就是异面直线AD与BD所成角,在正方体ABG—ABGDi中,BG、BD和DG是其三个面上的对角线,它们相等. 所以△ DBG是正三角形,/ DBG=60°故异面直线AD与BD所成角的大小为60°.故答案为60°.点评:本题考查异面直线所成的角及其求法,解决该类题目的基本思路是化空间角为平面角.14. 圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 4 cm.考点:组合几何体的面积、体积问题.专题:计算题;综合题;压轴题.分析:设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.解答:解:设球半径为r,则由3V球+V水=V柱可得3X1 ”一•「,解3得r=4 .故答案为:4 点评:本题考查几何体的体积,考查学生空间想象能力,是基础题.15. 如图,E、F分别是正方体的面ADDA1、面BCCB i的中心,则四边形BFDE在该正方体的面上的射影可能是②③.(要求:把可能的图的序号都填上)考点:简单空间图形的三视图.Di Cj专题:作图题;压轴题.分析:由三视图的定义研究四边形BFDE在该正方体的面上的射影可分为:上下、左右、前后三个方向的射影,由于线是由点确定的,故研究四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.解答:解:因为正方体是对称的几何体,所以四边形BFDE在该正方体的面上的射影可分为:上下、左右、前后三个方向的射影,也就是在面ABCD面ABBA、面ADDA上的射影.四边形BFDE在面ABCD和面ABBA上的射影相同,如图②所示;四边形BFDE 在该正方体对角面的 ABGD 内,它在面ADDA i 上的射影显然是一条线段,如图 ③所示.故②③正确故答案为②③点评: 本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.本 题是根据三视图投影规则来选择正确的视图, 三视图是高考的新增考点,不时出现在高考试题中,应予以重视三、解答题:(共75 分)考点:棱柱、棱锥、棱台的体积. 专题:计算题;图表型._分析:由已知中底面半径为 2母线长为4的圆锥中内接一个高为 二的圆柱,我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案.解答: 解:设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为S , 则由三角形相似得r=1 (2分)••• r — 「 ■. :<■厂.(6 分)点评: 本题考查的知识点是圆柱的表面积,其中根据已知条件,求出圆柱的底面半径,是 解答本题的关键.16. (12分)(2014秋?湘潭期末) (如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.17. 如图所示,四边形 ABCD 是矩形,P?平面ABCD 过BC 作平面BCFE 交AP 于E ,交DP 于F .求证:四边形BCFE 是梯形.考点: 直线与平面平行的性质;直线与平面平行的判定. 专题: 证明题;空间位置关系与距离.分析: 证明BC//平面PAD 可得BC// EF ,再证明BC M EF,即可得出结论. 解答:证明:•••四边形 ABCD 为矩形,•• BC// AD,• AD?平面 PAD BC?平面 PAD • BC //平面 PAD• •平面 BCFEn 平面 PAD=EF ••• BC// EF.• AD=BC A* EF , • BC M EF,••四边形BCFE 是梯形.点评:本题考查直线与平面平行的判定与性质, 考查学生分析解决问题的能力, 比较基础.18. 一盒中装有各色球 12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取 出1球.求:(1) 取出的1球是红球或黑球的概率; (2) 取出的1球是红球或黑球或白球的概率.考点:等可能事件的概率. 专题:计算题.分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从 12个球中任取一球,满足条件的事件是取出的球是红球或黑球, 根据古典概型和互斥事件的概率公式得到结果. (2)由题意知本题是一个古典概型,试验包含的基本事件是从 12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果. 解答: 解:(1)由题意知本题是一个古典概型,试验包含的基本事件是从 12个球中任取一球共有 12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,(2)由题意知本题是一个古典概型,试验包含的基本事件是从 12个球中任取一球共有 12种结果; 满足条件的事件是取出的一球是红球或黑球或白球共有 11种结果,•••概率为 即取出的1球是红球或黑球的概率为 取出的1球是红球或黑球或白球的概率为 ….•概率为 P=12点评:理解古典概型的特征,试验结果的有限性和每一个试验结果出现的等可能性,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.19. 已知正方形ABCD勺边长是13,平面ABCD外一点P到正方形各顶点的距离都为13, MN分别是PA BD上的点且PM MA=BN ND=5 8,如图.(1)求证:直线MN/平面PBC(2)求线段MN的长.考点:直线与平面平行的判定;点、线、面间的距离计算.专题:空间位置关系与距离.分析:(1)连结AN并延长和BC交于E点,由条件证明MIN/ PE,再利用直线和平面平行的判定定理证明MIN/平面PBC(2)由于△ PBC是边长为13的等边三角形,利用余弦定理求得PE的值,根据△人皿“与厶APE的相似比为',可得MNJ PE的值.13 13解答:(1)证明:连结AN并延长和BC交于E点,由PM MA=BN ND=5 8,可得EN NA=BN ND=MP MA=5 8,即坐=旦!, • MIN/ PE,而MN?平面PBC PE?面PBCHA MA•MN//平面PBC(2)解:由于厶PBC是边长为13的等边三角形,余弦定理求得PE^P^+B E2-2PB? EBcos60° =13?+ - 2X 13X X —=仝,2 2 2 64•PE=l8o p由于△人皿“与厶APE的相似比为,二MN= PE=7.13 13点评: 本题主要考查直线和平面平行的判定定理的应用,余弦定理,体现了转化、数形结 合的数学思想,属于基础题. 20. 随着人们经济收入的不断增长, 个人购买家庭轿车 已不再是一种时尚.车的使用费用, 尤其是随着使 用年限的增多,所支出的费用到底会增长多少, 一直是购车一族非常关心的 问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限 x 与所支出的总费用y (万元)有如下的数据资料:使用年限x 2 3 4 5 6总费用 y 2.2 3.8 5.5 6.5 7.0AAA若由资料,知y 对x 呈线性相关关系•试求:线性回归方程 .二• x+ .的回归直考点: 线性回归方程.专题:概率与统计. 分析:把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程; 解答:解:■ = (2+3+4+5+6) =4,5 _ I=丄(2.2+3.8+5.5+6.5+7.0 ) =5,5 5 5k 「.=90, 1 :, =112.3 ,1=11=1线.112*3- 5FX490- 5X 42=1.23 '= A A-=-•••=-卜策=5 - 1.23 X 4=0.08 .A•••线性回归方程.=1.23x+0.08 .点评:本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心.21. 如图,四棱柱ABC» A1B1GD的底面ABCD是正方形,0为底面中心,A0丄平面ABCD AB=AA==.(I) 证明:平面A i BD//平面CDBi;(H) 求三棱柱ABD- A i BiD的体积.考点:平面与平面平行的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(I)由四棱柱的性质可得四边形BBDD为平行四边形,故有BD和B i Di平行且相等, 可得BD//平面CBD.同理可证,A i B//平面CBD.而BD和A i B是平面A i BD内的两条相交直线,利用两个平面平行的判定定理可得平面A i BD//平面CDBi .II) 由题意可得A i O为三棱柱ABD- A i BDi的高,由勾股定理可得值,再根据三棱柱ABD- A i BiDi的体积V=&AB D? A i O,运算求得结果.解答:解:(I):四棱柱ABCD- A i BiC i Di的底面ABCD是正方形,O为底面中心,A i O丄平面ABCD AB=AA=^,由棱柱的性质可得BB和DD平行且相等,故四边形BBDD为平行四边形,故有BD和B i D i 平行且相等.而BD不在平面CBD,内,而B i D i在平面CBD内,• BD//平面CBD,.同理可证,A i BCD为平行四边形,A i B//平面CBDi.而BD和A i B是平面A i BD内的两条相交直线,故有平面A i BD//平面CDBi .(I) 由题意可得A i O为三棱柱ABD- ABD,的高.三角形AAO中,由勾股定理可得AiO= [二日,戌”29•三棱柱ABD- A i B i D i 的体积V=Sx ABD? A i O型一? A i O仝X i=i.2 2点评:本题主要考查棱柱的性质,两个平面平行的判定定理的应用,求三棱柱的体积,属于中档题.。
2015-2016学年安徽省九年级(上)月考数学试卷(三)一、选择题(共10小题,每小题4分,满分40分.在每小题给出的选项总,只有一个符合题意,请将正确的一项代号填入下面括号内)1.(4分)(2014•厦门)sin30°的值是()A.B.C.D.12.(4分)(2004•南京)在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m3.(4分)(2015秋•安徽月考)函数y=的图象经过点(﹣,2),则函数y=kx﹣2的图象不经过第几象限()A.一B.二C.三D.四4.(4分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.= D.=5.(4分)(2015秋•安徽月考)已知锐角α满足tan(α+20°)=1,则锐角α的度数为()A.10°B.25°C.40°D.45°6.(4分)(2015秋•安徽月考)把抛物线y=﹣x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣(x+1)2+2 B.y=﹣(x+1)2﹣2 C.y=﹣(x﹣1)2+2 D.y=﹣(x﹣1)2﹣27.(4分)(2009秋•海淀区校级期中)铁路路基横断面是一个等腰梯形,若腰的坡度为2:3,上底宽是3米,路基高为4米,则路基的下底宽为()A.15米B.12米C.9米D.7米8.(4分)(2016•东明县一模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是()A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>09.(4分)(2007秋•招远市期中)如果∠A是锐角,且,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°10.(4分)(2015秋•安徽月考)如图,在△ABC中,点D在BC上,且BD=2CD,AB⊥AD,若tanB=,则tan∠CAD=()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2015秋•安徽月考)抛物线y=2x2﹣4x+3的对称轴是______.12.(5分)(2015秋•安徽月考)求值:sin260°+cos260°=______.13.(5分)(2010•内江)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为______m.14.(5分)(2015秋•安徽月考)已知二次函数y=x2﹣4x+a,下列说法中正确的是______(填写序号).①当x<0时,y随x的增大而减小;②若图象与x轴有交点,则a≤4;③若将图象向上平移1个单位长度,再向左平移3个单位长度后过点(1,﹣2),则a=﹣3;④当a=3时,不等式x2﹣4x+a>0的解集是1<x<3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015秋•安徽月考)计算:﹣14+4sin230°﹣2cos45°+|2﹣3|16.(8分)(2015秋•安徽月考)先化简,再求值:(a﹣)×,其中a=cos60°,b=tan45°.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D 是否在该反比例函数的图象上?18.(8分)(2015•梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2011春•天门校级期中)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.①请你根据图象提供的信息求出此蓄水池的蓄水量;②写出此函数的解析式;③若要6h排完水池中的水,那么每小时的排水量应该是多少?④如果每小时排水量是5m3,那么水池中的水将要多少小时排完?20.(10分)(2015秋•安徽月考)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,求∠CDE的余弦值.六、(本题满分12分)21.(12分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.七、(本题满分12分)22.(12分)(2015秋•安徽月考)如图,在等腰△ABC中,AB=BC=4,点O是AB的中点,∠AOC=60°,点P是射线CO上的一个动点,若当△PAB为直角三角线时,试画出可能的图形(两种即可),并求出相应图形中的AP的长.八、(本题满分14分)23.(14分)(2015•孝感三模)九(1)班数学兴趣小组经过市场调查,整理出某种商品在(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.2015-2016学年安徽省九年级(上)月考数学试卷(三)参考答案一、选择题(共10小题,每小题4分,满分40分.在每小题给出的选项总,只有一个符合题意,请将正确的一项代号填入下面括号内)1.A;2.D;3.A;4.C;5.B;6.C;7.A;8.D;9.C;10.B;二、填空题(本大题共4小题,每小题5分,满分20分)11.直线x=1;12.1;13.7;14.①②③;三、(本大题共2小题,每小题8分,满分16分)15.;16.;四、(本大题共2小题,每小题8分,满分16分)17.;18.;五、(本大题共2小题,每小题10分,满分20分)19.;20.;六、(本题满分12分)21.;七、(本题满分12分)22.;八、(本题满分14分)23.;。
2015年安徽省初中毕业学业考试数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请你“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的).1.在-4,2,-1,3这四个数中,比-2小的数是()A.-4 B.2 C.-1 D.3【答案】A.考点:有理数的大小比较.2.计算8×2的结果是()A.10 B.4 C. 6 D.2【答案】B.【解析】==,故答案选B.4考点:二次根式的乘法运算法则.3.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【答案】C.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.162 000 000用科学记数法表示时,其中a=1.62,n为所有的整数数位减1,即n=8.所以1.62亿用科学计数法表示为1.62×108,故答案选C.考点:科学记数法.4.下列几何体中,俯视图是矩形的是()【答案】B.考点:几何体的俯视图.5.与1+5最接近的整数是( )A .4B .3C .2D .1 【答案】B. 【解析】 试题分析:由459可得3154+,又因4比9更接近5,所以15+更接近整数3.故答案选B.考点:二次根式的估算.6.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是( ) A .1.4(1+x )=4.5 B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5D .1.4(1+x )+1.4(1+x )2=4.5 【答案】C.考点:一元二次方程的应用.7.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分 【答案】D.【解析】试题分析:由统计表可知总共有(2+5+6+6+8+7+6=40)名同学;45在这组数据中一个出现了8次,次数最多是众数;这组数据的中位数是第20、21两个数的平均数为45;这组数据的平均数为(35×2+39×5+42×6+44×6+45×8+48×7+50×6)÷40=44.425.所以本题选项中错误的结论只有选项D,故答案选D. 考点:中位数;众数;平均数.8.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE = 1 2∠ADC D .∠ADE = 13∠ADC 【答案】D.考点:三角形的内角和定理;四边形内角和定理.9.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是A .2 5B .3 5C .5D .6【答案】C. 【解析】试题分析:连接EF 交AC 于点M,由四边形EGFH 为菱形可得FM=EM,EF ⊥AC ;利用”AAS 或ASA ”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=∠BAC=12EM AM =可得在Rt △AME 中,由勾股定理求得AE=5.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b -1)x+c的图象可能是()【答案】A.【解析】试题分析:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,所以x= ax2+bx+c,即ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y= ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根,所以函数y=ax2+(b-1)x+c的图象与x轴有两个交点,并且这两个交点都在x轴的正半轴上,符合条件的只有选项A,故答案选A.考点:二次函数与一元二次方程的关系.二、填空题(本大题共4小题,每小题5分,满分20分)11.-64的立方根是.【答案】-4.【解析】试题分析:∵(-4)3=-64,∴-64的立方根为-4.考点:立方根的定义.12.如图,点A、B、C在半径为9的⊙O上,AB⌒的长为π2,则∠ACB的大小是.【答案】20°.【解析】试题分析:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.考点:弧长公式;圆周角定理.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 . 【答案】xy=z. 【解析】试题分析:观察数列可发现123235358222,222,222......⨯=⨯=⨯=所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x 、y 、z 表示这列数中的连续三个数,则x 、y 、z 满足的关系式是xy=z. 考点:规律探究题.14.已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则 1 a + 1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 【答案】①③④. 【解析】试题分析:在a+b=ab 的两边同时除以ab (ab=c ≠0)即可得111a b+=,所以①正确;把a=3代入得3+b=3b=c ,可得b=32,c=92,所以b+c=6,故②错误;把 a=b=c 代入得22c c c ==,所以可得c=0,故③正确;当a=b 时,由a+b=ab 可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c 时,由c=a+b 可得b=0,再代入可得a=b=c=0,这与a 、b 、c 中只有两个数相等相矛盾,故a=c 这种情况不存在;当b=c 时,情况同a=c ,故b=c 这种情况也不存在,所以④正确.所以本题正确的是①③④. 考点:分式的基本性质;分类讨论.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:⎝⎛⎭⎫a 2a ―1 +1 1―a · 1 a ,其中a =- 12.【答案】+11=,=-12a a a =-原式把代入得,原式.考点:分式的混合运算.16.解不等式: x3>1- x -3 6.【答案】x >3. 【解析】试题分析:根据解不等式的基本方法解出即可. 试题解析:31626(3)263393x x x x x x x x -----+3解: 考点:一元一次不等式的解法.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 3B 2.【答案】(1)见解析;(2)见解析.ABCl 第17题图考点:轴对称作图;平移的性质.18.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).【答案】32.4米. 【解析】试题分析:过点B 作BE ⊥DC 于E,在Rt △BEC 中,求BE 的长;在Rt △BED 中,求DE 的长;根据CD=CE+DE 可求得CD 的长.试题解析:解:过点B 作BE ⊥DC 于E,则CE=AB=12,第18题图在Rt △BEC 中,012tan 30==∠CE BE=tan CBE在Rt △BED 中,DE=BE ·tan ∠DBE=0tan 45=.∴CD=CE+DE=12+≈32.4. 所以,楼房CD 的高度为32.4米. 考点:解直角三角形.五、(本大题共2小题,每小题10分,满分20分)19.A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率; (2)求三次传球后,球恰在A 手中的概率. 【答案】(1) 14;(2)14.【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B 手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A 手中的结果有2种,即可求出三次传球后,球恰在A 手中的概率. 试题解析:解:(1)两次传球的所有结果有4种,分别是A →B →C,A →B →A,A →C →B,A →C →A.每种结果发生的可能性相等,球球恰在B 手中的结果只有一种,所以两次传球后,球恰在B 手中的概率是14;考点:用列举法求概率.20.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值. 【答案】(1)PQ =(2)2PQ =. 【解析】试题分析:(1)在Rt △OPB 中,由OP=OB ·tan ∠ABC 可求得,连接OQ,在Rt △OPQ 中,根据勾股定理可得PQ 的长;(2)由勾股定理可知222,PQ OQ OP =-OQ 为定值,所以当当OP 最小时,PQ 最大.根据垂线段最短可知,当OP ⊥BC 时OP 最小,所以在Rt △OPB 中,由OP=OB ·sin ∠ABC 求得OP 的长;在Rt △OPQ 中,根据勾股定理求得PQ 的长.试题解析:解:(1)∵OP ⊥PQ,PQ ∥AB,∴OP ⊥AB. 在Rt △OPB 中,OP=OB ·tan ∠ABC=3·tan30°.连接OQ,在Rt △OPQ 中,PQ ===(2) ∵22229,PQ OQ OP OP =-=- ∴当OP 最小时,PQ 最大,此时OP ⊥BC. OP=OB ·sin ∠ABC=3·sin30°=32. ∴PQ2=. 考点:解直角三角形;勾股定理. 六、(本题满分12分)21.如图,已知反比例函数y = k 1 x 与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;AABBC CP P Q QOO第20题图1 第20题图2(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数y = k 1x 图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.【答案】(1)1k =8,22,6k b ==;(2)S △ABC =15;(3)点M 在第三象限,点N 在第一象限,理由见解析. 【解析】试题分析:(1)把A(1,8)代入1k y x =求得1k =8,把B(-4,m)代入1ky x=求得m=-2,把A(1,8)、B (-4,-2)代入2y k x b =+求得2k 、b 的值;(2)设直线y=2x+6与x 轴的交点为C,可求得OC 的长,根据S △ABC =S△AOC+S △BOC 即可求得△AOB 的面积;(3)由1x <2x 可知有三种情况,①点M 、N 在第三象限的分支上,②点M 、N 在第一象限的分支上,③ M 在第三象限,点N 在第一象限,分类讨论把不合题意的舍去即可. 试题解析:解:(1)把A(1,8), B(-4,m)分别代入1k y x=,得1k =8,m=-2. ∵A(1,8)、B (-4,-2)在2y k x b =+图象上, ∴22842k b k b +=⎧⎨-+=-⎩,解得,226k b =⎧⎨=⎩.考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质. 七、(本题满分12分)22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(2)x 为何值时,y 有最大值?最大值是多少?【答案】(1)23304y x x =-+(0<x <40);(2)当x=20时,y 有最大值,最大值是300平方米. 【解析】 试题分析:(1)设AE=a ,由A E ·AD=2BE ·BC ,AD=BC 可得BE=12a ,AB=32a ;根据周长为80米得方程2x+3a+2·12a=80,解得a=20—12x.由y=AB ·BC 代入即可求y 与x 之间的函数关系式;根据题意0<BC+EF < 80,所以x 的取值范围为0<x <40;(2)把y 与x 之间的函数关系式化为顶点式,利用二次函数的性质即可求解.试题解析:解:(1)设AE=a ,由题意可得,A E ·AD=2BE ·BC ,AD=BC ,∴BE=12a ,AB=32a. 由题意,得2x+3a+2·12a=80,∴a=20—12x. ∴y=AB ·BC=32ax=32 (20—12x)x ,即23304y x x =-+(0<x <40). (2)∵223330(20)300,44y x x x =-+=--+ ∴当x=20时,y 有最大值,最大值是300平方米.考点:二次函数的应用及性质.八、(本题满分14分)23.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 AD EF的值.第22题图【答案】(1)见解析;(2)见解析;(3)AD EF = 【解析】试题分析:(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB ,GD=GC.由“SAS ”可判定△AGD ≌△BGC 根据全等三角形的对应边相等即可得AD=BC.(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB ∽△DGC ,再由相似三角形对应高的比等于相似比可得GA EG GD FG=,再证得∠AGD=∠EGF ,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD ∽△EGF.(3)如图1,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH. 由△AGD ≌△BGC 可知∠GAD=∠GBC.在△GAM 和△HBM 中,由∠GAD=∠GBC ,∠GMA=∠HMB 可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出GA GE =根据相似三角形对应边的比相等即可得AD AG EF EG == 试题解析:(1)证明:∵GE 是AB 的垂直平分线,∴GA=GB.同理GD=GC.在△AGD 和△BGC 中,∵GA=GB,∠AGD=∠BGC,GD=GC, ∴△AGD ≌△BGC. ∴AD=BC.(2) 证明:∵∠AGD=∠BGC, ∴∠AGB=∠DGC.在△AGB 和△DGC 中,GA GB GD GC=,∠AGB=∠DGC, ∴△AGB ∽△DGC. ∴GA EG GD FG=,又∠AGE=∠DGF ,∴∠AGD=∠EGF ,∴△AGD ∽△EGF.考点:线段垂直平分线的性质;全等三角形的判定及性质;相似三角形的判定及性质;等腰直角三角形的性质.。
绝密★启用前2015年九年级上册第一次月考试卷数 学注意事项:1. 本试卷分试题卷和答题卡两部分.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上. 评卷人得分一、选择题(题型注释)1.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( ) A .4 B .-4 C .1 D .-12.如果012=-+x x ,那么代数式7223-+x x 的值是( ) A 、6 B 、8 C 、-6 D 、-83.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线x=1,且经过点P (3,0),则c b a +-的值为( )A 、0B 、-1C 、 1D 、 2 4.已知二次函数的图象如图所示,则这个二次函数的表达式为( )A .y=x 2﹣2x+3 B . y=x 2﹣2x ﹣3 C . y=x 2+2x ﹣3 D . y=x 2+2x+35.用配方法解方程0142=-+x x ,下列配方结果正确的是( ).A .5)2(2=+xB .1)2(2=+xC .1)2(2=-xD .5)2(2=-x6.如图,在一次函数5+-=x y 的图象上取点P ,作PA ⊥x 轴于A ,PB ⊥y 轴于B ,且长方形OAPB 的面积为6,则这样的点P 个数共有( )A.4 B.3 C.2 D.17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D 到直线PA的距离为y,则y关于x的函数图象大致是第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题(题型注释)9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x 支球队参赛,根据题意列出的方程是________________________________.10.如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
安徽省芜湖市2015届九年级上学期第一次月考数学试卷一、选择题1.(4分)下列是一元二次方程有()个.①4x2=0;②ax2+bx+c=0;③3(x﹣1)2=3x2+2x;④﹣1=0.A.1B.2C.3D.42.(4分)下列电视台的台标,是中心对称图形的是()A.B.C.D.3.(4分)将方程x2+8x+9=0左边变成完全平方式后,方程是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+4)2=﹣74.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0 5.(4分)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为()A.4B.6C.8D.106.(4分)若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=37.(4分)已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3 B.有最小值﹣1,有最大值0C.有最小值﹣1,有最大值3 D.有最小值﹣1,无最大值8.(4分)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣3x+5,则()A.b=3,c=7 B.b=6,c=3 C.b=﹣9,c=﹣5 D.b=﹣9,c=219.(4分)如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(32﹣x)=540 B.(32﹣x)=100 C.(32﹣x)=540 D.(32﹣x)=54010.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc>0;②方程ax2+bx+c=0的两根之和大于0;③2a+b>0;④a﹣b+c<0,其中正确的个数()A.4个B.3个C.2个D.1个二、填空题11.(5分)设a,b是方程x2+x﹣2009=0的两个实数根,则a2+2a+b的值为.12.(5分)在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AED 的位置,使得CE∥AB,则∠DAB等于.13.(5分)已知a<﹣3,点A(a,y1),B(a+1,y2)都在二次函数y=2x2+3x图象上,那么y1、y2的大小关系是.14.(5分)如图,边长为1的正方形ABCO,以A为顶点,且经过点C的抛物线与对角线交于点D,点D的坐标为.三、解答题15.(8分)用配方法解方程:x2﹣2x﹣2=0.16.(8分)已知当x=2时,二次函数有最大值5,且函数图象经过点(0,3),求该函数的解析式.17.(8分)如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).①画出“基本图形”关于原点O对称的四边形A1B1C1D1,并填出A1,B1,C1,D1的坐标;②画出“基本图形”绕B点顺时针旋转90°所成的四边形A2B2C2D2A1(,)B1(,)C1(,)D1(,)18.(8分)为解方程x4﹣5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则x4=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2=1.∴x=±1当y=4时,x2=4,∴x=±2.∴原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2解答问题:(1)填空:在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程:(x2﹣2x)2+x2﹣2x﹣6=0.19.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.20.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值和抛物线与x轴的交点.(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y>0?21.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.当点P运动到点(,0)时,求此时DP的长及点D的坐标.22.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?23.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.安徽省芜湖市2015届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题1.(4分)下列是一元二次方程有()个.①4x2=0;②ax2+bx+c=0;③3(x﹣1)2=3x2+2x;④﹣1=0.A.1B.2C.3D.4考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:①4x2=0符合一元二次方程的定义,正确;②ax2+bx+c=0方程二次项系数可能为0,故错误;③3(x﹣1)2=3x2+2x整理后不含二次项,故错误;④﹣1=0不是整式方程,故错误,故选:A.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(4分)下列电视台的台标,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.3.(4分)将方程x2+8x+9=0左边变成完全平方式后,方程是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+4)2=﹣7考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解答:解:∵x2+8x+9=0∴x2+8x=﹣9∴x2+8x+16=﹣9+16∴(x+4)2=7故选A.点评:解决本题容易出现的错误是移项忘记变号,并且配方时是方程两边同时加上一次项系数一半的平方.4.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0考点:根的判别式.专题:计算题.分析:方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.注意考虑“一元二次方程二次项系数不为0”这一条件.解答:解:因为方程kx2﹣2x﹣1=0有两个不相等的实数根,则b2﹣4ac>0,即(﹣2)2﹣4k×(﹣1)>0,解得k>﹣1.又结合一元二次方程可知k≠0,故选:B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.本题容易出现的错误是忽视k≠0这一条件.5.(4分)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为()A.4B.6C.8D.10考点:根与系数的关系.分析:先根据一元二次方程根与系数的关系,求得两根之和与两根之积,再根据+=,然后代入数值计算即可.解答:解:∵x1、x2是方程x2+6x+3=0的两个实数根,∴x1+x2=﹣6,x1x2=3,∴+===10.故选D.点评:此题主要考查了一元二次方程根与系数的关系及代数式求值的方法,属于基础题型,比较简单.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.(4分)若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=3考点:二次函数的性质.专题:函数思想.分析:由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.解答:解:因为抛物线与x轴相交于点(2,5)、(4,5),根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选D.点评:本题考查了二次函数的对称性.二次函数关于对称轴成轴对称图形.7.(4分)已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3 B.有最小值﹣1,有最大值0C.有最小值﹣1,有最大值3 D.有最小值﹣1,无最大值考点:二次函数的最值.分析:根据二次函数的最值问题解答即可.解答:解:由图可知,0≤x≤3时,该二次函数x=1时,有最小值﹣1,x=3时,有最大值3.故选C.点评:本题考查二次函数的最值问题,准确识图是解题的关键.8.(4分)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣3x+5,则()A.b=3,c=7 B.b=6,c=3 C.b=﹣9,c=﹣5 D.b=﹣9,c=21考点:二次函数图象与几何变换.专题:压轴题.分析:可逆向求解,将y=x2﹣3x+5向上平移2个单位,再向左平移3个单位,所得抛物线即为y=x2+bx+c,进而可判断出b、c的值.解答:解:y=x2﹣3x+5=(x﹣)2+,将其向上平移2个单位,得:y=(x﹣)2+.再向左平移3个单位,得:y=(x+)2+=x2+3x+7.因此b=3,c=7.故选A.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(4分)如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(32﹣x)=540 B.(32﹣x)=100 C.(32﹣x)=540 D.(32﹣x)=540考点:由实际问题抽象出一元二次方程.分析:本题根据题意表示出种草部分的长为(32﹣x)m,宽为m,再根据题目中的等量关系建立起式子就可以了.解答:解:由题意,得种草部分的长为(32﹣x)m,宽为m,∴由题意建立等量关系,得(32﹣x)=540.故A答案正确,故选A.点评:本题考查了一元二次方程的运用,要求学生能根据题意的数量关系建立等式,同时考查了学生的阅读能力和理解能力.10.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc>0;②方程ax2+bx+c=0的两根之和大于0;③2a+b>0;④a﹣b+c<0,其中正确的个数()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的位置及x=﹣1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象可得a<0,b>0,c>0,对称轴0<﹣<1,①由a<0,b>0,c>0,则abc<0,故选项错误;②由于对称轴交x轴的正半轴,即﹣>0所以方程ax2+bx=0的两根之和大于0;故选项正确;③由a<0,b>0,对称轴0<﹣<1,则2a+b<0;故选项错误;④由函数图象可以看出x=﹣1时二次函数的值为负,故选项正确.故选C.点评:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.二、填空题11.(5分)设a,b是方程x2+x﹣2009=0的两个实数根,则a2+2a+b的值为2008.考点:根与系数的关系;一元二次方程的解.分析:根据根与系数的关系,可先求出a+b的值,然后代入所求代数式,又因为a是方程x2+x﹣2009=0的根,把a代入方程可求出a2+a的值,再代入所求代数式可求值.解答:解:根据题意得a+b=﹣1,ab=﹣2009,∴a2+2a+b=a2+a+a+b=a2+a﹣1,又∵a是x2+x﹣2009=0的根,∴a2+a﹣2009=0,∴a2+a=2009,∴a2+2a+b=2009﹣1=2008.点评:根据根与系数的关系、以及方程根的定义可求此题.12.(5分)在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AED 的位置,使得CE∥AB,则∠DAB等于30°.考点:旋转的性质.分析:根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.解答:解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣75°×2=30°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=30°.故答案为:30°.点评:本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.13.(5分)已知a<﹣3,点A(a,y1),B(a+1,y2)都在二次函数y=2x2+3x图象上,那么y1、y2的大小关系是y1>y2.考点:二次函数图象上点的坐标特征.专题:计算题.分析:根据二次函数的性质得到抛物线的对称轴为直线x=﹣,则可判断点A和点B都在对称轴的左侧,然后根据二次函数的性质比较y1、y2的大小.解答:解:抛物线的对称轴为直线x=﹣=﹣,∵a<﹣3,点A(a,y1),B(a+1,y2),∴点A和点B都在对称轴的左侧,而a<a+1,∴y1>y2.故答案为y1>y2.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.(5分)如图,边长为1的正方形ABCO,以A为顶点,且经过点C的抛物线与对角线交于点D,点D的坐标为(,).考点:待定系数法求二次函数解析式.分析:首先求得A、B、C的坐标,利用待定系数法即可求得抛物线的解析式和直线OB 的解析式,然后解OB的解析式与二次函数的解析式组成的方程组即可求解.解答:解:A的坐标是(1,0)、C坐标是(0,1),设出解析式是y=a(x﹣1)2,把C 的坐标代入得:a(﹣1)2=1,解得:a=1,则抛物线的解析式是:y=(x﹣1)2;∵B的坐标是(1,1),设OB解析式的解析式是y=kx,则k=1,则OB的解析式是y=x.根据题意得:,解得:(舍去),或.则D的坐标是:(,).故答案为:(,).点评:本题是正方形与待定系数法求一次函数、二次函数的解析式,正确求得二次函数的解析式是关键.三、解答题15.(8分)用配方法解方程:x2﹣2x﹣2=0.考点:解一元二次方程-配方法.分析:,把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=3,即(x﹣1)2=3,开方,得x﹣1=±,∴x1=1+,x2=1﹣.点评:本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.16.(8分)已知当x=2时,二次函数有最大值5,且函数图象经过点(0,3),求该函数的解析式.考点:待定系数法求二次函数解析式.分析:由条件可知其顶点坐标为(2,5),可设顶点式,再把点(0,3)代入可求得函数的解析式.解答:解:由已知得抛物线的顶点是(2,5),∴设y=a(x﹣2)2+5,∵函数图象经过点(0,3)∴3=a(0﹣2)2+5,解得a=﹣,∴y=﹣(x﹣2)2+5,即y=﹣x2+2x+3.点评:本题主要考查待定系数法求函数解析式,由条件知道顶点坐标为(2,5),设成顶点式是解题的关键.17.(8分)如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).①画出“基本图形”关于原点O对称的四边形A1B1C1D1,并填出A1,B1,C1,D1的坐标;②画出“基本图形”绕B点顺时针旋转90°所成的四边形A2B2C2D2A1(﹣4,﹣4)B1(﹣1,﹣3)C1(﹣3,﹣3)D1(﹣3,﹣1)考点:坐标与图形变化-旋转;关于原点对称的点的坐标.分析:①根据已坐标系中点关于原点对称的坐标特点,横纵坐标互为相反数,即可得出答案;②将图形顶点逆时针旋转90度即可得出答案.解答:解:①根据已坐标系中点关于原点对称的坐标特点,即可得出答案:A1(﹣4,﹣4),B1(﹣1,﹣3),C1(﹣3,﹣3),D1(﹣3,﹣1);②如图所示:点评:此题主要考查了图形的对称与旋转,实际上就是坐标系里的轴对称,中心对称的问题,要明确关于原点对称,通过画图,图形由部分到整体,体现了对称的美感.18.(8分)为解方程x4﹣5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则x4=y2,原方程化为y2﹣5y+4=0.①解得y1=1,y2=4当y=1时,x2=1.∴x=±1当y=4时,x2=4,∴x=±2.∴原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2解答问题:(1)填空:在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.(2)解方程:(x2﹣2x)2+x2﹣2x﹣6=0.考点:换元法解一元二次方程.专题:阅读型.分析:(1)根据换元法的定义得到例题中使用了换元法,把四次降为2次,这体现了转化的数学思想;(2)设x2﹣2x=t,则原方程化为t2+t﹣6=0,解得t1=﹣3,t2=2,再分别解方程x2﹣2x=﹣3和x2﹣2x=2,然后写出原方程的解.解答:解:(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.故答案为换元,转化;(2)设x2﹣2x=t,原方程化为t2+t﹣6=0,解得t1=﹣3,t2=2,当t=﹣3时,x2﹣2x=﹣3,即x2﹣2x+3=0,此方程无实数解;当t=2时,x2﹣2x=2,解得x1=1+,x2=1﹣,所以原方程的解为x1=1+,x2=1﹣.点评:本题考查了换元法解一元二次方程:把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.19.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.20.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值和抛物线与x轴的交点.(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y>0?考点:抛物线与x轴的交点;二次函数的性质.分析:(1)直接将(0,3)代入求出m的值,进而得出令y=0,求出图象与x轴交点坐标即可;(2)首先求出抛物线对称轴,再利用函数图象开口向下,进而得出二次函数增减性即可;(3)利用函数图象进而得出y>0时,x的取值范围.解答:解:(1)∵抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点,∴m=3,则y=﹣x2+2x+3,当y=0,则x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,则抛物线与x轴的交点坐标为:(﹣1,0),(3,0);(2)∵a=﹣1<0,对称轴为:x=﹣=1,∴当x>1时,y的值随x的增大而减小;(3)∵当x=1时,y=4,∴图象的顶点坐标为:(1,4),如图所示:,故﹣1<x<3时,y>0.点评:此题主要考查了二次函数图象与x轴交点以及二次函数的性质,画出函数图象是解题关键.21.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.当点P运动到点(,0)时,求此时DP的长及点D的坐标.考点:旋转的性质;坐标与图形性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:根据等边三角形的每一个角都是60°可得∠OAB=60°,然后根据对应边的夹角∠OAB为旋转角求出∠PAD=60°,再判断出△APD是等边三角形,根据等边三角形的三条边都相等可得DP=AP,根据点A、P的坐标求出∠OAP=30°,利用勾股定理列式求出AP,从而得到DP,再求出∠OAD=90°,然后写出点D的坐标即可.解答:解:∵△AOB是等边三角形,∴∠OAB=60°,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60°,AD=AP,∴△APD是等边三角形,∴DP=AP,∠PAD=60°,∵A的坐标是(0,3),P(,0),∴∠OAP=30°,AP==2,∴DP=AP=2,∵∠OAP=30°,∠PAD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2,3).点评:本题考查了旋转的性质,坐标与图形性质,等边三角形的判定与性质,解直角三角形,熟记各性质并判断出△APD是等边三角形是解题的关键.22.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?考点:二次函数的应用.分析:(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.解答:解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.23.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.考点:二次函数综合题.专题:压轴题;开放型.分析:(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求;(3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标.解答:解:(1)将A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得(2分)∴(3分)∴抛物线解析式为:y=﹣x2﹣2x+3;(4分)(2)存在(5分)理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小∵y=﹣x2﹣2x+3∴C的坐标为:(0,3)直线BC解析式为:y=x+3(6分)Q点坐标即为解得∴Q(﹣1,2);(7分)(3)存在.(8分)理由如下:设P点(x,﹣x2﹣2x+3)(﹣3<x<0)∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣若S四边形BPCO有最大值,则S△BPC就最大,∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分)=BE•PE+OE(PE+OC)=(x+3)(﹣x2﹣2x+3)+(﹣x)(﹣x2﹣2x+3+3)=当x=﹣时,S四边形BPCO最大值=∴S△BPC最大=(10分)当x=﹣时,﹣x2﹣2x+3=∴点P坐标为(﹣,).(11分)点评:此题考查了二次函数的综合应用,要注意距离最短问题的求解关键是点的确定,还要注意面积的求解可以借助于图形的分割与拼凑,特别是要注意数形结合思想的应用.。
安徽省无为三中14-15 学年度九年级上11 月份月考数学试卷—年学年度第二次月考试卷九年级数学题号一二三总分得分一、精心选一选(本大题共 10 小题,每小题 4 分,满分 40 分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有【】A. 1 个B.2个C.3 个D.4 个2.下列方程是一元二次方程的是【】1A .x 2 y 1B .2x x 1 2 x2 3 C. 3x 4 D. x 2 2 0x3.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排 7 天,每天安排 3 场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为【】1 1A .x( x+1) =21B .C .D . x( x﹣1) =21x( x﹣ 1) =21 x( x+1) =212 24.如图,已知⊙ O 的半径为10,弦 AB 长为 16,则点 O 到 AB 的距离是【】A .8B . 7C. 6 D. 55.下列图形中,是中心对称图形而不是轴对称图形的是【】A .平行四边形B.矩形C.等边三角形D.菱形6.把二次函数 y=2x 2 -4x+3 的图象绕原点旋转180 °后得到的图象的解析式为【】2 2 2- 4x- 3 2A. y=- 2x +4x - 3 B . y=- 2x - 4x+3 C. y=- 2x D. y=- 2x +4x+37.如右图,在直角三角形ABC 中,ACB 90 , AC 3, BC 4 ,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则 AD 的长为【】9 B . 24A.5 5 C18 D.5C.25ADB8.如图,将 Rt △ ABC 绕直角顶点顺时针旋转 90°,得到△ A ′B ′C ,连结 AA ′, 若∠ 1=25°,则∠ B 的度数是【 】A .70°B . 65°C . 60°D . 55°9. x 1, x 2 是关于 x 的一元二次方程 x 2﹣ mx+m ﹣ 2=0 的两个实数根,是否存在实数m 使+=0 成立?则正确的是结论是【】A. m=0 时成立B. m=2 时成立C. m=0 或 2 时成立D. 不存在10.如图,在边长为4 的正方形 ABCD 中,动点 P 从 A 点出发,以每秒1 个单位 长度的速度沿点 A →B 方向运动,同时动点 Q 从 B 点出发,以每秒2 个单位长度的速度沿B →C →D 方向运动,当 P 运动到、P 点运动的时间 B 点 时, P Q 两点同时停止运动.设 为 t , △ APQ 的面积为 s ,则 s 与 t 的函数关系的图象是【 】二、细心填一填 (本大题共 5 小题,每小题4 分,满分 20 分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy 中,已知点 A ( - 3, - 4),将 OA 绕坐标原点 O 逆时针旋转 90°至 OA ′,则点 A ′的坐标是.12.如图,在⊙ O 中, CD 是直径,弦AB⊥ CD ,垂足为E,连接 BC ,若 AB=4cm,∠ BCD=22°30,′则⊙ O 的半径为cm.13.如图在四边形ABCD中,∠ B+∠ D=180°,AB=AD, AC=2,∠ ACD=60°,四边形 ABCD的面积等于.14.如图, BC为⊙ O的直径, BC=2 2,弧 AB=弧 AC, P 为 BC(包括 B、 C)上一动点, M为AB的中点,设△ PAM的周长为 m,则 m的取值范围是.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;② a﹣b+c> 0;③当m≠1 时, a+b> am2+bm;④3a +c> 0;⑤若 ax12+bx1=ax22+bx2,且 x1≠x2, x1+x2=2.其中正确的有.CPOA M B(第 12 题图)(第13题图)(第14题图)(第15题图)三、专心解一解(本大题共8 小题,满分90 分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.(本题满分8 分)用适当的方法解下列方程: x2- 4 x +1=017.(本题满分 10 分)如图: C 是弧 AB 的中点, D ,E 分别是半径 OA 和 OB 的中点求证: CD=CE .(第 17 题图)18.(本题满分 10 分)如图,已知二次函数y=a( x﹣h)2+2的图象经过原点O( 0,0), A(4, 0).( 1)写出该函数图象的对称轴;( 4 分)(2)若将线段 OA 绕点 O 逆时针旋转 60°到 OA′,试判断点 A′是否为该函数图象的顶点?( 6 分)(第 18 题图)19.(本题满分12 分)在下列网格图中,每个小正方形的边长均为 1 个单位.在Rt△ABC 中,∠ C=90 °, AC=3,BC =4.(1)试在图中做出△ ABC 以 A 为旋转中心,沿顺时针方向旋转 90°后的图形△ AB1C1;( 4 分)(2)若点 B 的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C 两点的坐标;(4 分)(3)根据( 2)的坐标系作出与△ABC 关于原点对称的图形△A2B2C2,并标出B2、 C2两点的坐标.( 4 分)(第 19 题图)20.(本题满分12 分)已知⊙ O 的直径为5,点 A,点 B,点 C 在⊙ O 上,∠ CAB 的平分线交⊙O于点 D.(Ⅰ)如图①,若BC 为⊙ O 的直径, AB=3,则 AC=,BD=;(每空 2 分)(Ⅱ)如图②,若∠CAB=60°,求 BD 的长.(第 20 题图)21.(本题满分12 分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为 4 元,该店每天固定支出费用为200 元 (不含套餐成本).若每份售价不超过 6 元,每天可销售180 份;若每份售价超过 6 元,每提高 1 元,每天的销售量就减少10 份.为了便于结算,每份套餐的售价x(元 )取整数,用 y(元 )表示该店日净收入.(日净收入=每....天的销售额-套餐成本-每天固定支出)( 1)当 x=6 时, y=;当x>6时,y与x的函数关系式为;(每空 2 分)( 2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净.收入.按此要求,每份套餐的售价应定为多少元?此时日净.收入为多少?22.(本题满分12 分)某汽车销售公司 1 月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出 1 部汽车,则该部汽车的进价为16 万元,每多售一部,所有出售的汽车的进价均降低0.1 万元 / 部。
2014学年初三数学统练四亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧与收获,希望你能沉着仔细,正常发挥,考出优异成绩! (考生注意:本试卷满分150分,答题时间120分钟).3.中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ) A .6.75×103吨 B .6.75×10-4吨 C .6.75×105吨D .6.75×104吨4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯 与地面所成的夹角为θ,则θtan 的值等于( ) A .125 B .512C .135D .1312 5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 ( ) A .15B .25C .35D .456.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .23y x =+B .21y x =+C .2(1)2y x =++ D .2(1)2y x =-+7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为 ( ) A .36° B.46° C .27°D .63°8.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数xy 6=的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3第7题第3题第4题9.若m 是一元二次方程025x 2=--x 的一个实数根,则m 5m -20142+的值是 ( )A . 2011B .2012C .2013D .201410. 如图,边长为a 2的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转060得到BN ,连接HN ,则在M 运动过程中,线段HN 长度的最小值是 ( )二、填空题(本题有6小题,每小题5分,共30分) 11.函数xy =中,自变量x 的取值范围是 . 14. 若关于x 的方程2x x a -+=0有两个相等的实数根,则a 的值为 . 15.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,作CD⊥AB 交外圆与点C ,测得CD =10cm ,AB =60cm ,则这个外圆16. 如图,在ABCRt ∆中,ACB ∠=∠Rt ,22==BC AC ,作内接正方形C D B A 111;在11B AA Rt ∆中,作内接正方形1222A D B A ;在22B AA Rt ∆中,作内接正方形2333A D B A ;……;依次作下去,则第1个正方形C D B A 111的边长三、解答题(本题有8小题,第17~20题每题8分,第21小题l0分,第22、23题每题12第10题第15题第21题图1 第21题图218. 先化简,再求值:)1)(1()2(2+--+a a a ,其中1=a .19. 如图,AC 是⊙O 的直径,弦BD 交AC 于点E 。
安徽初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015秋•安徽月考)抛物线y=2(x﹣1)2的对称轴是()A.1B.直线x=1C.直线x=2D.直线x=﹣12.(2015秋•安徽月考)如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.B.C.D.3.(2015秋•安徽月考)下列说法正确的是()A.对应边都成正比例的多边形相似B.对应角都相等的多边形相似C.等边三角形都相似D.矩形都相似4.(2015秋•安徽月考)已知二次函数y=a(x+3)2﹣h(a≠0)有最大值1,则该函数图象的顶点坐标为()A.(﹣3,﹣1)B.(﹣3,1)C.(3,1)D.(3,﹣1)5.(2015秋•鞍山期末)如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.6.(2015秋•安徽月考)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点上,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,则OB′等于()A.5B.C.D.7.(2015•静安区一模)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinαB.2m•cosαC.2m•tanαD.2m•cotα8.(2015•丰台区二模)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.9.(2015秋•安徽月考)如图,已知二次函数y=x2+bx+3的图象与x轴正半轴交于B、C两点,BC=2,则b的值为()A.4 B.﹣4 C.±4 D.﹣510.(2015秋•安徽月考)如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于点M,交DC于点N,设AE=x,BM=y,则y与x的大致图象是()A. B. C. D.二、填空题1.(2015秋•安徽月考)已知∠A是锐角,且tanA=,则∠A= .2.(2015秋•安徽月考)如图,五边形ABCDE与五边形A′B′C′D′E′位似,对应边CD=2,C′D′=3,则AB:A′B′=.3.(2011春•高新区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于.4.(2015秋•安徽月考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①点(﹣ab,c)在第四象限;②a+b+c <0;③>1;④2a+b >0.其中正确的是 .(把所有正确结论的序号都选上) 三、计算题 (2015秋•安徽月考)计算:cos30°•tan60°﹣(sin45°)2.四、解答题1.(2015秋•安徽月考)根据下列条件解直角三角形:在Rt △ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 对应边的长,∠C=90°,c=8,∠A=60°.2.(2015秋•安徽月考)如图,▱ABCD 的对角线AC 、BD 相交于点O ,点E 、F 、G 、H 分别是线段OA 、OB 、OC 、OD 的中点,那么▱ABCD 与四边形EFGH 是否是位似图形?为什么?3.(2015秋•安徽月考)如图,矩形ABCD ∽矩形ECDF ,且AB=BE ,求BC 与AB 的比值.4.(2012•南昌模拟)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;(1)先作△ABC 关于直线l 成轴对称的图形,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.5.(2015秋•安徽月考)如图,点A 、B 分别在反比例函数y=(x >0)、y=(x >0)的图象上,且∠AOB=90°,∠B=30°,求y=的表达式.6.(2014•达州模拟)已知:如图,斜坡AP 的坡度为1:2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)7.(2015秋•安徽月考)如图,图甲中△ABC 是等边三角形,其边长是3,图乙中△DEF 是等腰直角三角形,∠F=90°,DF=EF=3.(1)记S 1为△ABC 的面积,S 2为△DEF 的面积,S 1=•BC•sin ∠B ,S 2=•sin ∠D ,请通过计算说明S 1与S 3•S 2与S 4之间有着怎样的关系.(2)在图丙中,∠P=α(α为锐角),OP=m ,PQ=n ,△OPQ 的面积为S ,请你根据第(1)小题的解答,直接写出S 与m 、n 以及α之间的关系式,并给出证明.8.(2014•拱墅区一模)为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升.某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y 1(百元)与销售数量x (箱)的关系为y 1=和,在乡镇销售平均每箱的利润y 2(百元)与销售数量t (箱)的关系为y 2=:(1)t 与x 的关系是 ;将y 2转换为以x 为自变量的函数,则y 2= ;(2)设春节期间售完冷冻鸡肉获得总利润W (百元),当在城市销售量x (箱)的范围是0<x≤20时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)经测算,在20<x≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.安徽初三初中数学月考试卷答案及解析一、选择题1.(2015秋•安徽月考)抛物线y=2(x ﹣1)2的对称轴是( )A .1B .直线x=1C .直线x=2D .直线x=﹣1【答案】B【解析】根据顶点式二次函数的解析式,可得函数的对称轴.解:由y=2(x ﹣1)2得对称轴是x=1.故选:B .【考点】二次函数的性质.2.(2015秋•安徽月考)如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是()A.B.C.D.【答案】D【解析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.解:A、在△BCD中,sinα=,故A正确;B、在Rt△ABC中sinα=,故B正确;C、在Rt△ACD中,sinα=,故C正确;D、在Rt△ACD中,cosα=,故D错误;故选:D.【考点】锐角三角函数的定义.3.(2015秋•安徽月考)下列说法正确的是()A.对应边都成正比例的多边形相似B.对应角都相等的多边形相似C.等边三角形都相似D.矩形都相似【答案】C【解析】分别利用相似多边形的对应边成比例,对应角相等,进而判断得出即可.解:A.对应边都成正比例的多边形相似,对应角不一定相等,故此选项错误;B.对应角都相等的多边形相似,对应边的比值不一定相等,故此选项错误;C.等边三角形都相似,正确;D.矩形都相似,其对应边的比值不一定相等,故此选项错误.故选:C.【考点】相似图形.4.(2015秋•安徽月考)已知二次函数y=a(x+3)2﹣h(a≠0)有最大值1,则该函数图象的顶点坐标为()A.(﹣3,﹣1)B.(﹣3,1)C.(3,1)D.(3,﹣1)【答案】B【解析】二次函数y=a(x﹣h)2+k(a≠0)的顶点坐标是(h,k).解:∵二次函数y=a(x+3)2﹣h(a≠0)有最大值1,∴﹣h=1,根据二次函数的顶点式方程y=a(x+3)2﹣h(a≠0)知,该函数的顶点坐标是:(﹣3,﹣h),∴该函数图象的顶点坐标为(﹣3,1).故选B.【考点】二次函数的最值.5.(2015秋•鞍山期末)如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【答案】D【解析】由图可得∠A=∠A,又由有两角对应相等的三角形相似,即可得A与B正确,又由两边对应成比例且夹角相等的三角形相似,即可得C正确,利用排除法即可求得答案.解:∵∠A=∠A,∴当∠ACP=∠B时,△ACP∽△ABC,故A选项正确;∴当∠APC=∠ACB时,△ACP∽△ABC,故B选项正确;∴当时,△ACP∽△ABC,故C选项正确;∵若,还需知道∠ACP=∠B,∴不能判定△ACP∽△ABC.故D选项错误.故选:D.【考点】相似三角形的判定.6.(2015秋•安徽月考)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点上,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,则OB′等于()A.5B.C.D.【答案】B【解析】由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,根据相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比,进而得出OB′的长.解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,∴矩形OA′B′C′与矩形OABC的位似比为:1:3,∵OC=3,OA=4,∴OB=5,∴OB′=×5=.故选:B.【考点】位似变换;坐标与图形性质.7.(2015•静安区一模)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinαB.2m•cosαC.2m•tanαD.2m•cotα【答案】B【解析】过点A作AD⊥BC于点D,构建直角△ABD,通过解该直角三角形得到BD的长度,然后利用等腰三角形“三线合一”的性质来求BC的长度.解:如图,过点A作AD⊥BC于点D.∵AB=m,∠B=α,∴cosα==,则BD=m•cosα.又∵AB=AC,∴BC=2BD=2m•cosα.故选:B.【考点】锐角三角函数的定义.8.(2015•丰台区二模)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.【答案】A【解析】过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A.【考点】解直角三角形的应用.9.(2015秋•安徽月考)如图,已知二次函数y=x2+bx+3的图象与x轴正半轴交于B、C两点,BC=2,则b的值为()A.4 B.﹣4 C.±4 D.﹣5【答案】B【解析】设C(m,0),B(n,0),则n﹣m=2,根据抛物线与x轴的交点问题得到m、n为方程x2+bx+3=0的两根,则利用根与系数的关系得到m+n=﹣b,mn=3,由于(n﹣m)2=4,则(m+n)2﹣4mn=4,即b2﹣4×3=4,然后解关于b的方程即可.解:设C(m,0),B(n,0),则m﹣n=2,∵m、n为方程x2+bx+3=0的两根,∴m+n=﹣b>0,mn=3,∵(n﹣m)2=4,∴(m+n)2﹣4mn=4,∴b2﹣4×3=4,解得b=4(舍去)或b=﹣4,即b的值为﹣4.故选B.【考点】抛物线与x轴的交点.10.(2015秋•安徽月考)如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于点M,交DC于点N,设AE=x,BM=y,则y与x的大致图象是()A. B. C. D.【答案】C【解析】根据垂直平分线的性质得到BM=EM=y,求得AM=4﹣y,根据勾股定理列方程即可得到结论.解:∵BE的中垂线交AB于点M,交DC于点N,∴BM=EM=y,∵AB=4,∴AM=4﹣y,∵四边形ABCD为正方形,∴∠A=90°,∴AM2+AE2=EM2,即(4﹣y)2+x2=y2,∴y=x2+2,根据二次函数的图形和性质,这个函数的图形是开口向上,对称轴是y轴,顶点是(0,2),自变量的取值范围是0<x<4.故选C.【考点】动点问题的函数图象.二、填空题1.(2015秋•安徽月考)已知∠A是锐角,且tanA=,则∠A= .【答案】30°.【解析】将特殊角的三角函数值代入求解.解:∵∠A是锐角,tanA=,∴∠A=30°.故答案为:30°.【考点】特殊角的三角函数值.2.(2015秋•安徽月考)如图,五边形ABCDE与五边形A′B′C′D′E′位似,对应边CD=2,C′D′=3,则AB:A′B′=.【答案】2:3.【解析】直接利用位似图形的对应边的比值相等,进而得出答案.解:∵五边形ABCDE与五边形A′B′C′D′E′位似,对应边CD=2,C′D′=3,∴AB:A′B′=2:3.故答案为:2:3.【考点】位似变换.3.(2011春•高新区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于.【答案】.【解析】设BC=x,易得AC=x,进而根据平行线的性质,可得FC=AC=.在Rt△BFC中,根据三角函数的定义计算.解:设BC=x,∵∠A=30°,∴AC=x.又∵AE:EB=4:1,EF∥BC,∴FC=AC=.在Rt△BFC中,tan∠CFB===.【考点】解直角三角形.4.(2015秋•安徽月考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①点(﹣ab,c)在第四象限;②a+b+c<0;③>1;④2a+b>0.其中正确的是.(把所有正确结论的序号都选上)【答案】①②④【解析】①根据抛物线的开口可确定a的符号,根据抛物线的对称轴的位置可确定b的符号,根据抛物线与y的交点的位置可确定c的符号,从而得到﹣ab的符号,即可确定点(﹣ab,c)所在的象限;②结合图象即可得到x=1时y=a+b+c的符号;③结合图象可得x=﹣1时y=a﹣b+c的符号,再结合b<0就可解决问题;④结合图象可得x=﹣<1,再结合a>0就可解决问题.解:①由抛物线的开口向上可得a>0,由抛物线的对称轴在y轴的右侧可得x=﹣>0,则b<0,由抛物线与y的交点在y轴的负半轴可得c<0,则有﹣ab>0,因而点(﹣ab,c)在第四象限;②结合图象可得,当x=1时y=a+b+c<0;③结合图象可得,当x=﹣1时y=a﹣b+c>0,即a+c>b,∵b<0,∴<1;④结合图象可得,x=﹣<1,∵a>0,∴﹣b<2a,即2a+b>0.故答案为①②④.【考点】二次函数图象与系数的关系.三、计算题(2015秋•安徽月考)计算:cos30°•tan60°﹣(sin45°)2.【答案】1【解析】将特殊角的三角函数值代入求解.解:原式=×﹣=1.【考点】特殊角的三角函数值.四、解答题1.(2015秋•安徽月考)根据下列条件解直角三角形:在Rt△ABC中,a、b、c分别为∠A、∠B、∠C对应边的长,∠C=90°,c=8,∠A=60°.【答案】∠B=30°,b=4,a=12.【解析】根据直角三角形的性质,得出∠B,再根据在直角三角形中,30°所对的直角边等于斜边的一半求出b,最后根据勾股定理求出a.解:∵∠C=90°,∠A=60°,∴∠B=30°,∴b=c=×8=4,∴a===12.【考点】解直角三角形.2.(2015秋•安徽月考)如图,▱ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是线段OA、OB、OC、OD的中点,那么▱ABCD与四边形EFGH是否是位似图形?为什么?【答案】平行四边形ABCD与四边形EFGH是位似图形,O为位似中心.【解析】根据三角形中位线定理得到EF=HG,FE∥HG,根据平行四边形的判定定理证明四边形EFGH是平行四边形,再根据平行线的性质定理、相似多边形的判定定理证明.解:是,理由:∵E、F分别是OA、OB的中点,∴FE=AB,FE∥AB,G、H分别是OC、OD的中点,∴HG=CD,HG∥CD,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴EF=HG,FE∥HG,∴四边形EFGH是平行四边形;∵FE∥AB,∴∠OEF=∠OAB,同理∠OEH=∠OAD,∴∠HEF=∠DAB,同理,∠EFG=∠ABC,∠FGH=∠BCD,∠GHE=∠CDA,====,∴平行四边形EFGH∽平行四边形ABCD,又∵各组对边对应点得连线相交于点O,∴平行四边形ABCD与四边形EFGH是位似图形,O为位似中心.【考点】位似变换.3.(2015秋•安徽月考)如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.【答案】【解析】根据相似多边形的性质列出比例式,得到一元二次方程,解方程即可.解:∵矩形ABCD∽矩形ECDF,∴BC 2﹣BC•AB ﹣CD 2=0,解得,BC=CD ,∵BC 、CD 是正数,∴=.【考点】相似多边形的性质.4.(2012•南昌模拟)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;(1)先作△ABC 关于直线l 成轴对称的图形,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.【答案】见解析【解析】(1)沿l 所在的直线翻折△ABC ,再将对应三点向上平移1个单位,顺次连接各对应点即可;(2)延长OA 1到A 2,使0A 2=20A 1,同法得到其余各点,顺次连接即可.解:(1)如图所示:(2)如图所示.【考点】作图-位似变换.5.(2015秋•安徽月考)如图,点A 、B 分别在反比例函数y=(x >0)、y=(x >0)的图象上,且∠AOB=90°,∠B=30°,求y=的表达式.【答案】y=﹣.【解析】过A 作AC 垂直于y 轴,过B 作BD 垂直于y 轴,易证△AOC ∽△OBD ,利用反比例函数k 的几何意义求出两三角形的面积,得出面积比,在直角三角形AOB 中,利用锐角三角函数定义即可求出tan ∠B 的值,即OA 与OB 的比值,利用面积比等于相似比的平方,即可求出k 值.解:过A 作AC ⊥y 轴,过B 作BD ⊥y 轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°, ∵OA ⊥OB , ∴∠AOC+∠BOD=90°, ∴∠OAC=∠BOD , ∴△AOC ∽△OBD ,∵点A 、B 分别在反比例函数y=(x >0),y=(x >0)的图象上,∴S △AOC :S △OBD =1:|k|,∴()2=1:|k|,则在Rt △AOB 中,tanB==, ∴1:|k|=1:3, ∴|k|=3∵y=(x >0)的图象在第四象限,∴k=﹣3,∴y=的表达式为:y=﹣.【考点】相似三角形的判定与性质;待定系数法求反比例函数解析式.6.(2014•达州模拟)已知:如图,斜坡AP 的坡度为1:2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)坡顶A 到地面PQ 的距离为10m .(2)19米.【解析】(1)过点A 作AH ⊥PQ ,垂足为点H ,利用斜坡AP 的坡度为1:2.4,得出AH ,PH ,AP 的关系求出即可;(2)利用矩形性质求出设BC=x ,则x+10=24+DH ,再利用tan76°=,求出即可.解:(1)过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1:2.4,∴=, 设AH=5km ,则PH=12km ,由勾股定理,得AP=13km .∴13k=26m . 解得k=2. ∴AH=10m .答:坡顶A 到地面PQ 的距离为10m .(2)延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ , ∴BD ⊥PQ . ∴四边形AHDC 是矩形,CD=AH=10,AC=DH . ∵∠BPD=45°, ∴PD=BD .设BC=x ,则x+10=24+DH .∴AC=DH=x ﹣14.在Rt △ABC 中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC 的高度约为19米.【考点】解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.7.(2015秋•安徽月考)如图,图甲中△ABC 是等边三角形,其边长是3,图乙中△DEF 是等腰直角三角形,∠F=90°,DF=EF=3.(1)记S 1为△ABC 的面积,S 2为△DEF 的面积,S 1=•BC•sin ∠B ,S 2=•sin ∠D ,请通过计算说明S 1与S 3•S 2与S 4之间有着怎样的关系.(2)在图丙中,∠P=α(α为锐角),OP=m ,PQ=n ,△OPQ 的面积为S ,请你根据第(1)小题的解答,直接写出S 与m 、n 以及α之间的关系式,并给出证明.【答案】(1)S 1=S 3;S 2=S 4;(2)S=mn•sinα.【解析】(1)作AD ⊥BC 于D ,如图甲,在Rt △ABD 中,利用正弦定义得到AD=AB•sinB ,则根据三角形面积公式得到△ABC 的面积=•AD•BC=•AB•BC•sinB ,于是得到S 1=S 3;如图乙,同样方法可得S 2=S 4;(2)作OH ⊥PQ 于H ,如图丙,在Rt △OPH 中利用正弦定义得到OH=OP•sinP=m•sinα,然后根据三角形面积公式可得△OPQ 的面积S=•OH•PQ=•m•n•sinα.解:(1)作AD ⊥BC 于D ,如图甲,在Rt △ABD 中,∵sinB=,∴AD=AB•sinB ,∴△ABC 的面积=•AD•BC=•AB•BC•sinB ,∴S 1=S 3;如图乙,在Rt △DEF 中,∵sinD=,∴EF=DE•sinD ,∴△DEF 的面积=•EF•DF=•DE•DF•sinD ,∴S 2=S 4;(2)作OH ⊥PQ 于H ,如图丙,在Rt △OPH 中,∵sinP=, ∴OH=OP•sinP=m•sinα,∴△OPQ 的面积=•OH•PQ=•m•n•sinα, 即S=mn•sinα.【考点】解直角三角形.8.(2014•拱墅区一模)为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升.某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y 1(百元)与销售数量x (箱)的关系为y 1=和,在乡镇销售平均每箱的利润y 2(百元)与销售数量t (箱)的关系为y 2=:(1)t 与x 的关系是 ;将y 2转换为以x 为自变量的函数,则y 2= ; (2)设春节期间售完冷冻鸡肉获得总利润W (百元),当在城市销售量x (箱)的范围是0<x≤20时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)经测算,在20<x≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.【答案】(1)t=60﹣x ,;(2)W 1=x 2+5x+240;(3)W 最大=832.5(百元).【解析】(1)直接利用采购冷冻鸡肉60箱销往城市和乡镇,表示出t 与x 的关系即可,进而代入y 2求出即可;(2)利用(1)中所求结合自变量取值范围得出W 与x 的函数关系式即可;(3)利用(1)中所求结合自变量取值范围得出W 与x 的函数关系式,进而利用函数增减性求出函数最值即可. 解:(1)∵某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇,在城市销售数量x (箱),∴在乡镇销售数量t (箱)的关系为:t=60﹣x ,∴y 2=.故答案为:t=60﹣x ,;(2)综合y 1=和(1)中 y 2,当对应的x 范围是0<x≤20 时,W 1=(x+5)x+(x+4)(60﹣x ) =x 2+5x+240;(3)当20<x≤30 时,W 2=(﹣x+75)x+(x+4)(60﹣x ) =﹣x 2+75x+240, ∵x=﹣=>30,∴W 在20<x≤30随x 增大而增大, ∴最大值x=30时取得, ∴W 最大=832.5(百元).【考点】二次函数的应用.。
2014-2015九年级第三次月考数学试题2014-11-29一、选择题(每小题2分,共12分)1.方程()01=-x x 的解是( )A .0=xB .1=xC .1021==,x xD .1021-==,x x2.下列图形中,是中心对称的是( )3.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )A. 32B. 52C. 51D. 53 4.如图,在⊙O 中,∠AOB=120°,点C 是劣弧AB 的中点,点P 是优弧APB 上的任意一点,连接AP ,BP ,则∠APC 的度数为( )A.60°B.40°C.30°D.30°或60°5.如图,学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵共三条等宽的小道,要使种植面积为600平方米,若设小道的宽为x 米,则所列方程正确的是( )A. 600352022035=-⨯-⨯x xB. 600352020352=+--⨯x x xC. ()()60020235=--x xD. ()()60022035=--x x6.若二次函数()02≠++=a c bx ax y 的图象如图所示,则下列结论正确的是( ) A. c <0 B. b >a 2- C. c b a ++>0 D. c b a +->0二、填空题(每小题3分,共24分)A B C D4题图 5题图 6题图7.若关于x 的一元二次方程02=-m x 的一个解为3,则m 的值为 .8.从一副普通扑克牌中选取红桃7、8、9、10四张扑克牌,洗匀后正面朝下放在桌子上.从中任意抽取一张扑克牌恰好是红桃10的概率是 .9.关于x 的二次函数132+-=x x y 的最小值是 .10.如图,在平面直角坐标系中,小正方形的顶点叫做格点,每个小正方形的边长为1,⊿ABO 的顶点在格点上,点C 在x 轴上,⊿ABO 关于点C 成中心对称的⊿A′B′O′,点A 和点A′是对应点,则A′的坐标为 .11.如图,在平面直角坐标系中,小正方形的顶点叫做格点,每个小正方形的边长为1,点A 在格点上,以点A 为圆心,半径为2作⊙A ,则在⊙A 内横、纵坐标均为整数的点共有 .12.如图,PA 、PC 是⊙O 的切线,AB 是直径,连接BC ,AC.若∠P=60°,BC=1,则⊿PAC 的周长为 .13.二次函数c bx ax y ++=2(a ,b ,c 是常数,0≠a )图象的对称轴是直线x =1,其图象的一部分如图所示,由图象可以看出,一元二次方程02=++c bx ax 的一个根 2<1x <3,它的另一个根2x 的取值范围是 .14.如图①,AB 是半圆O 的直径,且AB=4,将图①折叠成图②,使点A 与点B 恰好重合,折痕为OC ,再将图②沿BC 折叠得到图③,则阴影部分的面积是 (结果保留π)B 11题图 12题图A O 14题图图① 图② 图③13题图三、解答题(每小题5分,共20分)15.解方程:04642=--x x .16.若关于x 的方程0822=++c x x 有实数根,请选择一个符合要求的c 值,求出方程的根.17.在一个不透明的袋子里装有4个小球,分别标有数字1,2,3,4,这些小球除所标数字不同外其余均相同.先从袋子里随机摸出1个小球,记下标号后不放回;再从袋子里随机摸出1个小球记下标号.请用画树状图(或列表)的方法,求两次摸出的小球的标号之和是5的概率.18.小明同学掷出的铅球在场地上砸出一个小坑,铅球和这个小坑的截面图如图所示,测得AB 约为8㎝,小坑最深处约为2㎝,求铅球的半径约为多少㎝?四、解答题(每小题7分,共28分)19.在10×10的网格纸上建立平面直角坐标系如图所示,在Rt ⊿ABO 中,∠OAB=90°,且点B 的坐标为(3,4).(1)画出⊿OAB 向左平移3个单位后的⊿O 1A 1B 1,,写出点B 1的坐标;(2)画出⊿OAB 绕点O 顺时针旋转90°后的⊿OA 2B 2,并求点B 旋转到点B 2时,点B 经过的路线长(结果保留π).18题图20.如图,在平面直角坐标系中,抛物线c bx x y ++=221经过原点O ,与x 轴交于另一点A ,其对称轴与x 轴交于点B ,与抛物线交于点D ,点B 的坐标这(23,0).以AB 为直角边作直角三角形ABC ,∠BAC=90°,AC=2,点C 在第一象限. (1)求抛物线的解析式和点D 的坐标;(抛物线的对称轴为直线a b x 2-=) (2)若将抛物线沿x 轴向右平移,使平移后的抛物线恰好经过点C 求平移的距离.19题图20题图21.2011年底某市手机用户的数量为50万部,截止到2013年底,该市手机用户的数量达到72万部.(1)求2011年底至2013年底该市手机用户数量的年平均增长率;(2)若年平均增长率保持不变,预计到2014年底该市手机用户数量是多少万部?22.如图,在⊿ABC中,AB=AC,点O在边AC上,以OC为半径的圆分别与BC、AC相交于点D、E,DF⊥AB,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)若∠A=45°,OC=2,求劣弧DE的长.A21题图五、解答题(每小题8分,共16分)23.如图,在正方形ABCD中,点E、F分别是AD、BC的中点,连接EF.将矩形CDEF绕着点C逆时针方向旋转一定的角度得到矩形CD′E′F′点E′恰好落在AB边上,E′F′与BC交于点G.(1)求证:BE′=D′E′;(2)若正方形ABCD的边长为2,求⊿GF′C的周长.G D /F /E /FB A DC24.跳绳时,绳甩到最高处时的形状是抛物线.正甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E.以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为9.02++=bx ax y .(1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高.O B AD六、解答题(每小题10分,共20分)25.如图,AB 是⊙的直径,且AB=4,点P 是OA 的中点,过点P 作PC ⊥AB ,交⊙O 于点C ,D ,连接AC ,BC ,CO ,AD ,DO ,延长DO 交BC 于点E ,过点D 的切线DF 与CA 的延长线交于点F.(1)求证:四边形ACOD 是菱形; (2)求BC 的长;(3)求四边形CEDF 的面积.23题图24题图FB26.如图,抛物线c bx x y ++=221经过A (-2,0),C (0,-4)两点,点B 是抛物线与x 轴的另一个交点,作直线BC.点M 为第四象限内抛物线上一动点,连接BM ,CM.设点M 的横坐标为m ,⊿BCM 的面积为S.(1)求抛物线的解析式;(2)求S 关于m 的函数关系式,并求出S 的最大值;(3)当S 取得最大值时,作直线OM ,点P 是抛物线上的动点,点Q 是直线OM 上的动点,当以点P 、Q 、C 、O 为顶点的四边形为平行四边形时,直接写出相应的点Q 的坐标.25题图 26题图参考答案 1.C;2.B;3.B;4.C;5.C;6.D;7.9;8.41;9. 45-;10.(3,-1);11.9;12. 33;13. -1<2x <0; 14. π-4;15. 21221-==,xx ; 16. c ≤8, 17. 31 18.5;19.(1)(0,4),(2)π25; 20.(1)D(8923-,),(2)4; 21.(1)20%,(2)86.4;22. (2)π23; 23.(2)324.(1) 9.06.01.02++-=x x y(2)1.8; 25.(2) 33; 26.(1) 4212--=x x y (2) m m S 42+-=,最大值为4,(3)(2,-4)、(-2,4)、(1722171-+-,)、()1722171+--,。
安徽省巢湖市无为三中2015届九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.安徽省巢湖市无为三中2015届九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a 的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m ﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a (x+m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。