三角函数数学试卷
- 格式:doc
- 大小:231.02 KB
- 文档页数:5
高中数学三角函数专项(含答案)一、填空题1.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠==,则四面体ABCD 体积的最大值为___________.2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.已知()()()cos sin 3cos 0f x x x x ωωωω=+>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.5.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.6.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____. 7.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.8.已知函数()()sin 3cos 0f x x x ωωω=+>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.9.1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知ABC 中,其中60A ∠=︒,1BC =,P 为费马点,则PB PC PA +-的取值范围是__________.10.如图,在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足1222PA PC +=的点P 有__________个.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+ ⎪⎝⎭,x ∈RD .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R13.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A.⎫⎪⎪⎣⎭ B.⎛ ⎝⎦ C.1,22⎛ ⎝⎦D.⎫⎪⎪⎣⎭14.已知函数2()log f x x =,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()2()g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4]π上的零点个数为( )A .5B .6C .7D .815.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5416.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则( )A .1BCD .9817.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则222b c bc+的取值范围为( )A .4359,1515⎛⎫ ⎪⎝⎭B.4315⎡⎫⎪⎢⎣⎭C.5915⎡⎫⎪⎢⎣⎭D.)⎡+∞⎣18.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]19.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( ) A .(0,22)+B .(0,33)+C .(22,33)++D .(22,33]++三、解答题21.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由. 22.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移3y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 23.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.24.已知函数2()23sin 2sin cos ()f x x x x a a R =-++∈,且(0)3f =. (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 25.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.26.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.27.已知函数()223cos sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间; (2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.28.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题123.14032 4.11 5.566.③④7.⎝⎭8.②③9.⎫⎪⎪⎣⎭10.18二、单选题 11.D 12.D 13.A 14.A 15.B 16.B 17.C 18.D 19.A20.C 三、解答题21.(1)S =⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)100001 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值. 【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积 1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦ ∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xy xy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题.22.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f xa b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x xωωωωωω⎛⎫==⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 232f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.23.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()242f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x = 当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.24.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围.【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin 3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭, [0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦, ()f x 在[0,]π上有且只有一个零点, 223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】 本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.25.(1)23B π=;(21. 【解析】【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值.【详解】(1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-= 整理得sin (cos cos sin sin )sin A A C A C C -=∴sin cos()sin A A C C +=∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π= (2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-,∵ACD ∆为正三角形,∴2254cos CD C A α=-=,在ABC ∆中,由正弦定理得:1sin sin AC βα=, ∴sin sin AC βα=,∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=-- 2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-,12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.26.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值..【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭, 因此,函数()f x 的最小正周期πT =.(2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】 此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.27.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2 【解析】【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可 【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π, 22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭; (2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2; 当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题28.(1)34C π=(2)sin A =1c = 【解析】【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值.【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin ab C A B= 2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦, 所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=. 【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2,周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。
高中数学组卷三角函数1一.选择题(共6小题)1.(2012•江西)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=12.(2012•绵阳二模)若实数x,y满足方程组则cos(x+2y)=()A.0 B.C.D.13.(2010•兴义市校级模拟)在Rt△ABC中,∠C=90°,那么sinAcos2(45°﹣)﹣sin cos ()A.有最大值和最小值为0 B.有最大值,但无最小值C.既无最大值,也无最小值D.有最大,但无最小值4.(2010•五华区校级二模)计算cos20°sin50°sin170°=()A.B.C.D.5.(2004•官渡区校级模拟)若α是锐角,且满足,则cosα的值为()A.B. C.D.6.(2016•汕头模拟)函数图象的一个对称轴方程是()A.B.C.D.x=π二.填空题(共22小题)7.(2013•天津校级模拟)设函数,A0为坐标原点,A n为函数y=f (x)图象上横坐标为n(n∈N*)的点,向量,向量i=(1,0),设θn为向量a n与向量i的夹角,则满足的最大整数n是.8.(2012•浙江模拟)对于函数f(x)=sinx+cosx,给出下列四个命题:①存在,使;②存在,使f(x+α)=f(x+3α)恒成立;③存在φ∈R,使函数f(x+ϕ)的图象关于y轴对称;④函数f(x)的图象关于点对称;⑤若,则.其中正确命题的序号是.9.(2012•龙港区校级模拟)若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,则a的最大值是.10.(2012•故城县校级模拟)在△ABC中,A为锐角,角A、B、C所对应的边分别为a、b、c,且,则A+B的值为.11.(2011•安徽)设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f()|对一切x∈R 恒成立,则①f()=0.②|f()|<|f()|.③f(x)既不是奇函数也不是偶函数.④f(x)的单调递增区间是[kπ+,kπ+](k∈Z).⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.以上结论正确的是写出正确结论的编号).12.(2011•亭湖区校级二模)设a,b均为大于1的自然数,函数f(x)=a(b+sinx),g(x)=b+cosx,若存在实数m,使得f(m)=g(m),则a+b=.13.(2010•重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则=.14.(2010•延庆县一模)直线y=2x+1和圆x2+y2=1交于点A,B两点,以x轴的正方向为始边,OA为终边(O是坐标原点)的角为α,OB为终边的角为β,则sin(α+β)=.15.(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为.16.(2009•北碚区校级模拟)若=.17.(2007•北京)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于.18.已知两个不等的锐角α、β满足xsinβ+ycosα=sinα,xsinα+ycosβ=sinβ,其中α+β≠,且x,y∈R.则x2﹣y2的值是.19.下面这道填空题印刷原因造成在横线内容无法认清,现知结论,请在横线上,写原题的一个条件,题目:已知α、β均为锐角,且,则..20.已知tan(α﹣β)=,tanβ=﹣,且α,β∈(﹣π,0),则tan(2α﹣β)=,2α﹣β=.21.(2016春•淄博校级月考)已知函数f(x)=cos2x+asinx在区间(0,nπ)(n∈N*)内恰有9个零点,则实数a的值为.22.(2015•张掖模拟)已知α为第二象限角,,则cos2α=.23.(2015•蓟县校级模拟)已知AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=4DB,设∠COD=θ,则cos2θ=.24.(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.25.(2013•新课标Ⅱ)设θ为第二象限角,若,则sinθ+cosθ=.26.(2013•四川)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.27.(2011•云南模拟)求值:tan20°+tan40°+tan20°tan40°=.28.(2004•贵州)函数的最大值等于.三.解答题(共2小题)29.(2015秋•东台市校级月考)解方程cos2x=cosx+sinx,求x的值.30.(2015秋•桐乡市期中)定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.高中数学组卷三角函数1参考答案与试题解析一.选择题(共6小题)1.(2012•江西)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=1【分析】由题意,可先将函数f(x)=sin2(x+)化为f(x)=,再解出a=f(lg5),b=f(lg)两个的值,对照四个选项,验证即可得到答案【解答】解:f(x)=sin2(x+)==又a=f(lg5),b=f(lg)=f(﹣lg5),∴a+b=+=1,a﹣b=﹣=sin2lg5故C选项正确故选C【点评】本题考查二倍角的余弦及对数的运算性质,解题的关键是对函数的解析式进行化简,数学形式的化简对解题很重要2.(2012•绵阳二模)若实数x,y满足方程组则cos(x+2y)=()A.0 B.C.D.1【分析】将方程组中的第二个方程第二项利用二倍角的余弦函数公式化简,整理后设t=﹣2y,变形后与第一个方程完全相同,可得出t=x,进而得到x与y的关系式x=﹣2y,即x+2y=0,代入所求的式子中,利用特殊角的三角函数值化简即可求出值.【解答】解:,由②化简得:8y3﹣(1+cos2y)+2y+3=0,整理得:﹣8y3+cos2y﹣2y﹣2=0,即(﹣2y)3+cos(﹣2y)+(﹣2y)﹣2=0,设t=﹣2y,则有t3+cost+t﹣2=0,与方程①对比得:t=x,即x=﹣2y,∴x+2y=0,则cos(x+2y)=1.故选D【点评】此题考查了二倍角的余弦函数公式,以及特殊角的三角函数值,利用了换元的思想,灵活变换第二个方程是解本题的关键.3.(2010•兴义市校级模拟)在Rt△ABC中,∠C=90°,那么sinAcos2(45°﹣)﹣sin cos ()A.有最大值和最小值为0 B.有最大值,但无最小值C.既无最大值,也无最小值D.有最大,但无最小值【分析】先根据二倍角公式将sinAcos2(45°﹣)﹣sin cos化简,然后再由Rt△ABC中,∠C=90°,确定A的范围,进而根据正弦函数的性质可得到答案.【解答】解:∵sinAcos2(45°﹣)﹣sin cos=sinA﹣sinA=sinA﹣sinA==∵Rt△ABC中,∠C=90°∴0°<A<90°∴0°<2A<180°∴有最大值,但无最小值故选B.【点评】本题主要考查二倍角公式的应用和正弦函数的性质.考查基础知识的综合应用.4.(2010•五华区校级二模)计算cos20°sin50°sin170°=()A.B.C.D.【分析】先将三角函数式看成分母为1的分式,再分子、分母同乘以8sin20°,凑出连续的二倍角正弦公式,从而化简三角函数式.【解答】解:.故答案为.故选C.【点评】本题考查凑公式的能力及考查二倍角的正弦公式.解答关键是配个分母后逆用二倍角公式,属于基础题.5.(2004•官渡区校级模拟)若α是锐角,且满足,则cosα的值为()A.B. C.D.【分析】先根据α是锐角,且满足求出的值,再由根据两角和与差的余弦公式得到最后答案.【解答】解:由α是锐角,且可得,=.故选B.【点评】本题主要考查两角和与差的余弦公式、同角三角函数的基本关系.6.(2016•汕头模拟)函数图象的一个对称轴方程是()A.B.C.D.x=π【分析】将函数解析式最后一个因式中的角变形后,利用诱导公式化简,再利用二倍角的余弦函数公式化简,最后利用诱导公式化为一个角的正弦函数,由正弦函数的图象与性质即可得出函数y的对称轴方程,进而确定出正确的选项.【解答】解:y=2sin(x+)cos(﹣x)=2sin(x+)cos[﹣(x+)]=2sin2(x+)=1﹣cos(2x+)=1+sin2x,令2x=2kπ+,k∈Z,得到x=kπ+,k∈Z,则k=1时,x=为函数的一个对称轴方程.故选A【点评】此题考查了诱导公式,二倍角的余弦函数公式,以及正弦函数的对称性,熟练掌握公式是解本题的关键.二.填空题(共22小题)7.(2013•天津校级模拟)设函数,A0为坐标原点,A n为函数y=f (x)图象上横坐标为n(n∈N*)的点,向量,向量i=(1,0),设θn为向量a n与向量i的夹角,则满足的最大整数n是3.【分析】先确定点A n=(n,f(n)),再确定,然后明确夹角θn,进一步表示出tanθn,最后可由列举法求出满足要求的最大整数n.【解答】解:由题意知A n=(n,f(n)),=,则θn为直线A0A n的倾斜角,所以tanθn==,所以tanθ1==1,tanθ2==,tanθ3==,tanθ4==.则有,故满足要求的最大整数n是3.【点评】本题综合考查向量的夹角与运算及正切函数的定义与求值.8.(2012•浙江模拟)对于函数f(x)=sinx+cosx,给出下列四个命题:①存在,使;②存在,使f(x+α)=f(x+3α)恒成立;③存在φ∈R,使函数f(x+ϕ)的图象关于y轴对称;④函数f(x)的图象关于点对称;⑤若,则.其中正确命题的序号是①③④⑤.【分析】利用特殊角的三角函数值及两角和与差的正弦函数公式,化简函数y=sinx+cosx为sin(x+),确定函数的值域,判断①的真假;找出特殊值判断②;根据函数的对称轴判断③的真假;将(π,0)代入函数解析式成立,说明④正确.⑤若,则有(x+)∈,可得,故⑤正确.【解答】解:函数y=sinx+cosx=sin(x+),①α∈(0,)时y∈(1,],因为∈(1,],所以为真命题;②f(x+α)=f(x+3α)说明2α是函数的周期,函数f(x)的周期为2π,故α=π,显然为假命题;③存在θ∈R使函数f(x+θ)的图象关于y轴对称,函数f(x)是周期函数,并且有对称轴,适当平移即可满足题意,为真命题;④函数f(x)的图象关于点(π,0)对称,当x=时,f()=0,满足题意,为真命题,⑤若,则有(x+)∈,∴,故⑤为真命题,故答案为①③④⑤.【点评】此题考查了两角和与差的正弦函数,正弦函数的定义域及值域,正弦函数的对称性,以及三角函数的周期性及其求法,要求学生掌握正弦函数的图象及性质,能够充分利用已知条件,灵活利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解题的关键,锻炼了学生分析问题、解决问题的能力,属于中档题.9.(2012•龙港区校级模拟)若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,则a的最大值是﹣3.【分析】根据函数是奇函数且在R上是减函数,将原不等式变形为cos2x+2sinx≥a恒成立,结合二倍角的三角函数公式和二次函数在闭区间上求最值的方法,即可得到a的最大值.【解答】解:不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,即f(cos2x+sinx)≤﹣f(sinx ﹣a)恒成立又∵f(x)是奇函数,﹣f(sinx﹣a)=f(﹣sinx+a)∴不等式f(cos2x+sinx)≤f(﹣sinx+a)在R上恒成立∵函数f(x)在其定义域R上是减函数,∴cos2x+sinx≥﹣sinx+a,即cos2x+2sinx≥a∵cos2x=1﹣2sin2x,∴cos2x+2sinx=﹣2sin2x+2sinx+1,当sinx=﹣1时cos2x+2sinx有最小值﹣3.因此a≤﹣3,a的最大值是﹣3故答案为:﹣3【点评】本题在已知函数f(x)的单调性的奇偶性的前提下,解决一个不等式恒成立的问题,着重考查了函数的单调性和奇偶性、二倍角的三角函数公式和二次函数在闭区间上求最值等知识,属于基础题.10.(2012•故城县校级模拟)在△ABC中,A为锐角,角A、B、C所对应的边分别为a、b、c,且,则A+B的值为.【分析】利用二倍角的余弦函数公式化简cos2A,得到关于cosA的关系式,根据A为锐角,得到cosA大于0,开方求出cosA的值,再利用同角三角函数间的基本关系求出sinA的值,由cosB的值及B为三角形的内角,利用同角三角函数间的基本关系求出sinB的值,然后利用两角和与差的余弦函数公式化简cos(A+B)后,将各自的值代入求出cos(A+B)的值,由A+B的范围,利用特殊角的三角函数值即可求出A+B的度数.【解答】解:∵cos2A=,且A为锐角,∴2cos2A﹣1=,即cosA=,∴sinA==,又cosB=,且B为三角形的内角,∴sinB==,又A+B∈(0,π),∴cos(A+B)=cosAcosB﹣sinAsinB=×﹣×=,则A+B=.故答案为:【点评】此题考查了二倍角的余弦函数公式,同角三角函数间的基本关系,以及两角和与差的余弦函数公式,熟练掌握公式及基本关系是解本题的关键.11.(2011•安徽)设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f()|对一切x∈R恒成立,则①f()=0.②|f()|<|f()|.③f(x)既不是奇函数也不是偶函数.④f(x)的单调递增区间是[kπ+,kπ+](k∈Z).⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.以上结论正确的是①,③写出正确结论的编号).【分析】先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到是三角函数的对称轴,将其代入整体角令整体角等于求出辅助角θ,再通过整体处理的思想研究函数的性质.【解答】解:∵f(x)=asin2x+bcos2x=∵∴(k为整数)∴∴=对于=0,故①对对于②,,故②错对于③,f(x)不是奇函数也不是偶函数对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|,此时平方得b2>a2+b2这不可能,矛盾,故∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错故答案为①③【点评】本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.12.(2011•亭湖区校级二模)设a,b均为大于1的自然数,函数f(x)=a(b+sinx),g(x)=b+cosx,若存在实数m,使得f(m)=g(m),则a+b=4.【分析】利用f(m)=g(m),推出•sin(m﹣θ)=b(1﹣a),利用三角函数的有界性,推出a,b的关系,结合a,b均为大于1的自然数,讨论a,b的范围,求出a,b的值即可.【解答】解:由f(m)=g(m),即a(b+sinm)=b+cosmasinm﹣cosm=b﹣ab•sin(m﹣θ)=b(1﹣a)[注:sinθ=]∵﹣1≤sin(m﹣θ)≤1∴﹣≤b,(1﹣a)≤∵a,b均为大于1的自然数∴1﹣a<0,b(1﹣a)<0,∴b(1﹣a)≥﹣,b(a﹣1)≤b≤=.∵a≥4时,b<2∴a<4当a=2时b≤,b=2当a=3时b≤无解综上:a=2,b=2a+b=4.故答案为:4.【点评】本题考查三角函数的有界性,基本不等式的应用,考查计算能力,转化思想.13.(2010•重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则=.【分析】根据cos(α+β)=cosαcosβ﹣sinαsinβ公式的逆运算得,由题意可知,α1+α2+α3=4π得到cos=cos=.【解答】解:,可令同过P点的三圆的交点分别是A,B,C,连接PA,PB,PC,可得得出∠APB+∠APC+∠BPC=2π,因为在各个圆的半径相等,故此三个角的大小都为,由于在圆中同弦所对的圆周角互补,故在各个圆中,AB,BC,CA所与三角相对的圆周角为故AB,BC,CA所对的圆心角是,又α1+α2+α3=4π,所以cos=﹣.故答案为:.【点评】此题考查学生利用两角和与差的余弦函数的能力.14.(2010•延庆县一模)直线y=2x+1和圆x2+y2=1交于点A,B两点,以x轴的正方向为始边,OA为终边(O是坐标原点)的角为α,OB为终边的角为β,则sin(α+β)=.【分析】先联立方程得到点AB的坐标,进而得到α与β的正余弦值,再由两角和与差的正弦公式可得答案.【解答】解:联立y=2x+1与x2+y2=1,解得:或,故A(0,1)B(﹣,﹣)∴cosα=0,sinα=1,cosβ=﹣,sinβ=﹣∴sin(α+β)=sinαcosβ+cosαsinβ=1×(﹣)+0×(﹣)=﹣故答案为:﹣【点评】本题主要考查三角函数的概念和两角和与差的正弦公式.属基础题.15.(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.16.(2009•北碚区校级模拟)若=.【分析】先利用同角三角函数关系求出cosα、tanα的值,再由正弦的二倍角公式化简即可.【解答】解:因为sinα=,α∈(,π),所以cosα=﹣,tanα=,则=﹣.【点评】本题考查同角三角函数关系及正弦的二倍角公式.17.(2007•北京)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于.【分析】根据两正方形的面积分别求出两正方形的边长,根据小正方形的边长等于直角三角形的长直角边减去短直角边,利用三角函数的定义表示出5cosθ﹣5sinθ=1,两边平方并利用同角三角函数间的基本关系及二倍角的正弦函数公式化简可得sin2θ的值,然后根据θ的范围求出2θ的范围即可判断出cos2θ的正负,利用同角三角函数间的基本关系由sin2θ即可求出cos2θ的值.【解答】解:∵大正方形面积为25,小正方形面积为1,∴大正方形边长为5,小正方形的边长为1.∴5cosθ﹣5sinθ=1,∴cosθ﹣sinθ=.∴两边平方得:1﹣sin2θ=,∴sin2θ=.∵θ是直角三角形中较小的锐角,∴0<θ<.∴cos2θ=.故答案为:【点评】此题考查学生灵活运用同角三角函数间的基本关系及二倍角的正弦函数公式化简求值,是一道中档题.本题的突破点是将已知的两等式两边平方.18.已知两个不等的锐角α、β满足xsinβ+ycosα=sinα,xsinα+ycosβ=sinβ,其中α+β≠,且x,y∈R.则x2﹣y2的值是1.【分析】根据条件求出x,y的值,然后进行化简求解即可.【解答】解:由xsinβ+ycosα=sinα,xsinα+ycosβ=sinβ,得x====﹣=﹣sec(α+β),y====tan(α+β),则x2﹣y2=[﹣sec(α+β)]2﹣tan2(α+β)=1,故答案为:1.【点评】本题主要考查三角函数值的化简和求解,根据条件求出x,y的值是解决本题的关键.综合性较强,难度较大.19.下面这道填空题印刷原因造成在横线内容无法认清,现知结论,请在横线上,写原题的一个条件,题目:已知α、β均为锐角,且cosα﹣cosβ=,则..【分析】根据题目条件,写出一个两角的余弦值的差的算式,结果待求,把两个式子平方相加,变化出有cos(α﹣β)的等式,代入结果,题目变为只含有前面设出的cosα﹣cosβ=x,解方程,注意角的范围.【解答】解:∵sinα﹣sinβ=﹣①设cosα﹣cosβ=x,②两式平方相加得到2﹣2cos(α﹣β)=,∵..∴x2=,∵α、β均为锐角,且<0,∴cosα﹣cosβ>0,∴cosα﹣cosβ=,故选Cosα﹣cosβ=,【点评】本题是一道难度较大的题,表现在以下几个方面第一需要自己根据条件写出条件,再进行验证.第二题目给出一个角的范围要我们判断结果的正负,运算量较大.20.已知tan(α﹣β)=,tanβ=﹣,且α,β∈(﹣π,0),则tan(2α﹣β)=1,2α﹣β=﹣.【分析】先根据tanα=tan(α﹣β+β)利用正切的两角和公式求得tanα的值,然后利用tan(2α﹣β)=tan(α﹣β+α),根据正切的两角和公式求得tan(2α﹣β)的值,进而根据α,β的范围求得2α﹣β的值.【解答】解:tanα=tan(α﹣β+β)==∴tan(2α﹣β)=tan(α﹣β+α)==1∵tanβ=﹣<0,即﹣1<tanβ<0,∴β∈(﹣,0),∵tanα=>0,即0<tanα<1,∴α∈(﹣π,﹣),∴2α﹣β∈(﹣2π,﹣)∴2α﹣β=﹣故答案为:1;﹣【点评】本题主要考查了两角和与差的正切函数.考查了基础知识的熟练记忆和应用.21.(2016春•淄博校级月考)已知函数f(x)=cos2x+asinx在区间(0,nπ)(n∈N*)内恰有9个零点,则实数a的值为±1.【分析】依题意,f(x)=cos2x+asinx,令F(x)=cos2x+asinx=0,方程F(x)=0等价于关于x的方程a=﹣,x≠kπ(k∈Z).问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.通过其导数,分析即可求得答案.【解答】解:依题意,令F(x)=asinx+cos2x=0,现研究x∈(0,π)∪(π,2π)时方程a=﹣的解的情况.令h(x)=﹣,x∈(0,π)∪(π,2π),则问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.h′(x)=,令h′(x)=0,得x=或x=,当x变换时,由h′(x),h(x)的变化情况可得:当x>0且x趋近于0时,h(x)趋向于﹣∞,当x<π且x趋近于π时,h(x)趋向于﹣∞,当x>π且x趋近于π时,h(x)趋向于+∞,当x<2π且x趋近于2π时,h(x)趋向于+∞,故当a>1时,直线y=a与曲线y=h(x)在(0,π)内无交点,在(π,2π)内有2个交点;当a<﹣1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内无交点;当﹣1<a<1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内有2个交点;由函数h(x)的周期性,可知当a≠±1时,直线y=a与曲线y=h(x)在(0,nπ)内总有偶数个交点,从而不存在正整数n,使得直线y=a与曲线y=h(x)在(0,nπ)内恰有9个零点;又当a=1或a=﹣1时,直线y=a与曲线y=h(x)在(0,π)∪(π,2π)内有3个交点,由周期性,9=3×3,∴依题意得n=3×2=6.综上,当a=1,n=6,或a=﹣1,n=6时,函数f(x)=cos2x+asinx在(0,nπ)内恰有9个零点.故答案为:±1.【点评】本题考查同角三角函数基本关系,三角恒等变换,三角函数的图象与性质,考查函数、函数的导数、函数的零点、不等式等基础知识,考查运算求解能力,抽象概括能力,推理论证能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想,属于难题.22.(2015•张掖模拟)已知α为第二象限角,,则cos2α=.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα的值,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α.【解答】解:∵,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=.故答案为:.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα的值是关键,属于中档题.23.(2015•蓟县校级模拟)已知AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=4DB,设∠COD=θ,则cos2θ=﹣.【分析】本题考查的是二倍角公式,由AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=4DB,我们易得要求COS2θ,我们可以先求θ的相关三角函数值,对已知条件进行整理,不难得到Rt△COD中相应边的比例,然后代入倍角余弦公式,即可求解.【解答】解:如图,∵AD=4DB,∴OC+OD=4(OC﹣OD),即:3OC=5OD.∴cos2θ=2cos2q﹣1=2×,==.故答案为:.【点评】要求一个角的大小,先要分析未知角与已知角的关系,然后再选择合适的性质来进行计算.由于2θ解构造起来比较难,固我们们可以转化求θ相关三角函数值,再根据倍角公式进行求解.24.(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.25.(2013•新课标Ⅱ)设θ为第二象限角,若,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.26.(2013•四川)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.【分析】已知等式左边利用二倍角的正弦函数公式化简,根据sinα不为0求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,所求式子利用二倍角的正切函数公式化简后,将tanα的值代入计算即可求出值.【解答】解:∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.故答案为:【点评】此题考查了二倍角的正弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.27.(2011•云南模拟)求值:tan20°+tan40°+tan20°tan40°=.【分析】利用60°=20°+40°,两角和的正切公式,进行变形,化为所求式子的值.【解答】解:tan60°=tan(20°+40°)==tan20°+tan40°+tan20°tan40故答案为:【点评】本题考查两角和的正切函数公式的应用,考查计算化简能力,观察能力,是基础题.28.(2004•贵州)函数的最大值等于.【分析】首先由余弦的倍角公式把函数转化为同名三角函数,再利用配方法求最值.【解答】解:f(x)=cosx﹣cos2x=cosx﹣(2cos2x﹣1)=﹣cos2x+cosx+=所以f(x)的最大值为.故答案为.【点评】本题考查余弦的倍角公式及配方法求最值.三.解答题(共2小题)29.(2015秋•东台市校级月考)解方程cos2x=cosx+sinx,求x的值.【分析】本题是一个三角恒等变换问题,解题的关键是减小角的倍数,化异为同,利用方程的思想解题是三角函数常见的做法,最后是给值求角的问题,注意不要漏解.【解答】解:∵cos2x=cosx+sinx,∴cos2x﹣sin2x=cosx+sinx,∴(cosx+sinx)(cosx﹣sinx)﹣(cosx+sinx)=0,∴(cosx+sinx)(cosx﹣sinx﹣1)=0.如果cosx+sinx=0,则得1+tgx=0,tgx=﹣1,解如果cosx﹣sinx﹣1=0则得cosx﹣sinx=1,∴,∴,∴,∴.综上,x=.【点评】本题是一个三角恒等变换问题,与初中学习锐角三角函数一样,高中也要研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.30.(2015秋•桐乡市期中)定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.【分析】(1)先利用诱导公式对其化简,再结合定义即可得到证明;(2)先根据定义求出其相伴向量,再代入模长计算公式即可;(3)先根据定义得到函数f(x)取得最大值时对应的自变量x0;再结合几何意义及基本不等式求出的范围,最后利用二倍角的正切公式及正切函数的单调性即可得到结论.【解答】(本题满分15分)解:(1)因为:,g(x)的相伴向量为(4,3),所以:g(x)∈S;(3分)(2)∵h(x)=cos(x+α)+2cosx=﹣sinαsinx+(cosα+2)cosx,∴h(x)的“相伴向量”为,.(7分)(3)的“相伴函数”,其中,当时,f(x)取得最大值,故,∴,∴,又M(a,b)是满足,所以,令,∴,m>2∵在(1,+∞)上单调递减,∴(15分)【点评】本体主要在新定义下考查平面向量的基本运算性质以及三角函数的有关知识.是对基础知识的综合考查,需要有比较扎实的基本功.。
初中数学——三角函数初步练习试卷50一、选择题(共10小题;共50分)1. 在中,,下列结论中错误的是A. B. C. D.2. 如图,以为圆心,半径为的弧交坐标轴于,两点,是上一点(不与,重合),连接,设,则点的坐标是A. B.C. D.3. 如图,,是的切线,切点分别是,,如果,那么等于A. B. C. D.4. 如图,一块矩形木板斜靠在墙边(,点,,,,在同一平面内),已知,,,则点到的距离等于A. B. C. D.5. 如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为和.按照输油中心到三条支路的距离相等来连接管道,则到三条支路的管道总长(计算时视管道为线,中心为点)是6. 如图,在中,,垂足分别为,,,交于点,已知,,则的长是A. B. C. D.7. 如图,在等腰中,,,是上一点,若,则的长为A. B. C. D.8. 如图,在平行四边形中,,,以顶点为圆心,为半径作圆,则边与的位置关系是A. 相交B. 相切C. 相离D. 以上三种都有可能9. 如图,某海监船以海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至处时,测得岛屿恰好在其正北方向,继续向东航行小时到达处,测得岛屿在其北偏西方向,保持航向不变,又航行小时到达处,此时海监船与岛屿之间的距离(即的长)为A. 海里B. 海里C. 海里D. 海里10. 如图,在正方形中,的顶点,分别在,边上,高与正方形的边长相等,连接分别交,于点,,下列说法:①;②连接,,则为直角三角形;③;④若,,则的长为.其中正确结论的个数是A. B. C. D.二、填空题(共6小题;共30分)11. 已知,等腰梯形下底长为,底角的正弦值为,则上底长为.12. 将一副三角尺如图所示叠放在一起,若,则阴影部分的面积是.13. 在中,,,,那么.14. 在中,如果,,,那么的度数为.15. 小明站在处放风筝,风筝飞到处时的线长为,这时测得,若牵引底端离地面,则此时风筝离地面高度为米.(结果保留根号)16. 如图,在中,,,,动点从点出发沿射线方向以的速度运动.设运动的时间为秒,则当秒时,为直角三角形.三、解答题(共6小题;共78分)17. 如图,在中,,,,求的长.18. 如图,,,,求的高的长.19. 如图所示,的直径和弦相交于点,,,,求的长.20. 如图,中,,,是上一点,连接.若,,求的长.21. 如图,在一条笔直公路的正上方处有一探测仪,,,一辆轿车从点匀速向点行驶,测得,秒后到达点,测得.(1)求,两点间的距离(结果精确到);(2)若规定该路段的速度不得超过,判断此轿车是否超速.(参考数据:,)22. 如图,在正方形网格中有两个三角形和,试说明.答案第一部分1. A2. C3. C4. D5. C6. A 【解析】如图所示.设,.解得:由可得.7. A8. A 【解析】如图,作交的延长线于.,,,直线与相交.9. C 【解析】在中,,,由题意,,,,,,,(海里).10. A【解析】①在和中,.,,同理,,,,故①正确;②连将绕点顺时针旋转至位置,得到图②,连接,由旋转知:,,四边形是正方形,,,,,,又,,四边形是正方形,由旋转知:,,,,,.在和中,.,同理,为直角三角形,故②正确;③,,,,,,,故③正确;④,,,,,设正方形的边长为,则,,,,解得,,,作于,则,,,,,,故④正确.综上正确结论的个数是个.第二部分11.13.14.15.16. 或【解析】,,,,.①当为直角时,点与点重合,,.②当为直角时,,,,在中,,在中,,,解得.综上,当或时,为直角三角形.第三部分17. .18. 设,则.在中,,,,解得,即.19. .提示:过作,连接,则,,所以,从而.20. 设,则.在中,,,,(舍去),第11页(共11 页). 在中,,. 21. (1) 因为在中,, 所以 , 因为在中,, 所以 . 所以; 所以 , 两点间的距离为 . (2) 此轿车的速度, 所以此轿车在该路段没有超速. 22. 设小正方形的边长为 ,由勾股定理可知 ; ; ; . ,,,,...。
高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。
3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。
【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。
4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。
【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。
6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。
高三数学周考试题(三角函数)一.选择题(本大题共7小题,每小题7分,共49分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内)1.已知扇形的周长为6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或42.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( ) A .-12 B.12 C .-32 D.323.已知cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值等于( ) A. 58 B.56 C. 34 D.324.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π,-5π6B.⎣⎢⎡⎦⎥⎤-5π6,-π6C.⎣⎢⎡⎦⎥⎤-π3,0D.⎣⎢⎡⎦⎥⎤-π6,0 5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( ) A .关于直线x =π4对称 B .关于直线x =π3对称 C .关于点(π4,0)对称 D .关于点(π3,0)对称6.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如右图所示,则( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π47.在△ABC 中,cos 2B 2=a +c 2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形二.填空题(本大题共3小题,每小题7分,共21分,把最简单结果填在题后的横线上)8.已知2sin cos 5sin 3cos θθθθ+=--,则3cos 24sin 2______θθ+=. 9sin 40sin 501++ =______. 10.给出下列命题: ①半径为2,圆心角的弧度数为12的扇形面积为12; ②若α、β为锐角,tan(α+β)=12,tan β=13,则α+2β=π4; ③若A 、B 是△ABC 的两个内角,且sin A <sin B ,则BC <AC ;④若a 、b 、c 分别是△ABC 的三个内角A 、B 、C 的对边,且a 2+b 2-c 2<0,则△ABC 是钝角三角形.其中真命题的序号是__________.三.解答题(本大题共2小题,每小题15分,共30分,解答应写出必要的文字 说明、证明过程或演算步骤)11.(本小题满分15分)已知函数2()cos 2cos 1()f x x x x x R =+-∈(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值。
高考数学专题复习题:三角函数1.关于正切函数x y tan =,下列判断不正确的是( )A .是奇函数B .在整个定义域上是增函数C .在定义域内无最大值和最小值D .平行于x 轴的直线被正切曲线各支所截取线段相等2.若)4tan()(π+=x x f ,则( )A .)1()0()1(−>>f f fB .)1()1()0(−>>f f fC .)1()1()0(f f f >−>D .)1()0()1(f f f >>− 3.函数)4tan(x y −=π的定义域是( )A .⎭⎬⎫⎩⎨⎧≠4πx x B .⎭⎬⎫⎩⎨⎧−≠4πx x C .⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD .⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,43ππ 4.函数)4tan()(π+=x x f 的单调增区间为( ) A .Z k k k ∈+−),2,2(ππππ B .Z k k k ∈+),,(πππ C .Z k k k ∈+−),4,43(ππππ D .Z k k k ∈+−),43,4(ππππ 5.函数2162tanx x y −+=的定义域是( ) A .[]4,4−B .),(),4[πππ−−−C .]4,(),(πππ −D .]4,(),(),4[ππππ −−− 6.不是函数)42tan(π−=x y 的对称中心的是( ) A .(0,89π) B .(0,83π) C .(0,8π) D .(0,4π)7.下列命题中:(1)函数)tan(ϕ+=x y 在定义域内不存在递减区间(2)函数)tan(ϕ+=x y 的最小正周期为π(3)函数)4tan(π+=x y 的图像关于点⎪⎭⎫ ⎝⎛0,4π对称 (4)函数)4tan(π+=x y 的图像关于直线4π=x 对称其中正确命题的个数是( )A .0B .1C .2D .3 8.已知)22(,tan ππ<<−=x x y ,若3−≥y ,则自变量x 的取值范围为________.9.函数)60(),42tan(ππ<≤+=x x y 的值域是________. 10.已知函数1tan tan 2++=x x y ,(Z k k x ∈+≠,2ππ)则函数的值域是________. 11.若函数)2tan(θ+=x y 的图像的一个对称中心为(0,3π),则θ=________.12.函数的定义域为________. 13.如果直线与函数()的图像相交,那么相邻两交点间的距离一定是________.14.若函数,则的定义域是________,最小正周期是________. 15.如果函数,那么单调区间一定是________,最小正周期一定是________,对称中心为________.16.函数的最小正周期是________.17.若函数的最小正周期满足,则正整数________. 18.已知函数在)4,3(ππ−上是减函数,则的取值范围是________. 19.函数的单调递增区间________.20.已知,,求的最值及相应的的值.21.已知函数)4tan(2)(πω+=x x f (0>ω),)(x f y =的图像与直线2=y 的两个相邻的交点的距离等于π2,求)(x f 的单调递增区间.1tan 3−=x y 3=y x y ωtan =0>ω)42tan()(π+=x x f )(x f )23tan()(x x f ππ−=)(x f x y tan =)3tan(2)(πω−=x x f 231<<T =ωx y ωtan =ωx y tan lg =43ππ≤≤−x 2tan 2tan )(2++=x x x f )(x f x。
三角函数中考数学题1.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,F 是AD 延长线上一点,连接CD ,CF ,且CF 是⊙O 的切线.(1)求证:∠DCF =∠CAD ;(2)sin B 45=,AD =10,求FD 的长.2.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得∠ACQ =∠ABC .(1)求证:直线PQ 是O 的切线.(2)过点A 作AD ⊥PQ 于点D ,交O 于点E ,若O 的半径为4,1sin 2DAC ∠=,求图中阴影部分的面积.3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点F 在弧BC 上,AF 与CD 交于点G ,点H 在DC 的延长线上,且HG =HF ,延长HF 交AB 的延长线于点M .(1)求证:HF是⊙O的切线;(2)若4sin5M ,BM=1,求AF的长.4.已知⊙O是以AB为直径的△ABC的外接圆,BD平分∠ABC交⊙O于D,交AC于F.(1)求证:OD∥BC.(2)延长AC到点P,使PB与⊙O相切,求证:PF=PB.(3)如果AB=20,sin∠BAC=35,求AD.5.如图, ABC内接于⊙O,AB=AC,sin∠BAC=35,BC=6,连接BO并延长交AC于点D.(1)求⊙O 的半径;(2)求OD 的长.6.如图,AB =AC ,⊙O 是△ABC 的内切圆,切点为D 、E 、F ,连接DE 、CD 交⊙O 于G ,连接EG 并延长交BC 于H .(1)求证:DE ∥BC(2)连接AG ,若EH ⊥BC 求sin DAG ∠的值;7.如图,O 上有A ,B ,C 三点,AC 是直径,点D 是 AB 的中点,连接CD 交AB 于点E ,点F 在AB 延长线上且FC FE =.(1)求证:CF 是O 的切线;(2)若6BF =,4sin 5F =,求O 的半径.8.如图,AB 为O 的直径,C 为O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:AC 平分DAB ∠;(2)若4cos 5CAD ∠=,5AB =,求CD 的长.9.如图,在△ABC 中,AC =BC ,CD 平分∠ACB 交AB 于点D ,BF 平分∠ABC 交CD 于点F ,AB =6,过B 、F 两点的⊙O 交BA 于点G ,交BC 于点E ,EB 恰为⊙O 的直径.(1)判断CD 和⊙O 的位置关系并说明理由;(2)若1cos 3A ∠=,求⊙O 的半径.10.如图,AC 是⊙O 直径,D 是 AB 的中点,连接CD 交AB 于点E ,点F 在AB 延长线上且FC =FE .(1)求证:CF 是⊙O 的切线;(2)若BF =2cos3F =,求⊙O 的半径.11.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC =∠AOF ;(2)若cos ∠DCB =45,BD =24,求EF 的长.12.如图,O 是ABC 的外接圆,AB 是O 的直径,点D 为 AC 的中点,O 的切线DE 交OC 延长线于点E .(1)求证:DE ;(2)连接BD 交AC 于点P ,若8AC =,4cos 5A =,求DE 和BP 的长.13.如图,AB 是⊙O 的直径,⊙O 过BC 的中点D ,DE ⊥AC ,垂足为E(1)求证:直线DE 是⊙O 的切线;(2)若BC =6,⊙O 的直径为5,求DE 的长及cos C 的值.14.如图,△ABC 中,AB =AC ,D 为BC 的中点,∠ACB 的平分线交AD 于点E ,以AC 上一点O 为圆心的圆经过C 、E 两点,⊙O 与AC 的另一个交点为F .(1)求证:AD 是⊙O 的切线;(2)若BC =8,cos ∠BCE =63,求⊙O 的半径长.15.如图,在ABC ∆中,AB AC =,以AB 为直径的O 交BC 于D ,过D 点作O 的切线DE 交AC 于E .(1)求证:DE AC ⊥;(2)若10AB =,3cos 5ABC ∠=,求DE 的长;(3)在(2)的条件下,若P 为线段BD 上一动点,过P 点作BC 的垂线交AB 于N ,交CA 的延长线于M ,求证:PN PM +是定值,并求出定值是多少?16.如图,点C 是以AB 为直径的半圆O 上一动点,作半径OA 的垂直平分线交OA 于点F ,交AC 于点E ,交切线CD 于点D .(1)判断CDE △的形状,并说明理由;(2)若O 的半径是2,1cos 4B =,求CE 的长.17.如图,AB 是O 的直径,点C 在O 上,ABC ∠的平分线与AC 相交于点D ,交 AC 于点F ,且经过圆外一点E ,连EA ,测得EA AD =.(1)求证:EA 是O 的切线.(2)若2cos 3E =,2BD =,求O 的半径.18.如图,点P 是O 外一点,点C 是O 上一点,连接PC ,交O 于点B ,PA 与O 相切于点A ,连接OB ,AC ,OBC P ∠=∠.(1)求证:45BCA P ∠+∠=︒;(2)已知5tan 12OBC ∠=,7PA =,求O 的半径.19.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作MN ⊥AC ,垂足为M ,交AB 的延长线于点N ,过点B 作BG ⊥MN ,垂足为G ,连接CM .(1)求证:直线MN 是⊙O 的切线;(2)求证:BD 2=AC •BG ;(3)若BN =OB ,⊙O 的半径为1,求tan ∠ANC 的值.20.如图,点C ,D 在以AB 为直径的半圆上,AC ,BD 相交于点P ,点E 在BD 上,CE ⊥CD ,AC =2BC .(1)求证:△ACD∽△BCE;(2)若P是AC中点,求tan∠ACD的值;(3)求证:2DB=DA+5。
一、选择题(每题5分,共50分)1. 在直角三角形ABC中,∠C=90°,∠A=30°,则tanA的值为:A. √3B. 1/√3C. √3/3D. 32. 已知sinθ=1/2,且θ是锐角,则cosθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/23. 在直角三角形ABC中,∠C=90°,AB=5,BC=3,则tanB的值为:A. 3/5B. 5/3C. √2/3D. √3/24. 已知cosθ=1/2,且θ是锐角,则sinθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/25. 在直角三角形ABC中,∠C=90°,∠B=45°,AC=6,则AB的值为:A. 6√2B. 3√2C. 6√3D. 3√36. 已知sinθ=√3/2,且θ是锐角,则cosθ的值为:A. 1/2B. √3/2C. 1/√2D. √2/27. 在直角三角形ABC中,∠C=90°,AB=10,BC=8,则tanA的值为:A. 4/5B. 5/4C. 8/10D. 10/88. 已知cosθ=√3/2,且θ是锐角,则sinθ的值为:A. 1/2B. √3/2C. 1/√2D. √2/29. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则tanB的值为:A. 5/12B. 12/5C. 5/√3D. 12/√310. 已知sinθ=1/2,且θ是锐角,则cosθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/2二、填空题(每题5分,共50分)1. 在直角三角形ABC中,∠C=90°,∠A=30°,则cosA的值为______。
2. 已知sinθ=√3/2,且θ是锐角,则tanθ的值为______。
3. 在直角三角形ABC中,∠C=90°,AB=8,BC=6,则tanA的值为______。
专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。
历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
三角函数数学试卷
一、 选择题
1、 600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-
2、),3(y P 为α终边上一点,
53cos =
α,则=αtan ( ) )(A 43- )(B 34 )(C 43± )(D 34
±
3、已知cos θ=cos30°,则θ等于( )
A. 30°
B. k ·360°+30°(k ∈Z)
C. k ·360°±30°(k ∈Z)
D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( )
5、函数
的递增区间是
6、函数)62sin(5π+=x y 图像的一条对称轴方程是( )
)(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;
3π
=x 7、函数
的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么
所得图象的函数表达式为
8、函数|x tan |)x (f =的周期为( ) A. π2 B. π C. 2π D. 4π
9、锐角α,β满足
41sin sin -
=-βα,43
cos cos =
-βα,则=-)cos(
βα( ) A.1611
-
B.85
C.85-
D.1611 10、已知tan(α+β)=25,tan(α+4π)=322, 那么tan(β-4π)的值是( )A .15 B .1
4 C .1318 D .1322 11.sin1,cos1,tan1的大小关系是( )
A.tan1>sin1>cos1
B.tan1>cos1>sin1
C.cos1>sin1>tan1
D.sin1>cos1>tan1
12.已知函数f (x )=f (π-x ),且当)2
,2(π
π-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )
A.a<b<c
B.b<c<a
C.c<b<a
D.c<a<b
二、填空题(本大题共4小题,每小题3分,共12分,把最简单结果填在题后的横线上.
13.比较大小 (1)0508cos 0144cos ,)413tan(π- )5
17tan(π
-。
14.计算:=
-+)611tan(49cos ππ 。
15.若角的χ终边在直线x
y 33
=
上,则
sin χ= 。
16.已知θ是第二象限角,则24
sin sin θθ-可化简为_____ _______。
三、 解答题(本大题共6小题,52分,解答应写出必要的文字说明、证明过程或演算步骤.) 17.(8分)(1)已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ;
(2)已知5
sin cos ,2,tan ααπαπα-=-
求的值。
18.(8分) 已知3tan =α,计算
α
αα
αsin 3cos 5cos 2sin 4+- 的值 。
19.(8分) 已知函数1)cos (sin cos 2)(+-=x x x x f . (1)求函数)(x f 的最小正周期、最小值和最大值; (2)画出函数)(x f y =区间],0[π内的图象.
20.(8分)求函数
)
32tan(π
+=x y 的定义域和单调区间.
21.(10分)求函数
44
sin cos cos y x x x x =+-的取小正周期和取小值;并写出该函数在[0,]π上的
单调递增区间.
22.(10分) 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π
=
x .
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间;
(Ⅲ)画出函数)(x f y =在区间],0[π上的图像。
参考答案
一、 选择题 CDCDA CCBDB AD
二、 填空题 13. < , > 14.6
3
223+ 15. 12± 16. 24sin sin θθ-=2222sin (1sin )sin cos in cos s θθθθθθ-==- 三、 解答题
17. (1)
310
sin 10,cos 10αα=
=- (2)tan 2α=
18.解、∵3tan =α ∴0cos ≠α
∴原式=
ααααααcos 1)sin 3cos 5(cos 1
)cos 2sin 4(⨯
+⨯
-=ααtan 352tan 4+-=335234⨯+-⨯=7
5 19. 解:)42sin(22cos 2sin 1)cos (sin cos 2)(π
-=-=+-=x x x x x x x f
(1)函数)(x f 的最小正周期、最小值和最大值分别是π,2-,2; (2)列表,图像如下图示
x
8π 83π 85π
87π π
42π
-
x
4π-
0 2π π 23π 47π
)(x f
-1
2
-
2
-1
20.解:函数自变量x 应满足 π
π
πk x +≠+232 ,z k ∈,
即
π
π
k x 23
+≠
,z k ∈
所以函数的定义域是 ⎭⎬
⎫⎩⎨⎧∈+≠z k k x x ,23ππ
由
π
π
k +-
2
<32π+x <ππ
k +2,z k ∈,
解得
ππk 235+-
<x <π
πk 23+,z k ∈
所以 ,函数的单调递增区间是
)23,235(ππ
ππk k ++-
,z k ∈。
21.解:x x x x y 4
4cos cos sin 32sin -+=
)
6
2sin(22cos 2sin 32sin 3)cos )(sin cos (sin 2222π
-
=-=+-+=x x
x x x x x x
故该函数的最小正周期是π;最小值是-2;单增区间是[π31,0],]
,65[ππ
22.解:(Ⅰ)
8x π
=
是函数)(x f y =的图象的对称轴
sin(2)1,8
4
2
304
k k Z
π
π
π
ϕϕππ
πϕϕ∴⨯
+=±∴
+=+
∈-<<∴=-
(Ⅱ)由(Ⅰ)知
34πϕ=-
,因此3sin(2)4y x π=- 由题意得3222,242k x k k Z
πππ
ππ-≤-≤+∈
所以函数
3sin(2)4y x π=-
的单调递增区间为5,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦
(Ⅲ)由
3sin(2)
4y x π=-
可知
故函数)(x f y =在区间[]0,π上的图象是。