电机学电机绕组
- 格式:ppt
- 大小:1.01 MB
- 文档页数:74
电机工作原理
电机工作原理,在电机中,有一个由导线制成的线圈,称为“绕组”。
绕组通电时会产生磁场,在绕组中形成一个“磁极对”,分为正极和负极。
然后,将一个永磁体放置在绕组旁边,使其磁极与绕组的磁极对相互吸引或排斥。
当电流通过绕组时,产生的磁场与永磁体的磁场相互作用,导致绕组和永磁体之间产生力的作用。
根据相互作用的原理,当通电绕组与永磁体磁场相互作用时,会产生一个力矩,使绕组开始旋转。
这个旋转运动可以通过与绕组相连的轴来传递给外部装置,如风扇叶片或车辆轮胎。
外部装置利用电机的动力完成特定的工作,比如产生风或推动载重。
当绕组的电流改变方向时,磁场的极性也会改变,从而改变电机的转动方向。
总之,电机的工作原理就是利用电流通过绕组产生磁场,并与永磁体的磁场相互作用,引起绕组旋转,从而实现电能转变为机械能的过程。
交流绕组部分(感应电动势和磁动势)习题1.谐波电动势对电机运行有何影响?为什么同步发电机定子绕组采用星型接法?谐波电动势使电机的电动势波形非正弦,产生谐波转矩和附加损耗。
为了消除3次谐波,同步电机定子绕组采用星形接法。
(三相交流电流中,各相基波电动势相位差为120度,而各相的三次谐波电动势相位差为360度,即为同相。
同理,3的倍数的各奇次谐波也为同相位。
这样接成星形时,在线电动势中不可能出现3次和3的倍数奇次谐波电动势。
当三相绕组接成三角形,3次及3的倍数奇次谐波电动势在闭合的三角形电路中被短路而形成环流,引起附加铜损耗,虽然这时只残留微少的电压降,线电动势中仍不出现这类谐波。
因此多采用星形连接。
)2.为什么交流绕组的磁动势,既是时间函数又是空间函数?用单相绕组基波磁动势来说明。
交流绕组的电流是随时间而变化的正弦函数。
磁动势为空间函数,磁场在空间分布。
(见练习题书P.121)3.脉动磁动势和旋转磁动势有什么关系?脉动磁动势可以分解为两个旋转磁动势分量,每个旋转磁动势分量的振幅为脉动磁动势振幅的一半,旋转速度相同,但旋转方向相反。
(分解的表达式见笔记p.3)。
等式左边为脉动磁动势,等式右边第一项为正向旋转磁动势,在空间按正弦规律分布,幅值不变,幅值位置在wt-x=0处,随时间变化,磁动势波在空间移动,移动的速度为w,所以是旋转磁动势。
等式右边第二项为负向旋转磁动势。
4.产生圆形旋转磁动势和椭圆形旋转磁动势的条件有何不同?m相对称电流流入m相对称绕组时,产生圆形旋转磁动势。
m相不对称电流流入m相对称绕组,或者m相对称电流流入m相不对称绕组时,产生椭圆形旋转磁动势。
5.如果不考虑谐波分量,在任一瞬间,脉动磁动势的空间分布是怎样的?圆形旋转磁动势的空间分布是怎样的?椭圆形旋转磁动势在空间分布是怎样的?如果观察一瞬间,能否区别该磁动势是脉动磁动势、圆形旋转磁动势或椭圆形旋转磁动势?如果不考虑谐波分量,在任一瞬间,脉动磁动势、圆形旋转磁动势和椭圆形旋转磁动势在空间分布均为正弦波,故不能区别三种磁动势。
内容回顾对于单层绕组,每对极下每相只有一个线圈组,每个线圈组由q 个线圈串联组成;p 对极电机每相共有p 个线圈组;并联支路。
对于双层绕组,每对极下每相有2个线圈组,每个线圈组由q 个线圈串联组成;p 对极电机每相共有2p 个线圈组。
并联支路。
2.感应电动势的波形和谐波分析=eBlvax为了做出气隙磁密分布曲线,可把电机沿轴向剖开,并展开成一直线。
把纵坐标取在磁极中心线上,表示气隙磁密;横坐标放在转子表面,表示极面各点距坐标原点的距离以电角度α量度,整个坐标系统随转子旋转。
在整距情况下,线匝的一根导体 a 若处于S极下,则另一根导体a’正好处于N极下,此时两导体感应电动势的瞬时值大小相等,方向相反。
如果规定导体电动势方向如图中自下而上为正,则由于两导体在空问相差一个极距τ,即相当于基波磁场的180 度空间电角度。
所以a 、a’导体的感应电动势在时间上也差180度时间电角度,如图所示。
按照线匝电动势规定正方向,则111aa T E E E ′−=&&&因与反相位,故线匝电动势有效值为:1a E &1aE ′&111144.422.222Φ=Φ×==f f E E a T 若线圈匝数为w c ,则整距线圈基波电动势为11144.4Φ==c T c c fw E w Eν次谐波电动势与间的相位差为电角度,由于ν为奇数,因此电动势相位差仍为反相位,ν次谐波电动势有效值为结论:无论基波和谐波整距线匝电动势有效值都是一根导体电动势的两倍,且线匝电动势波形与单根导体电动势波形相同。
整距线圈电动势是整距线匝电动势的wc 倍,其波形不变。
νaE&νaE′&o180×ννννΦ=ccw fE44.4由于导体中感应电动势有效值的大小与导体所处磁场位置无关,仍可按前式计算,但两导体电动势间的相位与它们所处磁场位置,即空间位置有关。
两根导体基波电动势在时间相位上相差的电角度应等于它们在空间位置相差的电角度。
第四章交流电机绕组的基本理论 (169)4.1 交流绕组的基本要求 (169)4.2 三相单层绕组 (171)4.3 三相双层绕组 (173)4.4 在正弦分布磁场下的绕组电动势 (175)4.5 在非正弦分布磁场下电动势中高次谐波及其削弱方法 (179)4.5.1 感应电动势中的高次谐波 (179)4.5.2 削弱谐波电动势的方法 (180)4.6 单相绕组的磁动势 (181)4.6.1 p=1、q=1短距绕组磁动势 (182)4.6.2 p=1分布短距绕组的磁动势 (183)4.6.3 一般情况下的相绕组磁动势 (184)4.7 三相绕组的基波合成磁动势 (185)4.8 圆形和椭圆形旋转磁动势 (191)4.9 谐波磁动势 (192)4.10 交流电机的主磁通、漏磁通 (193)习题 (194)第四章 交流电机绕组的基本理论交流电机主要分为同步电机和异步电机两类。
这两类电机虽然在励磁方式和运行特性上有很大差别,但它们的定子绕组的结构型式是相同的,定子绕组的感应电动势、磁动势的性质、分析方法也相同。
本章统一起来进行研究。
4.1 交流绕组的基本要求交流绕组的基本要求是:(1) 绕组产生的电动势(磁动势)接近正弦波。
(2) 三相绕组的基波电动势(磁动势)必须对称。
(3) 在导体数一定时能获得较大的基波电动势(磁动势)。
下面以交流绕组的电动势为例进行说明。
图4.1表示一台交流电机定子槽内导体沿圆周分布情况,定子槽数Z=36,磁极个数2p =4,已励磁的磁极由原动机拖动以转速了n 1逆时针旋转。
这就是一台同步发电机。
试分析为了满足上述三项基本要求,应遵守哪些设计原则?1. 正弦分布的磁场在导体中感应正弦波电动势以图4.1中N 1的中心线为轴线,在N 1磁极下的气隙中磁感应强度分布曲线如图4.2所示。
只要合理设计磁极形状,就可以使得气隙中磁感应强度呈正弦分布,即, 旋转磁极在定子导体(例如13、14、15、16号导体)中的感应电动势为)(θb )(θb θB θb cos )(m =θcos )θ(m c lv B lv b e ==(4.1)式中,l 为导体有效长度,v 为磁极产生的磁场切割导体的线速度。
第四章 交流绕组的共同问题一、填空1. 一台50Hz 的三相电机通以60 Hz 的三相对称电流,并保持电流有效值不变,此时三相基波合成旋转磁势的幅值大小 ,转速 ,极数 。
答:不变,变大,不变。
2. ★单相绕组的基波磁势是 ,它可以分解成大小 ,转向 ,转速 的两个旋转磁势。
答:脉振磁势,相等,相反,相等。
3. 有一个三相双层叠绕组,2p=4, Q=36, 支路数a=1,那么极距τ= 槽,每极每相槽数q= ,槽距角α= ,分布因数1d k = ,18y =,节距因数1p k = ,绕组因数1w k = 。
答:9,3,20°,0.96,0.98,0.944. ★若消除相电势中ν次谐波,在采用短距方法中,节距1y = τ。
答:νν1-5. ★三相对称绕组通过三相对称电流,顺时针相序(a-b-c-a ),其中t i a ωsin 10=,当Ia=10A 时,三相基波合成磁势的幅值应位于 ;当Ia =-5A 时,其幅值位于 。
答:A 相绕组轴线处,B 相绕组轴线处。
6. ★将一台三相交流电机的三相绕组串联起来,通交流电,则合成磁势为 。
答:脉振磁势。
7. ★对称交流绕组通以正弦交流电时,υ次谐波磁势的转速为 。
答:νsn8. 三相合成磁动势中的五次空间磁势谐波,在气隙空间以 基波旋转磁动势的转速旋转,转向与基波转向 ,在定子绕组中,感应电势的频率为 ,要消除它定子绕组节距1y = 。
答:1/5,相反,f 1,45τ9. ★★设基波极距为τ,基波电势频率为f ,则同步电机转子磁极磁场的3次谐波极距为 ;在电枢绕组中所感应的电势频率为 ;如3次谐波相电势有效值为E 3,则线电势有效值为 ;同步电机三相电枢绕组中一相单独流过电流时,所产生的3次谐波磁势表达式为 。
三相绕组流过对称三相电流时3次谐波磁势幅值为 。
答:3τ,3f,0,3F cos3cos x t φπωτ,010. ★某三相两极电机中,有一个表达式为δ=F COS (5ωt+ 7θS )的气隙磁势波,这表明:产生该磁势波的电流频率为基波电流频率的 倍;该磁势的极对数为 ;在空间的转速为 ;在电枢绕组中所感应的电势的频率为 。
《电机学》交流电机绕组及其感应电动势练习题班级 学号 姓名 成绩一、填空1. 有一个三相双层叠绕组,2p =4,Z =36,支路数a =1,那么极距τ= 槽,每极每相槽数q = ,槽距角α= ,分布因数k d1= ,y =8,节距因数k p1= ,绕组因数k N1= 。
2. ★若消除相电势中 次谐波,在采用短距方法中,节距y = τ。
3. 一个整距线圈的两个边,在空间上相距的电角度为 ,如果电机有p 对极,那么它们在空间上相距的机械角度为 。
二、选择填空1. 当采用绕组短距的方式同时削弱定子绕组中五次和七次谐波磁势时,应选绕组节距为 。
A τB 4τ/5C 6τ/7D 5τ/62. 三相四极36槽交流绕组,若希望尽可能削弱5次空间磁势谐波,绕组节距取 。
A y =7B y =8C y =93. 一般情况下,中大容量交流电机的绕组系数通常为 。
A <1 B >0 C =14. ★三相对称交流绕组的基波电势幅值为E 1,绕组系数为 k N1,3次谐波绕组系数为k N3,则3次谐波线电势幅值为 。
A 0 B 1311/3N N E k k C 131E /N N k k 5. ★交流绕组采用短距与分布后,基波电势与谐波电势 。
A 都减小B 不变C 基波电势不变,谐波电势减小三、判断1.★采用分布短距的方法,可以削弱交流绕组中的υ次谐波电势。
( ) 2.三相对称交流绕组相电势中无三及三的倍数次谐波。
( ) 6.要想得到最理想的电势,交流绕组应采用整距绕组。
( ) 7.交流电机励磁绕组中的电流为交流量。
( ) 8. 分布、短距绕组能改善电动势波形,每根导体中的感应电动势也相应得到改善。
( )四、简答1. ★★有一台三相交流电机,Z =36,2p =4,节距y =7,并联支路数a =2。
试绘制:(1) 槽电势星形图,并标出60°相带分相情况;(2) 一对极下A 相双层迭绕组展开图。
直流电机的电枢绕组电枢绕组是直流电机的一个首要有些,电机中机电能量的改换即是经过电枢绕组而完毕的,所以直流电机的转子也称为电枢。
电枢绕组是由许多个形状彻底相同的单匝元件(当然也可所以多匝元件)以必定规则摆放和联接起来的,用标明元件数。
所谓单匝元件,即是每个元件的元件边(一个元件有两个元件边)里仅有一根导体,对多匝元件来说,一个元件边里就不止一根导体了。
若用代表元件的匝数,则多匝元件的元件边里就有根导体。
图1(a)即是一个多匝元件,=3。
不论一个元件有多少匝,其出线端只需两根,一根叫首端,另一根叫结尾。
同一个元件的首端和结尾别离接到纷歧样的换向片上,而各个元件之间又是经过换向片互相联接起来的。
这么就有必要在同一个换向片上,既联有一个元件的首端,又联有另一元件的结尾。
若用标明换向片数,则悉数电枢绕组的元件数应等于换向片数,即。
图1电枢绕组的元件及在槽内的放置状况元件在电枢槽中的放置状况如图1(b)所示。
从图中能够看出,同一个元件的一个元件边放在某一个槽的上层,它的另一个元件边就放在另一个槽的基层,所以直流电机绕组通常都是双层绕组。
由于一个槽里能嵌放两个元件边,而一个元件又刚好有两个元件边,所以电枢上的槽数应当等于元件数。
元件嵌放在槽内的有些能切开磁通,感应发作电动势,称为有用有些,而元件在槽外的有些不切开磁通,不会感应发作电动势,仅作联接引线,称为端接有些,如图1(b)中所示。
为了改进电机功用,通常需求选用较多的元件来构成电枢绕组,由于技术和其它方面的要素,电枢铁心开的槽数不能太多,这么就只能在每个槽的上、基层各放置若干个元件边,为了切本地阐明每个元件边地点的详细方位,引进“虚槽”的概念。
设槽内每层有个元件边,则把每个实习槽看作包富含个“虚槽”,每个虚槽的上、基层各有一个元件边,图1(c)标明=3时,元件边的安顿状况。
若用Q代表总实槽数,代表总虚槽数,则(1)直流电机电枢绕组最根柢的型式有两种:一种叫单叠绕组,另一种叫单波绕组。
双速电动机的定子绕组
双速电动机的定子绕组是指在电动机的定子上所绕的线圈。
双速电动机是一种具有两个不同转速的电动机,通常用于需要在不同负载条件下运行的应用。
双速电动机的定子绕组需要设计成能够满足两个不同转速的要求。
一种常见的设计是采用两个独立的绕组,每个绕组对应一个转速档位。
这两个绕组可以是在定子上分开布置的,也可以采用叠加绕组的方式。
在双速电动机中,通常有两种转速档位可供选择,通过切换绕组的接线方式来实现转速的改变。
例如,当需要高转速时,绕组的接线方式使得线圈的电流路径较短,电磁力较大,转速也较高。
而当需要低转速时,绕组的接线方式改变,电流路径变长,电磁力减小,转速也相应降低。
双速电动机的定子绕组的设计需要考虑不同转速下的电流和功率要求,以及电机的效率和稳定性等因素。
这涉及到电机设计中的轴向长度与绕组导线长度之间的权衡,同时还需要对电机的热量和散热进行评估,以确保电机在各种运行条件下的安全可靠性。
需要注意的是,双速电动机的定子绕组的设计和接线方式可能因不同的电机类型而有所不同,具体的设计和实现方式还需要根据具体的双速电动机型号和规格来确定。