步进电机基本知识
- 格式:docx
- 大小:25.94 KB
- 文档页数:7
步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而到达准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而到达调速的目的。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及电脑等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
随着微电子和电脑技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
步进电机概述步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。
年前后开始以控制为目的的尝试,应用于氢弧灯的电极输送机构中。
这被认为是最初的步进电机。
二十世纪初,在自动交换机中广泛使用了步进电机。
由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。
二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。
到了八十年代后,由于廉价的微型电脑以多功能的姿态出现,步进电机的控制方式更加灵活多样。
步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号电脉冲信号并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。
No.1如何正确选用步进电机第一步:步进电机的保持转矩,相当于传统电机所说的“功率”。
当然,他们有着本质的区别。
步进电机的物理结构,完全不同于普通的交、直流电机,它的输出功率是可变的。
通常根据需要的转矩大小,来选择哪种型号的步进电机。
大致来说,扭力在0.8n.m以下的,一般选择28、35、39、42;扭力在1N.m左右的,选择57电机较为合适。
扭力在几N.m或更大的情况下,就应当选择转矩更大的75、85、86、90、110、130等规格的步进电机。
同时,我们还应考虑电机的转速。
因为,电机的输出转矩,与转速成反比关系。
就是说,步进电机在低速(每分钟几百转或更低转速,其输出转矩较大),在高速旋转状态的转矩就很小了。
当然,有些工作环境需要高速电机,就要对步进电机的线圈电阻、电感等指标进行综合权衡。
选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。
反之,要求低速大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。
第二步:步进电机空载启动频率,一般称为“空起频率”。
这是选购步进电机很重要的一项指标。
如果要求在瞬间频繁启动、停止,并且,转速在1000转/分钟左右或更高。
最好选择反应式或永磁式步进电机,这些电机的“空起频率”都比较高。
第三步:步进电机的相数选择,这项内容,很多客户几乎没有什么重视,大多是随便购买。
其实,不同相数的电机,工作效果是不同的。
相数越多,步距角就能够做的比较小,工作时的振动就相对小一些。
大多数场合,使用两相、三相、五相混合式步进电机的比较多。
在高速大力矩的工作环境,选择三相步进电机是很实用的。
第四步:防水防腐型步进电机能够防水、防油,适用于某些特殊场合。
例如水下机器人,就需要放水电机。
75BYG系列步进电机大多具有防水结构。
对于特种用途的电机,就要针对性选择了。
第五步:特殊规格的步进电机,通常需要和生产厂家沟通,在技术允许的范围内,加工订做。
例如,出轴的直径、长短、伸出方向等。
步进电机常识步进电机常识一、概述步进电机是一种精密电动装置,可将电信号转换为机械运动,直线或旋转运动都可以。
步进电机以步进角逐次驱动转子转动,每个步进角代表转子移动的最小单位。
步进电机的控制比较简单,可用于许多自动化系统中,如CNC机床、3D打印机、自动售货机、医疗设备等。
二、类型1、永磁步进电机:通过在定子上布置多个永磁体,使电子交替上翻,在转子上形成磁极,实现转动。
2、混合式步进电机:定子和转子都有磁极,在两者之间形成磁场差,通过交替激励实现转动。
三、性能参数1、步进角度:指每次步进电机转动的角度。
2、步跳精度:指步进电机转动时的精度,一般是调整电流或闭环控制实现。
3、最大转速:转子的最大转速。
4、电阻:步进电机的电阻。
常用的有单极、双极、四极等。
5、工作温度:步进电机的工作温度范围。
6、电压、电流:步进电机的额定电压和工作电流。
四、控制方式1、全步进控制:每个步进角之间都会到达目标角度,可以实现较高的准确度,但相应需要更高的驱动能力和数码控制器。
2、半步进控制:每个步进角之间的中间位置都会达到一个偏离的角度,通过半步移动实现更高的转动精度。
3、微步进控制:通过对电流进行调整,实现更小的步进角度。
五、附件1、步进电机控制器2、电机驱动器3、配合装置4、电缆连接器六、法律名词及注释1、知识产权:知识产权是指人类在创造知识、传授知识和运用知识的过程中,享有的某种权力,包括专利、商标、著作权等。
2、质量管理体系:包括质量系统、质量策划、质量控制、质量评价、质量改进等一系列质量管理活动。
3、保密协议:保密协议是由保密双方,即信息提供方和信息接收方,签署的一种协议,用于确保信息的保密性和保护知识产权。
七、可能遇到的困难及解决办法1、步进电机过热:检查工作环境温度、步进电机外观是否有损伤,调整相应的电流参数。
2、步进电机震动过大:检查工作环境、电缆是否有松动或连接有问题,调整相应的步跳精度参数。
3、步进电机驱动器故障:检查电机驱动器是否符合要求、连接是否正常、电压是否稳定等,及时更换或修理。
什么是步进电机?一、步进电机的基本原理步进电机是一种能够精确控制位置和运动的电机,它的工作原理和普通的直流电机有所不同。
普通的直流电机通过通电使得电流在绕组中流动,形成电磁力以产生转矩,从而驱动电机旋转。
而步进电机则是通过不断改变绕组中的电流方向,从而产生磁场的位置变化,实现精确的步进运动和位置控制。
步进电机中最关键的两部分是定子和转子。
定子是一个由绕组组成的磁铁,通常为两极或四极的磁石,而转子则是由磁铁组成的一个或多个磁极,通常为一圆柱形的部件。
二、步进电机的工作模式步进电机有两种常见的工作模式,即全步进和半步进。
1. 全步进模式:在全步进模式下,步进电机会按照固定的角度(通常为1.8°或0.9°)一步一步地转动。
这种模式下,电机的每个脉冲信号都会让电机转动一小步,从而实现位置的精确调整和控制。
2. 半步进模式:在半步进模式下,步进电机可以实现更精确的位置调整,每个脉冲信号可以让电机转动半个步距(通常为0.9°或0.45°)。
通过在全步进模式下的每个步距之间插入一个半步距,电机可以实现更加平滑和精确的运动。
三、步进电机的特点和应用场景步进电机具有以下几个特点,使得它在很多场景下得到广泛应用:1. 高精度:步进电机可以控制位置和转向,精度通常在几个角度或更小。
这使得它在需要精确定位和控制的场景下得到广泛应用,如机器人、三维打印机等。
2. 高效能:步进电机在工作过程中没有摩擦和机械损耗,因此效率较高。
它可以在低速和高负载条件下工作,而且能提供一定的持续转矩。
3. 简单控制:步进电机的控制电路相对较为简单,只需一个控制器和几个驱动器即可实现精确的位置和速度调整。
4. 广泛应用:步进电机广泛应用于各个领域,如电子设备、汽车制造、医疗设备等。
特别是在需要实现精确运动控制的场景下,步进电机更是不可或缺的一种电机。
综上所述,步进电机是一种能够精确控制位置和运动的电机,它通过改变绕组中的电流方向来实现位置的精确调整和控制。
步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数,是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。
电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72°。
在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。
如果使用细分驱动器,则‘相数’将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。
目前应用最广泛的是两相和四相,四相电机一般用作两相,五相的成本较高。
拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.固有步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。
四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。
这个步距角可以称之为‘电机固有步距角’,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。
定位转矩(DETENT TORQUE):电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的),DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。
最大静转矩:也叫保持转矩(HOLDING TORQUE),电机在额定静态电作用下(通电),电机不作旋转运动时,电机转轴的锁定力矩,即定子锁住转子的力矩。
此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。
步进电机知识详解,再不怕看不懂步进电机了!步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
作为电力人对步进电机的也不能仅限于认识而已,应该深入了解它的结构、基本原理以及应用,接下来小七将从三个方面带大家全面认识步进电机。
01什么是步进电机步进电机是一种直接将电脉冲转化为机械运动的机电装置,通过控制施加在电机线圈上的电脉冲顺序、频率和数量,可以实现对步进电机的转向、速度和旋转角度的控制。
在不借助带位置感应的闭环反馈控制系统的情况下、使用步进电机与其配套的驱动器共同组成的控制简便、低成本的开环控制系统,就可以实现精确的位置和速度控制。
02基本结构和工作原理基本结构:工作原理:步进电机驱动器根据外来的控制脉冲和方向信号,通过其内部的逻辑电路,控制步进电机的绕组以一定的时序正向或反向通电,使得电机正向/反向旋转,或者锁定。
以1.8度两相步进电机为例:当两相绕组都通电励磁时,电机输出轴将静止并锁定位置。
在额定电流下使电机保持锁定的最大力矩为保持力矩。
如果其中一相绕组的电流发生了变向,则电机将顺着一个既定方向旋转一步(1.8度)。
同理,如果是另外一项绕组的电流发生了变向,则电机将顺着与前者相反的方向旋转一步(1.8度)。
当通过线圈绕组的电流按顺序依次变向励磁时,则电机会顺着既定的方向实现连续旋转步进,运行精度非常高。
对于1.8度两相步进电机旋转一周需200步。
两相步进电机有两种绕组形式:双极性和单极性。
双极性电机每相上只有一个绕组线圈,电机连续旋转时电流要在同一线圈内依次变向励磁,驱动电路设计上需要八个电子开关进行顺序切换。
单极性电机每相上有两个极性相反的绕组线圈,电机连续旋转时只要交替对同一相上的两个绕组线圈进行通电励磁。
驱动电路设计上只需要四个电子开关。
在双极性驱动模式下,因为每相的绕组线圈为100%励磁,所以双极性驱动模式下电机的输出力矩比单极性驱动模式下提高了约40%。
步进电机知识大全1.步进马达的优缺点优点缺点精度高,能随时启动停止(原因:马达自身特性)能耗大,有效利用率低(原因:马达自身特性,走-停-走-停…自身制动的动作)遇到阻碍时,电流不会大幅度增加2.有无共通线的区别使用单、双极驱动的条件是由客户使用条件所决定的,客户使用电源的电流方向是否可以改变。
单极驱动 双极驱动客户使用电源的电流方向不能改变,使得马达需要共通线客户使用的电源电流自身可以改变方向,所以不需要共通线来控制电流方向。
控制电流的方向,实现马达的旋转。
优:驱动回路简单,成本低。
优:定子绕线空间增大,绕线圈数增加,扭力范围变大。
缺:同一定子极有双重卷线(两根卷线),空间是双极驱动一半。
缺:驱动回路构成复杂,成本增加。
3.马达转动的原理两个定子偏差的角度是马达能够转动的原因。
电流的方向是马达朝指定方向旋转的决定因素。
二相励磁一相励磁一相励磁①当A相通电,电流方向向右时,根据右手定则判断,定子上方为N极,下方为S极。
转子停留在①所示的位置上。
②当A断电,B通电,电流方向向左时,右手定则判断,定子上方为S极,下方为N极。
转子被最近的磁极吸引,此时转子向右运动。
③当B断电,A通电,电流方向向左时,定子上方为S极,下方为N极。
转子被最近的磁极吸引,此时转子向右运动。
④当A断电,B通电,电流方向向右时,定子上方为N极,下方为S极。
转子被最近的磁极吸引,此时转子向右运动。
二相励磁二相励磁的工作原理与一相励磁类似,不加以说明。
4.2相励磁与1-2相励磁的区别同一转速下,2相使用的电流大、扭力大,噪音大(相比1-2相,2相的步距角大,抖动越大)5.充磁原理充磁材料在通电过程中,将充磁材料中的+/- 磁极等份分成n排。
定电流驱动的目的客户想让马达在不同的周波数情况下马达的扭力保持在一个稳定的区域。
1类01步进电机 步进电动机分反应式(磁阻式)、永磁式和混合式三大类。
反应式步进电动机(VR) 三相反应式步进电动机结构示意图如图1所示。
图1:三相反应式步进电动机结构示意图 定子六个磁极上绕有三相星形绕组,转子外圆周和磁极极靴上开有等齿距的小齿。
转子齿数为20 个,每个磁极上有 3 个小齿,小齿相邻两相的两个磁极错开1 /3齿距(一般错开1 /m,m为相数)。
由于是绕组轮流通电,所以当 A 相通电时,定转子之间的磁通以磁 阻最小取向,使转子齿(位置随机)与A相磁极小齿对齐。
此时,B相磁极上小齿沿ABC方向超前转子齿错开1 /3齿距。
A相断电、B相通电时,转子则沿ABC转过1 /3齿距。
此时, C 相磁极上小齿又超前转子齿错开1 /3齿距。
B相断电、C相通电时,转子则沿ABC方向又转过 1 /3 齿距。
如此便随脉冲的A→B→C分配方式02032要技术参数步进运动下去。
脉冲通电有多种分配方式,步距角的大小可随脉冲分配方式不同而变化。
实现这种分配的是一种环形脉冲分配器,绕组通断则由功率开关管实施。
以上是三相反应式步进电动机的工作原理,多相反应式步进电动机的工作原理与三相反应式步进电动机基本一样。
反应式步进电动机的优点是步距角小、步距精度高、起动频率高、负载能力强,可实现电气细分; 缺点是易振荡(需要加装阻尼器进行抑制)、驱动功率大、效率低。
永磁式步进电动机(PM) 两相永磁式步进电动机结构示意图如图2所示。
图2:两相永磁式步进电动机结构示意图 转子为两对极的“+”字形磁体(也可以为多对极的星形磁体),定子则相应为两相绕组 (也可为多相绕组)。
当定子A相或B相单独通电时,转子转向A相或B相磁场轴线;当 A、B相同时通电时, 转子转向A、B 相磁场合成轴线。
当绕组按单四拍方式 A→B→(-A)→(-B)和双四拍方式 A、B →(B、-A)→(-A、-B )→(-B、A)通电时,步距角为45°;当绕组按八拍方式 A→A、B→B→(B、-A)→(-A)→(-A、-B)→(-B)→(-B、A)通电时,步距角为 22.5°。
步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。
1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。
其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。
这种特性使它适用于多种应用。
2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。
定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。
稍后我们将更深入地介绍不同的转子结构。
图1显示的电机截面图,其转子为可变磁阻铁芯。
图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。
图2显示了其工作原理。
首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。
下图中定子小齿的颜色指示出定子绕组产生的磁场方向。
图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。
实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。
3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。
这种转子可以保证良好的扭矩,并具有制动扭矩。
这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。
但与其他转子类型相比,其缺点是速度和分辨率都较低。
图3显示了永磁步进电机的截面图。
图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。
这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。
步进电机原理(一)步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。
仅仅处于一种盲目的仿制阶段。
这就给户在产品选型、使用中造成许多麻烦。
签于上述情况,我们决定以广泛的感应子式步进电机为例。
叙述其基本工作原理。
望能对广大用户在选型、使用、及整机改进时有所帮助。
感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。
下面先叙述三相反应式步进电机原理。
1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。
如B相通电,A,C 相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
步进电机资料整理1.步进电机定义步进电机是工业生产过程控制,数字程序控制(数控机床)计算机外部设备,控制仪表等常用的控制部件。
步进电机是一种将电脉冲转化为不连续的机械运动的机电装置。
当施加适当的电脉冲指令时,电机转子的出轴或外转子将会以不连续的步进增量旋转。
电机的旋转与施加的脉冲之间有几个方面的直接关系:首先所加脉冲的顺序直接决定着电机转轴旋转的方向;其次电机转轴旋转的速度取决于所加脉冲的频率,而旋转的角度或者圈数和所加的脉冲数成正比2.步进电机结构分类根据步进电机的原理和结构,基本可以分成下面两大类型:第一类:电磁型步进电机。
这种步进电机是早期的步进电机,它通常只有一个绕阻,并且仅靠电磁作用还不能使电机的转子做步进运行,必须加上相应的机械部件,才能产生步进的效果。
它有螺旋型和棘型两种。
第二类:定子和转子之间仅靠电磁作用就可以产生步进作用的步进电机。
这种电机一般有多相绕组,在定子和转子之间没有机械联系。
这种电机有良好的可靠性及速度性,工业应用上大量用于状态伺服元件、功率伺服元件、位置控制元件等。
在第二类步进电机中,根据转子的结构形式,可以分成永磁性转子电机(PM)或反应式转子电机(VR),它们可以简称为永磁式步进电机或反应式步进电机。
在永磁式步进电机中,它的转子是用永磁钢制成的,也有通过滑环供电的直流激磁绕组制成;无论如何,其转子有软材料制成齿状,转子的齿也称显极,在这种步进电机的转子中没有绕组。
3.步进电机的特点步进电机的优缺点总结如下。
优点:1)电机旋转的角度正比于脉冲数;2)电机停转的时候具有最大的转矩(当绕组激磁时);3)由于每步的精度在3%-5%,而且不会将一步的误差积累到下一步因而有较好的位置精度和运动的重复性;4)优秀的启停和反转响应;5)由于没有电刷,可靠性较高,因此电机的寿命仅仅取决于轴承的寿命;6)电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控制成本较低;7)仅仅将负载直接连接到电机的转轴上也可以极低速的同步旋转;8)由于速度正比于脉冲频率,因而有比较宽的转速范围。
步进电机相关知识
转子--rotor; 定子--stator; 电枢--armature; 励磁-- excitation.
步进电机静态指标:
1、相数——电机内部的线圈组数。
2、步距角——控制系统每发一个步进脉冲信号,电机转动的角度。
3、拍数——完成一个磁场周期性变化所需脉冲数或导电状态,或电机转过一个步距角所需脉冲数。
4、定位转矩——电机在不通电状态下,转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成)。
5、保持转矩(Holding Torque)——步进电机通电但没有转动时,定子锁住转子的力矩。
步进电机励磁方式:
步进电机的励磁方式分为全步励磁和半步励磁两种。
其中全步励磁又有一相励磁和二相励磁之分;半步励磁又称一-二相励磁。
1、一相励磁——在每一瞬间,步进电机只有一个线圈导通。
其特点:精度好,消耗电力小,但输出转矩最小,震动较大。
2、二相励磁——在每一瞬间,步进电机有两个线圈同时导通。
特点:输出转矩大,振动小。
3、一-二相励磁——为一相励磁与二相励磁交替导通的方式,每送一个励磁信号,步进电机旋转0.9度。
特点:分辨率高,运转平滑。
电机驱动频率P.P.S——即每秒脉冲数;。
步进电机基本知识(2009-01-08 13:51:30)1、步进电机:是一种将电脉冲转化为角位移或线位移的执行机构。
其特点是没有积累误差(精度为100%),广泛应用于各种开环控制。
2、步进电机分类:永磁式(PM),反应式(VR),混合式(HB)。
3、保持转矩:是指步进电机通电,但没有转动时,定子锁住转子的力矩。
4、精度:为步进角的3~5%,且不累积。
5、细分驱动器:是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机的运转的。
细分功能完全是由驱动器靠精确控制电机的相电流所产生的,与电机无关。
对于2,4相电机,细分后的步距角等于电机的整步步距角除以细分数。
对于3相反应式电机,细分后的步距角等于电机的半步步距角除以细分数。
6、步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°)此步距角为电机固有步距角。
7、相数:产生不同对极N、S磁场的激磁线圈对数。
常用m表示。
8、失步:电机运转时运转的步数,不等于理论上的步数。
称之为失步。
9、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。
10、最大空载运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。
11、步进电机最好不使用整步状态,整步状态时振动大。
12、电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
方向由导电顺序决定。
控制步进脉冲信号的频率,可以对电机进行精确调速;控制步进脉冲的个数,可以对电机进行精确定位。
13、步进电机驱动器:是把计算机控制系统提供的弱信号放大为步进电机能够接受的强电流信号。
14、拍数:是完成一个磁场周期性变化所需脉冲数。
指电机转过一个齿距角所需脉冲数。
15、脱机信号free:此信号为选用信号,并不是必须要用的,只有在一些特殊情况下使用,此端为低电平有效,这时电机处于无力矩状态;此端为高电平或悬空不接时此功能无效,电机可正常运行,此功能若用户不采用,只需将此端悬空即可。
16、CP脉冲宽度一般要求不小于2us。
17、CP电平方式:对于共阳接法的驱动器要求为负脉冲方式,脉冲状态为低电平,无脉冲时为高电平;对于共阴接法的驱动器要求为正脉冲方式,脉冲状态为高电平,无脉冲时为低电平。
18、dir信号:一定要在电机降速停止后再换向。
19、步进电机在启动时,必须有升速过程;在停止时必须有降速过程,一般来说升速过程和降速过程规律相同。
特例:步进电机运行速度不超过突跳频率,这时不存在升降速问题。
20、自动半电流功能:驱动机在步进脉冲信号停止施加2S左右,会自动进入半电流状态,这时电机相电流为运行时的一半,以减少功耗和保护电机。
21、细分优点:完全消除了电机的低频振荡。
22、步进电机的工作性能在很大程度上取决于所使用的驱动电路的类型和参数。
23、常用的有两相,四相混合式步进电机。
24、电机是有内阻的感性负载。
25、步进电机驱动方式:恒压,恒流,恒流斩波,使同样电机输出更大速度和功率。
26、步进电机启动:A、低初速度,低加速度阶段B、高加速度过程C、高速运行,低加速度,一直到预定速度为止。
27、速度传感器:磁电式交流信号输出光电式数字信号输出霍尔式车速传感器28、电机换向必须在电机停止后再进行,并且换向信号一定要在前一个方向的最后一个CP 脉冲结束后以及下一个方向的第一个CP脉冲前发出。
29、正反向切换:降速—换向—升速30、SH-2H090M型驱动器的拨位开关有8位,1-3位用于设定驱动器的细分数;6-8位用于设定驱动器的输出电流,4,5位须拨在off位置。
31、最高起动频率(突跳频率):一般为0.1HZ到3-4KHZ,最高运行频率:N×102KHZ32、实际上,如果CP信号变化太快,步进电机由于惯性将跟随不上电信号变化,这时就会产生堵转和丢步现象。
所以步进电机在启动时,必须有升速过程,在停止时,必须有降速过程,一般来说升速和降速过程规律相同。
升速过程由突跳频率加升速曲线组成(降速过程反之)。
突跳频率是指步进电机在静止状态时突然施加的脉冲启动频率,此频率不可太大,否则也会产生堵转和丢步。
升降速曲线一般为指数曲线或经过修调的指数曲线,当然也可以采用直线或正玄曲线等。
用户需根据自己的负载选择合适的突跳频率和升降速曲线,找到一条理想的曲线并不容易,一般需要多次“试机”才行。
指数曲线在实际软件编程中比较麻烦,一般事先算好时间常数存储在计算机存储器内,工作过程中直接选取。
步进电机的升降速设计为控制软件的主要工作量,其设计水平直接影响电机运行的平稳性、升降速快慢、电机运行声音、最高速度、定位精度。
33、步进电机目前常用的有二、三、四、五相步进电机。
电机相数不同其步距角不同,一般二相步距角0.9°/1.8°,三相步距角0.75°/1.5°,五相步距角0.36°/0.72°。
在没有细分驱动器时,用户通过选择不同相数的步进电机来满足自己步距角的要求,如果选用细分驱动器,则相数变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。
34、功率:P=Ω•M=2пn/60•M=2п•n•M/60对于半步工作:P=2п•f•M/600其中:P-功率,Ω-角速度,M-力矩,n-电机转速,f-每秒钟脉冲数(pps)35、步进电机控制芯片:L298,TA8435。
其外围电路简单,TA8435还可以8细分。
36、步进电动机的运行性能是由电动机和驱动器两者配合所形成的综合效果。
37、常用步进电机为混合式步进电机步进电机几个重要性能与影响因素描述2009-10-201、常见二相电机中绕组类型与特性?在二相电机中绕组方式有两种:二相四线与二相六线(五线)两种方式。
其中二相四线又称为双极性步电机(采用桥式电源驱动),驱动器向绕组提供正、反两个电流,绕组利用率较高。
二相六线(五线)电机由公共端出发,驱动器向绕组提供单一方向的电流,绕组利用率为50%,这类电机又称为单极性电机。
通常地:二相四线电机采用恒流源驱动,驱动器成本较高,通过合理地选用电机机座型号、电机的电阻、电感、额定工作电流等,可获得较好的工作特性,使用最为广泛;二相六线(五线)通常采用恒压源驱动,通常应用于工作频率点低,且工作频率点扭矩较低的场合,其驱动器成本较低。
2、步进电机的直流电阻直流电阻数值随温度变化而略有变化。
为了与出厂及历次测量的数值作比较,应将在不同的温度下测得的直流电阻值换算到同一温度下的阻值。
换算公式如下:Rw = Rm (T+tw) / (T+tm)式中Rm——温度为tm(℃)时测得的电阻,ΩRw——换算至温度为tw℃的电阻,ΩT——温度系数,铜线为235,铝线为225。
在23HA3001-1电机直流电阻测量中,其测试环境与测试所用的工具是否正确,起决定性影响。
3、步进电机的电感值步进电机转子内部固有的永久磁铁,电感与电阻一起,作为另一个重要参数出现,对电机的动态特性影响极为显著。
一般地低电阻、低电感其空载起动、运行频率均较高,在满足设计的条件下(一般地规定的机座号、机身高情况下,电机必须达到标准的保持转矩,以提高材料利用率),工作频率点可以先得较大,如23HA3002-1电机可以达到4000PPS,但是其驱动电流较大,驱动器制造成本为较高,而且不好控制噪声;相反,大电阻、大电感其工作频率点就会显著减小,驱动器成本会减少。
4、二相电机的步距角常见二相步进电机固有步距角(定、转子机械结构确定的)有两种:1.8°(作四相八拍运行为0.9°)与0.9°(作四相八拍运行为0.45°)两种,前一种最常用,后一种精度更高,适用于高精密场合,其步距角精度为±5%内。
具体步进电机运行步距角与驱动方式有关(决定于:驱动节拍与单步细分数)。
通常地:步进电机作单一方向转动,施加电机的脉冲数与细分步距角之积应为固有步距角的整数倍,这样电机转动到定位点时最稳定,瞬间电流因素影响最少。
如固有步距角1.8°的二相电机,作二相四拍运行(运行步距角为1.8°),则施加整数倍就可以,如作二相八拍运行时(运行步距角为0.9°),则施加于电机的脉冲数为0.9°的偶数倍脉冲,细分后以此类推。
5、步进电机的“定位转矩”定位转距是指电机各相绕组不通电且处于开路状态时,由于混合式电机转子上有永磁材料产生磁场,从而产生的转距。
一般定位转距远小于保持转距。
是否存在定位转距是混合式步进电机区别于反应式步进电机的重要标志。
6、步进电机的"保持转矩"保持转距,在二相电机中是指电机二相绕组同时通额定电流,且处于静态锁定状态时,电机所能输出的最大转距。
是电机选型时最重要的参数之一。
通常步进电机是在恒流或恒压条件下工作的,在低速运行时,其输出力矩与最大转矩接近,但由频率增加,反电势及高频导致电机内部损耗的提高,步进电机的输出功率会随速度的增大而迅速变小,步进电机的输出力矩随速度的增大而迅速衰减(不同型号、不同参数其衰减率不一样,通常用矩频特性曲线来表示),所以其最高工作转速一般在300~600RPM。
比较:而交流伺服电机可以自行调整输入电压与电流,即在其额定转速(一般为2000RPM 或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
而且与通用交流电机(或伺服电机)不一样,步进电机起动瞬间,线组内工作电流是按额定电流工作的,因此无过载能力差。
在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。
所以保持转矩就成为了衡量步进电机最重要的参数之一。
比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。
决定保持转矩的参数:A)电机机座号(16HA、17HA、17HD、23HA、23HD、32HD等);B)电机机身高度;C)绕组匝数(体现在电阻、电感值)与工作时绕组的额定电流值。
7、低频特性中的振动与克服方式由步进电机的工作原理(非连惯、单点的脉冲电源),决定其低频工作段某些频率段会出现低频振动现象(谐波造成的)根据经验其振动频率点大致分布为200PPS、400PPS左右,尤其是200PPS段最为明显,具体振动值与负载情况和驱动器性能有关。
这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。