i2 3 S iS jij , i3 2 e ie jij ,J 2 1 2 S iS jij ,J 2 1 2 e ie jij 以0代.5 入 i Ei1 得到 i 3G i1
则 Sij2G 1eij
这是全量理论的另一种表达形式。
例4-1、在薄壁筒的拉伸与扭转问题中,若
材料为理想弹塑性,且 0。.5设拉力为P,扭 矩为M,筒的平均半径为r,壁厚为t。于是
故
ij
3 2
或ii Sij
Sij
2 i 3 i
ij
又因为 S zzm z 1 3z 3 2,S zz
其展开式为
i , i
i
3i
又由于r 1 2 z 1 2 ,z1 2 z1 2
故
i
2 1 2 (2)
3
(二)对于理想塑性材料: i s (3)
将(2)、(3)代入式(1),得到
2、与初始屈服及后继加载面相关连的某一 流动法则。即要有一个应力和应变(或它们 的增量)间的关系,此关系包括方向关系和 分配关系。实际是研究它们的偏量之间的关 系; 3、确定一种描述材料强化(硬化)特性的 强化条件,即加载函数。有了这个条件才能 确定应力、应变或它们的增量之间的定量关 系。
§4-2 广义Hooke定律
当应力从加载面卸载时,也服从广义Hooke
定律,但是不能写成全量形式,只能写成增
量形式。d ii1 E 2 d ii,
dije 2 1 G dijS
§4-3 全量型本构方程
由于在塑性变形状态应力和应变不存在一 一对应的关系。因此,必须用增量形式来表 示它们之间的关系。只有在知道了应力或应 变历史后,才可能沿加载路径积分得出全量 的关系。由此可见,应力与应变的全量关系 必然与加载的路径有关,但全量理论企图直 接建立用全量形式表示的,与加载路径无关 的本构关系。所以全量理论一般说来是不正 确的。不过,从理论上来讲,沿路径积分总 是可能的。但要在积分结果中引出明确的