高二数学下册知识点整理
- 格式:docx
- 大小:14.30 KB
- 文档页数:5
高二数学下册知识点总结高二数学下册是一个重要的学习阶段,本文将对这一学期的数学知识进行全面总结。
主要内容包括函数与导数、三角函数与解三角形、数列与数学归纳法、概率与统计等。
一、函数与导数函数与导数作为高中数学中的重要内容之一,涉及到函数的性质和变化规律的研究。
具体而言,下册涵盖了以下几个知识点:1.1 函数的定义与性质函数是一种特殊的关系,将自变量和因变量联系起来。
函数的定义、定义域、值域、单调性、奇偶性以及函数图像的绘制等都是需要掌握的概念。
1.2 导数与函数的变化率导数的概念是数学中的重要基础,它描述了函数在某一点处的变化率。
在本学期中,我们学习了导数的定义、导数与函数的关系、导数的运算法则等内容。
1.3 函数的极值与最值极值与最值是函数变化过程中的重要特征,包括函数的最大值、最小值以及极大值、极小值的求解方法等。
1.4 函数与导数的应用函数与导数的应用十分广泛,例如切线与法线的问题、函数的凹凸性与拐点等,这些内容是数学在实际问题中的应用。
二、三角函数与解三角形三角函数是三角学中的重要概念,涵盖了正弦函数、余弦函数、正切函数等。
下册的内容主要包括:2.1 三角函数的定义与性质三角函数是以单位圆上的点表示的,正弦函数、余弦函数、正切函数的周期、奇偶性等都是需要掌握的概念。
2.2 三角函数的图像和性质通过对三角函数图像的分析,我们能够更好地理解函数的性质,并能够解决一些与三角函数相关的方程与不等式。
2.3 解三角形解三角形需要掌握三角函数的应用,如正弦定理、余弦定理、正切定理等。
同时,还需要能够灵活运用这些知识解决实际问题。
三、数列与数学归纳法数列与数学归纳法是一种重要的数学工具,用于研究数列的性质和数学命题的证明。
下册的内容包括:3.1 等差数列与等比数列等差数列和等比数列是两种常见的数列形式,需要掌握其通项公式、前n项和公式等相关知识。
3.2 数学归纳法与数列证明数学归纳法是一种常见的证明方法,在数列的证明中有着重要应用。
高二下学期数学知识点总结第1篇1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线xxx的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面xxx的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
高二下学期数学知识点总结第2篇1.用导数研究函数的值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题1)费用、成本省问题2)利润、收益大问题3)面积、体积(大)问题高二下学期数学知识点总结第3篇1.万能公式:令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2).2.辅助角公式:asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b ^2)^(1/2)]tanr=b/a。
向量公式:1.单位向量:单位向量a0=向量a/|向量a|.(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)。
(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]。
高二数学下册知识点高二数学下册包含了许多重要的知识点,涵盖了代数、几何、概率与统计等方面。
下面将会逐个介绍这些知识点,帮助大家更好地理解和掌握高二数学下册的内容。
一、代数1. 函数与方程(1) 二次函数:二次函数的标准方程为 y=ax²+bx+c,其中 a、b、c 为常数,a≠0。
二次函数的图像为开口朝上或开口朝下的抛物线。
(2) 一次函数:一次函数用 y=ax+b 表示,其中 a、b 为常数,且a≠0。
一次函数的图像为直线。
(3) 高次函数:高于二次的函数称为高次函数,如三次函数、四次函数等。
(4) 方程:方程是含有未知数的等式,可以通过解方程来求得未知数的值。
2. 数列与数学归纳法(1) 等差数列:数列中每一项与前一项的差值相等。
(2) 等比数列:数列中每一项与前一项的比值相等。
(3) 数学归纳法:数学归纳法是用来证明一般命题的方法,包括基础步骤和归纳步骤。
3. 逻辑与命题(1) 命题:陈述句,可以判断真假的陈述。
(2) 逻辑联结词:包括与、或、非等,用来连接命题构成复合命题。
(3) 命题符号化:将自然语言中的命题用符号表示。
(4) 命题的合取与析取:合取是指将多个命题以“与”连接,构成一个新的命题;析取是指将多个命题以“或”连接,构成一个新的命题。
二、几何1. 平面几何(1) 三角形:三角形的分类、性质与定理。
(2) 相似三角形:相似三角形的性质与判定。
(3) 合同三角形:合同三角形的性质与判定。
(4) 圆:圆的性质、定理与相关的计算。
2. 空间几何(1) 空间中的直线和平面:直线与平面的定义、性质与关系。
(2) 空间中的角:角的性质、类型与相关定理。
(3) 空间直角坐标系:空间直角坐标系的引入与应用。
(4) 空间图形的计算:如长方体、正方体、棱柱、棱锥等图形的体积与表面积计算。
三、概率与统计1. 概率(1) 随机事件与样本空间:事件的定义、种类与概率计算。
(2) 概率的计算规则:包括加法法则、乘法法则、全概率公式和贝叶斯定理。
高二下学期数学知识点总结一、函数与导数1.1 函数的概念1.1.1 函数的定义1.1.2 自变量与因变量1.1.3 函数的性质定义域、值域、奇函数、偶函数、周期函数等1.2 初等函数1.2.1 一次函数1.2.2 二次函数1.2.3 指数函数1.2.4 对数函数1.2.5 幂函数1.2.6 三角函数1.3 函数的运算1.3.1 函数的和、差、积、商1.3.2 复合函数1.3.3 反函数1.3.4 函数的图像1.4 导数的概念1.4.1 导数的定义1.4.2 函数的导数1.4.3 函数的导数与函数的变化率1.4.4 导数的性质1.5 导数的运算1.5.1 导数的四则运算1.5.2 复合函数的导数1.5.3 反函数的导数1.5.4 隐函数的导数1.6 函数的应用1.6.1 切线与切线方程1.6.2 极值与最值1.6.3 函数的单调性1.6.4 函数的凹凸性1.6.5 应用题分析二、三角函数2.1 角度制与弧度制2.1.1 角度度数与弧度的换算2.1.2 弧度制下三角函数的定义2.1.3 弧度制下三角函数的四舍五入2.2 三角函数的基本性质2.2.1 三角函数图像2.2.2 三角函数的性质2.2.3 三角函数的周期性2.3 三角函数的变换2.3.1 三角函数图像的平移2.3.2 三角函数图像的垂直伸缩2.3.3 三角函数图像的水平伸缩2.3.4 三角函数图像的反转2.4 三角函数的和差化积2.4.1 和差化积公式的导出2.4.2 三角函数的和差化积公式2.5 三角函数的应用2.5.1 三角函数方程的求解2.5.2 三角函数的图像分析2.5.3 三角函数在物理、工程等方面的应用三、解析几何3.1 直线与圆3.1.1 直线的方程3.1.2 直线的位置关系3.1.3 圆的方程3.1.4 圆与直线的位置关系3.2 抛物线、椭圆、双曲线3.2.1 抛物线的性质3.2.2 椭圆的性质3.2.3 双曲线的性质3.2.4 抛物线、椭圆、双曲线的方程3.3 平面向量3.3.1 平面向量的性质3.3.2 平面向量的计算3.3.3 平面向量的应用3.4 空间几何3.4.1 空间向量3.4.2 空间直线与平面3.4.3 空间中的立体几何四、概率与数理统计4.1 随机事件与概率4.1.1 随机事件的概念4.1.2 概率的基本性质4.1.3 概率的计算4.1.4 互斥事件与对立事件4.2 随机变量与概率分布4.2.1 随机变量的概念4.2.2 离散型随机变量与概率分布4.2.3 连续型随机变量与概率密度4.3 随机事件的独立性4.3.1 事件的独立性4.3.2 事件的相关性4.4 数理统计4.4.1 样本与总体4.4.2 参数估计与假设检验4.4.3 方差分析4.4.4 实际问题的统计分析五、综合练习5.1 复习总结5.1.1 数学知识点的体系复习5.1.2 解题技巧的总结5.1.3 典型题目的讲解5.2 模拟考试5.2.1 模拟考试的安排5.2.2 模拟考试的命题标准5.2.3 模拟考试的成绩统计5.3 复习反思5.3.1 复习反思的方式方法5.3.2 复习反思的重要性5.3.3 复习反思的效果评估此外,高二下学期的数学教学还包括了数学实践、数学建模等方面的知识点,这些内容也是学生需要重点掌握的。
高二下数学知识点梳理1. 集合论在高二下学期的数学中,集合论是一个非常重要的知识点。
集合是由一些确定的元素组成的整体。
常见的表示方法有列举法和描述法。
对于集合的操作,包括并集、交集、差集和补集等。
此外,还有关于集合的子集、相等、互斥和包含等的概念和性质。
2. 函数与方程函数与方程也是高二下学期数学的重点内容。
函数是一种特殊的关系,每个自变量都与唯一的因变量对应。
常见的函数包括线性函数、二次函数、指数函数、对数函数等。
方程是一个等式,其中包含未知量。
我们常见的方程有一元二次方程、一元线性方程、二元一次方程等。
解方程的方法包括因式分解、配方法、二次方程的求根公式、直接法或直接法的类型等。
3. 三角函数与立体几何三角函数是高中数学中的重要内容之一。
其中包括正弦函数、余弦函数和正切函数等。
这些函数在数学以及实际生活中具有广泛的应用。
另外,在立体几何中,我们需要了解各种立体图形的表示方法、性质以及计算表面积和体积的公式。
4. 概率与统计概率与统计是数学中应用广泛的一部分。
概率是描述随机事件发生可能性的数学工具。
在高中数学中,我们学习了基本的概率概念、概率的计算方法以及相关的概率规则,如加法法则、乘法法则和条件概率等。
统计学用于收集、整理和分析数据,我们需要了解统计学中的基本概念,如样本、总体、频数、频率等。
5. 数列与数列求和数列是一系列按照一定规律排列的数的集合。
我们常见的数列有等差数列和等比数列。
对于数列,我们需要了解其通项公式以及前n项和的公式。
另外,还有一些特殊的数列,如斐波那契数列和等差中项数列等。
6. 导数与微分在高二下学期的数学中,我们开始学习微积分的基础内容。
导数是描述函数变化率的概念。
我们需要了解导数的定义、常见函数的导数以及求导的基本法则。
微分是导数的一个应用,用于计算曲线的切线方程以及近似计算函数的增量和极值等。
7. 积分与定积分积分是微积分的另一个重要内容。
定积分是积分的一种应用,用于计算曲线与x轴之间的面积。
数学高二下期知识点归纳高二下学期数学知识点归纳本文对高二下学期数学的知识点进行归纳总结,包括平面向量、三角函数、数列和数学归纳法等内容,帮助同学们进行复习和巩固。
一、平面向量1. 向量的定义和性质:向量的加法、减法、数量乘法、共线与共面等基本概念和运算法则。
2. 平面向量的坐标表示:向量的坐标表示及其性质,向量的模和方向角的计算方法。
3. 平面向量的数量积:数量积的定义、性质和计算方法,向量间的正交、垂直与平行关系。
4. 平面向量的向量积:向量积的定义、性质和计算方法,向量积与向量的夹角和面积的关系。
二、三角函数1. 角度与弧度制:角度和弧度的定义,两者之间的换算关系。
2. 三角函数的定义和性质:正弦函数、余弦函数、正切函数等的定义、周期性与奇偶性。
3. 三角函数的图像和性质:各种三角函数的图像、周期、增减性以及与角度的关系。
4. 三角函数的基本关系式与诱导公式:三角函数间的基本关系、倍角、半角、和差等诱导公式的推导与应用。
三、数列1. 数列的定义和性质:数列的概念、常数数列、等差数列和等比数列的定义和性质。
2. 等差数列和等比数列的通项公式:等差数列通项公式及其推导方法,等比数列通项公式及其推导方法。
3. 数列的前n项和:等差数列前n项和的计算,等比数列前n项和的计算与求和公式的推导。
4. 数列的应用:数列在实际问题中的应用,如等差数列在数学题目中的运用等。
四、数学归纳法1. 数学归纳法的基本思想和原理:归纳法的基本过程和推理方法。
2. 数学归纳法的应用范围:能够应用数学归纳法解决基本的数学问题。
3. 数学归纳法的具体步骤:列出归纳假设、验证基本情况、进行归纳步骤和结论推理。
4. 数学归纳法的运用技巧:在解决问题中灵活运用数学归纳法的技巧和方法。
通过对上述知识点的归纳总结,我们可以更好地掌握高二下学期数学的重要知识,为复习和考试做好准备。
希望同学们能够通过系统的学习和不断的练习,提高数学水平,取得好成绩。
高二数学下学期知识点梳理1.高二数学下学期知识点梳理篇一1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.2.高二数学下学期知识点梳理篇二(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的.条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率。
数学高二下册知识点归纳在高二下学期的数学学习中,我们接触到了许多重要的知识点。
在本篇文章中,我将对这些知识点进行归纳总结,希望能够帮助大家更好地理解和掌握这些内容。
一、函数与导数1. 函数的定义与性质- 函数的定义:自变量和因变量的关系- 定义域、值域和维数的概念- 奇偶函数和周期函数的特点2. 导数的定义与运算法则- 导数的定义:极限的概念- 基本函数的导数和常用的导数公式- 导数的四则运算和复合函数求导3. 函数的应用- 函数的单调性和最值问题- 函数的极值问题和最值问题- 函数的凹凸性和拐点问题二、三角函数与三角恒等式1. 三角函数的定义与性质- 弧度制和角度制的转换- 各三角函数的定义和图像特点- 三角函数之间的关系和性质2. 三角函数的图像及其性质- 正弦函数、余弦函数和正切函数的图像特点 - 函数图像的平移、伸缩和翻转操作- 反三角函数的定义和性质3. 三角函数的恒等式与解三角方程- 三角函数的基本恒等式及其推导过程- 三角方程的基本解法和注意事项- 三角方程在实际问题中的应用三、平面向量与空间向量1. 平面向量的定义与运算- 平面向量的定义和基本运算法则- 向量共线、平行和垂直的判定方法- 平面向量运算在几何中的应用2. 空间向量的定义与运算- 空间向量的定义和基本运算法则- 向量夹角和向量投影的计算方法- 点与直线的位置关系和向量运算的应用3. 平面与空间直角坐标系- 平面直角坐标系和空间直角坐标系的建立 - 平面方程与空间直线方程的表示方法- 二维平面与三维空间中的几何关系四、立体几何与多面体1. 立体几何的基本概念- 空间中点、直线和面的性质- 空间角的定义和度量方法- 空间角与平面角的关系2. 多面体的性质与分类- 多面体的定义及其基本性质- 正多面体和柱面、锥面的定义与分类 - 多面体在几何问题中的应用3. 空间向量与平面的位置关系- 点、直线和平面的距离计算方法- 直线与平面的位置关系和相交条件 - 平面与平面的位置关系和相交条件以上所列举的知识点仅为高二下学期数学内容的一部分,但是它们是学习数学的基础,对于高中生继续深入学习和理解数学知识具有重要意义。
高二下期数学学哪些知识点高二下学期是数学学科的重要阶段,学生将继续深入学习数学的各个领域和知识点。
在这个学期里,学生们将会接触到许多重要而有趣的数学概念和技巧。
本文将介绍高二下期数学需要学习的主要知识点,帮助学生们规划学习进度和集中精力。
一、函数和方程1.1 二次函数与二次方程学习二次函数和二次方程的性质,如顶点坐标、对称轴、零点等。
理解二次函数与二次方程之间的相互关系,并能够运用相关知识解决实际问题。
1.2 一次函数与一次方程巩固对一次函数和一次方程的理解,学习一次函数的斜率、截距等概念,并能够求解一次方程。
灵活应用所学知识解决实际问题。
1.3 无理方程学习无理方程的基本概念和解法,包括平方根、立方根等。
通过练习巩固技巧,提高解无理方程的能力。
二、三角函数2.1 三角函数的概念学习正弦、余弦、正切等三角函数的概念和性质,掌握它们在单位圆上的几何意义。
能够进行基本的函数变换和图像绘制。
2.2 三角函数的基本关系与恒等变换学习三角函数的基本关系和恒等变换,包括和差化积、倍角公式等。
能够熟练运用这些关系和变换简化复杂的三角函数表达式。
三、数列与数学归纳法3.1 等差数列学习等差数列的概念和性质,包括通项公式、和的计算等。
能够应用等差数列解决实际问题。
3.2 等比数列学习等比数列的概念和性质,包括通项公式、和的计算等。
能够应用等比数列解决实际问题。
3.3 数学归纳法掌握数学归纳法的基本思想和运用方法。
能够运用数学归纳法证明数学命题,并应用数学归纳法解决实际问题。
四、解析几何4.1 二维坐标系复习和巩固二维坐标系的基本概念和性质,包括点、直线、距离、斜率等。
能够熟练应用二维坐标系解决几何问题。
4.2 直线与圆的方程学习直线和圆的方程表示,并能够根据特定条件确定直线和圆的方程。
4.3 斜率与角度学习斜率和角度的概念及其相互之间的关系。
能够应用斜率和角度求解几何问题。
五、概率与统计5.1 随机事件与概率学习随机事件和概率的基本概念,掌握概率计算的方法和技巧。
高二下册数学知识点总结高二下册数学内容较为复杂,包含了多个知识点,下面将对这些知识点进行详细总结。
一、函数与方程1. 函数的概念及性质函数的定义、定义域、值域、图像和性质。
2. 一次函数与二次函数一次函数、二次函数的定义、性质、图像、解析式、判别式等。
3. 指数和对数函数指数函数与对数函数的定义、性质、变换及应用。
4. 三角函数三角函数的定义、单位圆及其性质、相关公式的推导与应用。
5. 幂函数与反函数幂函数与反函数的定义、性质、图像与应用。
二、图形的性质和变换1. 直线和曲线的性质关于斜率、截距、对称性、渐进线等方面的知识。
2. 圆的性质圆的定义、相交关系、切线和弦的性质等。
3. 空间几何图形空间几何图形的投影、截面、平行与垂直关系等。
4. 图形的变换平移、旋转、翻转和放缩等基本变换的概念、性质和图形应用。
三、概率与统计1. 随机事件与概率随机事件的概念、基本性质、概率的定义、计算方法和应用。
2. 随机变量及其分布随机变量的概念、分布列、期望、方差等。
3. 统计与抽样统计数据的收集整理、频率分布直方图、样本均值和总体均值等。
四、导数与微分1. 导数的概念与性质函数导数的定义、求导法则、导数的几何意义与应用。
2. 常用函数的导数常用函数的导数公式、高阶导数和隐函数求导等。
3. 微分与近似计算微分的定义、微分近似、泰勒展开等基本概念和方法。
五、数列和数列极限1. 数列的概念与性质数列的定义、等差数列与等比数列、递归数列等。
2. 数列极限及其性质数列极限的定义、收敛性判定、无穷大与无穷小等内容。
六、三角恒等变换1. 三角函数的基本关系式正弦定理、余弦定理、正切定理等基本关系式。
2. 三角函数的化简和差化积、倍角公式、半角公式等三角函数的化简。
以上是高二下册数学的主要知识点总结,希望这篇总结对你有所帮助。
通过学习和掌握这些知识点,相信你能够更好地应对数学学习和考试。
祝你学业进步!。
高二数学下册知识点整理
高二数学下册知识点汇总整理
一.复习回顾
1.在同一坐标系上作出下列直线:
2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域上的最优解2y
问题1:x有无最大(小)值?
问题2:y有无最大(小)值?
问题3:2x+y有无最大(小)值?
2.作出下列不等式组的所表示的平面区域3二.提出问题
把上面两个问题综合起来:
设z=2x+y,求满足
时,求z的最大值和最小值.4y
直线L越往右平移,t随之增大.
以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.
可以通过比较可行域边界顶点的目标函数值大小得到。
下列条件:
求z的最大值与最小值。
目标函数
(线性目标函数)线性约束条件
Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又
称为线性目标函数6线性规划
线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
可行解:满足线性约束条件的解(x,y)叫可行解;
可行域:由所有可行解组成的集合叫做可行域;
最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。
可行域2x+y=32x+y=12(1,1)(5,2)7
线性目标函数
线性约束条件
线性规划问题
任何一个满足不等式组的(x,y)可行解可行域所有的最优解
目标函数所表示的几何意义——在y轴上的截距或其相反数。
8
线性规划
例1解下列线性规划问题:
求z=2x+y的最大值和最小值,使式中x、y满足下
列条件:
解线性规划问题的一般步骤:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
探索结论2x+y=02x+y=-32x+y=3答案:当x=-1,y=-1时,z=2x+y 有最小值-3.
当x=2,y=-1时,z=2x+y有最大值3.
也可以通过比较可行域边界顶点的目标函数值大小得到。
9线性
规划
例2解下列线性规划问题:
求z=300x+900y的最大值和最小值,使式中x、y满足下列条件:
探索结论x+3y=0300x+900y=0
300x+900y=112500
答案:当x=0,y=0时,z=300x+900y有最小值0.
若生产1件甲种产品获利2万元,生产1件乙
种产品获利3万元,采用哪种生产安排利润最大?
把例3的有关数据列表表示如下:11将上面不等式组表示成平面
上的区域,区域内
所有坐标为整数的点P(x,y),安排生产任务x,y
都是有意义的.
解:设甲,乙两种产品分别生产x,y件,由己知条件可得:
问题:求利润2x+3y的最大值.
线性约束条件12若设利润为z,则z=2x+3y,这样上述问题转化为:
当x,y在满足上述约束条件时,z的最大值为多少?
当点P在可允许的取值范围变化时,13M(4,2)
问题:求利润z=2x+3y的最大值.
变式:若生产一件甲产品获利1万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?14N(2,3)
变式:求利润z=x+3y的最大值.15解线性规划应用问题的一般
步骤:
2)设好变元并列出不等式组和目标函数
3)由二元一次不等式表示的平面区域作出可行域;
4)在可行域内求目标函数的最优解
1)理清题意,列出表格:
5)还原成实际问题
(准确作图,准确计算)
画出线性约束条件所表示的可行域,画图力保准确;
法1:移-在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;
法2:算-线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得(当两顶点的目标函数值相等时最优解落在一条边界线段上)。
此法可弥补作图不准的局限。
16例4、一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的'主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。
现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。
列出满足生产条件的数学关系式,并画出相应的平面区域。
并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
分析:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:xyo17
解:设生产甲种肥料x车皮、乙种肥料y车皮,
能够产生利润Z万元。
目标函数为Z=x+0.5y,
约束条件为下例不等式组,可行域如图红色阴影部分:
把Z=x+0.5y变形为y=-2x+2z,它表示斜率为-2,在y轴上的截距为2z的一组直线系。
xyo由图可以看出,当直线经过可行域上的点M时,截距2z最大,即z最大。
答:生产甲种、乙种肥料各2车皮,能够产生最大利润,最大利润为3万元。
M容易求得M点的坐标为
(2,2),则Zmax=3
线性约束条件18三、课堂练习(1)已知求z=2x+y的最大值和最
小值。
19551Oxyy-x=0x+y-1=01-1y+1=0A(2,-1)B(-1,-1)20练习2、
已知
求z=3x+5y的最大值和最小值。
21551Oxy1-15x+3y=15X-
5y=3y=x+1A(-2,-1)B(3/2,5/2)22练习3:
某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料
1t、B种原料9t,产生的利润为1万元。
现有库存A种原料10t、B
种原料60t,如何安排生产才能使利润最大?
相关数据列表如下:23设生产甲、乙两种产品的吨数
分别为x、y
何时达到最大?24。