基于VerilogHDL语言的可综合性设计
- 格式:doc
- 大小:69.50 KB
- 文档页数:5
1.利用双输入端的nand门,用Verilog编写自己的双输入端的与门、或门和非门,把它们分别命名为my_or,my_and和my_not,并通过激励模块验证这些门的功能。
答:`timescale 1ns/1ns/**************************** ********** my_and *********** ****************************/ module my_and(in1,in2,out); input in1,in2;output out;wire out1;nand a1(out,out1,out1);nand a2(out1,in1,in2); endmodule/**************************** ********** my_or ************ ****************************/ module my_or(in1,in2,out);input in1,in2;output out;wire out1,out2;nand o1(out,out1,out2);nand o2(out1,in1,in1);nand o3(out2,in2,in2); endmodule/**************************** ********** my_not *********** ****************************/ module my_not(in,out);input in;output out;nand n1(out,in,in);endmodule/**************************** ********** test ***************************************/module test;reg a,b;wire and_c,or_c,not_c;initialbegina<=0;b<=0;#10 a<=0;b<=1;#10 a<=1;b<=0;#10 a<=1;b<=1;#10 $stop;endmy_and myand1(a,b,and_c);my_or myor1(a,b,or_c);my_not mynot1(a,not_c); endmodule2.使用上题中完成的my_or,my_and和my_not门构造一个双输入端的xor门,其功能是计算z第5章门级建模41= x’y + x y’,其中x和y为输入,z为输出;编写激励模块对x和y的四种输入组合进行测试仿真。
verilog hdl数字集成电路设计与原理 数字集成电路是现代电子技术中的重要组成部分,其设计与原理对于电子工程师来说至关重要。
本文将以Verilog HDL为工具,介绍数字集成电路的设计与原理。
一、数字集成电路的概述 数字集成电路是由稳定的电气或电子器件组成的,能够执行数字逻辑操作的电路。
它们以二进制表示,通过与、或、非等逻辑门实现简单或复杂的数字逻辑功能。
数字集成电路的设计与原理是研究数字逻辑电路的基础,是实现数字系统的关键。
二、Verilog HDL的介绍 Verilog HDL是硬件描述语言(Hardware Description Language )的一种,广泛应用于数字电路设计领域。
它不仅可以用于描述数字电路的结构和功能,还可以用于验证和仿真电路的行为。
Verilog HDL 为数字集成电路设计与原理提供了一种高效的工具和方法。
三、数字集成电路的设计步骤 1. 确定需求:在进行数字集成电路的设计之前,首先要明确电路的需求和功能。
例如,设计一个加法器电路,需要明确输入和输出的位数,以及所需的运算规则。
2. 设计逻辑功能:根据电路的需求和功能,使用Verilog HDL描述电路的逻辑功能。
例如,使用逻辑门和寄存器等基本组件,以及运算、比较和控制逻辑来实现增加和溢出处理。
3. 进行仿真:使用Verilog HDL工具进行电路的仿真,验证设计的正确性。
通过使用测试输入数据,观察输出是否符合预期结果。
如果有错误或问题,需要进行调试和修改。
4. 进行综合:将Verilog HDL代码综合为门级电路。
综合工具会将Verilog HDL描述的逻辑电路转化为实际的门级电路,包括各种逻辑门、寄存器和其他组件。
5. 进行布局布线:将综合后的电路进行物理设计,包括电路的布局和布线。
布局布线工具将综合后的门级电路映射到实际器件上,并进行连线等工作,以满足电路的时序和功耗要求。
6. 进行验证:验证设计的正确性和性能。
FPGA verilog课程设计报告一、教学目标本课程旨在通过FPGA Verilog的学习,让学生掌握数字电路设计的基本原理和方法,学会使用Verilog硬件描述语言进行数字电路设计和仿真。
具体目标如下:1.理解FPGA的基本原理和结构。
2.掌握Verilog语言的基本语法和编程技巧。
3.熟悉数字电路的设计方法和流程。
4.能够使用Verilog语言编写简单的数字电路模块。
5.能够进行FPGA的配置和编程。
6.能够使用FPGA开发工具进行数字电路的仿真和测试。
情感态度价值观目标:1.培养学生的创新意识和团队合作精神。
2.增强学生对新技术的敏感性和学习兴趣。
3.培养学生对工程实践的热爱和责任感。
二、教学内容本课程的教学内容主要包括FPGA的基本原理和结构、Verilog语言的基本语法和编程技巧、数字电路的设计方法和流程。
具体安排如下:第1-2课时:FPGA的基本原理和结构1.FPGA的定义和发展历程。
2.FPGA的内部结构和组成。
3.FPGA的配置和编程方法。
第3-4课时:Verilog语言的基本语法和编程技巧1.Verilog语言的基本数据类型和操作符。
2.Verilog语言的逻辑表达式和语句。
3.Verilog语言的模块结构和参数传递。
第5-6课时:数字电路的设计方法和流程1.数字电路的设计原则和技巧。
2.数字电路的设计流程和步骤。
3.数字电路的仿真和测试方法。
三、教学方法本课程采用讲授法、案例分析法和实验法相结合的教学方法。
1.讲授法:通过讲解和演示,让学生掌握FPGA和Verilog的基本知识和技巧。
2.案例分析法:通过分析具体的数字电路设计案例,让学生熟悉设计方法和流程。
3.实验法:通过动手实验,让学生亲手配置FPGA、编写Verilog代码并进行仿真测试,提高学生的实际操作能力。
四、教学资源1.教材:《FPGA Verilog设计与实践》。
2.参考书:《数字电路与FPGA设计入门》、《Verilog HDL入门与提高》。
1.模块的基本组成部分有哪些?哪几个部分必须出现?答:模块的基本组成部分包括:关键字module ,模块名、端口列表、端口声明和可选的参数声明,模块内部还有5个基本组成部分是:变量声明、数据流语句、低层模块实例、行为语句块以及任务和函数。
在模块的所有组成部分中,只有module 、模块名和endmodule 必须出现,其他部分都是可选的,用户可以根据设计的需要随意选用。
2.一个不与外部环境交互的模块是否有端口?模块定义中是否有端口列表?答:严格意义上讲,一个模块如果与外界没有任何交互,那么自然是不需要有而且是不可能有端口的。
在没有端口的情况下,端口列表自然也是不存在的。
3.一个4位并行移位寄存器的I/O 引脚如下图所示。
写出模块shift_reg 的定义,只需写出端口列表和端口定义,不必写出模块的内部结构。
答:模块代码如下:module shift_reg(clock,reg_in,reg_out);input clock;input [3:0] reg_in;output [3:0] reg_out;//********XXXXXXX**************endmodule4.定义一个顶层模块stimulus ,在其中声明reg 变量REG_IN (4位)和CLK (1位)以及wire变量REG_OUT (4位)。
在其中调用(实例引用)模块shift_reg ,实例名为sr1,使用顺序端口连接。
答:模块代码如下module stimulus();reg CLOCK;reg [3:0] REG_IN;wire [3:0] REG_OUT;//*******connect in order************shift_reg sr1(CLOCK,REG_IN,REG_OUT);endmodulereg_in [3:0] clockreg_out [3:0]32Verilog HDL数字设计与综合(第二版)5.将上题的端口连接方法改为命名连接。
基于fpga 的直流电机综合测控系统电路设计1. 引言1.1 概述随着科技的不断进步和电机技术的广泛应用,直流电机在工业生产和自动控制领域发挥着重要作用。
直流电机的测控系统是实现对电机运行状态、控制以及数据采集等功能的关键部分。
本文将介绍基于FPGA(现场可编程门阵列)的直流电机综合测控系统电路设计。
1.2 文章结构本文主要分为五个部分:引言、直流电机测控系统概述、FPGA基础知识和相关技术介绍、直流电机综合测控系统的电路设计要点以及实验结果与分析。
其中,引言部分对论文主题进行了简要介绍,同时提出文章目的和结构。
1.3 目的本篇长文旨在通过对FPGA在直流电机测控系统中应用的研究,设计出高效且稳定可靠的直流电机测控系统。
通过深入分析和实验验证,揭示FPGA在这一领域中所具有的优势,并展示其在驱动电路设计、信号采集与处理以及系统通信接口方面所能提供的解决方案。
通过实验结果与分析,评估系统的性能,进一步证明该设计方案的可行性和有效性。
以上是“1. 引言”部分内容。
2. 直流电机测控系统概述2.1 直流电机工作原理直流电机是一种将直流电能转换为机械能的电动机。
其工作原理基于洛伦兹定律和摩擦力等物理原理。
直流电机由定子和转子组成,其中定子通常由线圈构成而转子则是一个旋转部件。
当通过定子中通入直流电流时,形成了磁场,这个磁场与转子上带有导线的部分相互作用,产生了力矩,使得转子开始旋转。
2.2 测控系统的重要性测控(Measurement and Control)系统在工程领域中具有广泛应用。
对于直流电机而言,测控系统可以实现对驱动、监控、调节等方面的功能,以确保电机能够稳定运行并满足特定需求。
测量和控制技术在直流电机领域中非常关键,因为它们可以帮助精确获取并处理与运行参数相关的信息,并根据需要进行相应的调整。
2.3 FPGA在测控系统中的应用优势FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,被广泛应用于测控系统中。
FPGA设计流程指南前言本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。
编写本流程的目的是:●在于规范整个设计流程,实现开发的合理性、一致性、高效性。
●形成风格良好和完整的文档。
●实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。
●便于新员工快速掌握本部门FPGA的设计流程。
由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为modelsim + LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。
目录1. 基于HDL的FPGA设计流程概述 (1)1.1 设计流程图 (1)1.2 关键步骤的实现 (2)1.2.1 功能仿真 (2)1.2.2 逻辑综合 (2)1.2.3 前仿真 (3)1.2.4 布局布线 (3)1.2.5 后仿真(时序仿真) (4)2. Verilog HDL设计 (4)2.1 编程风格(Coding Style)要求 (4)2.1.1 文件 (4)2.1.2 大小写 (5)2.1.3 标识符 (5)2.1.4 参数化设计 (5)2.1.5 空行和空格 (5)2.1.6 对齐和缩进 (5)2.1.7 注释 (5)2.1.8 参考C语言的资料 (5)2.1.9 可视化设计方法 (6)2.2 可综合设计 (6)2.3 设计目录 (6)3. 逻辑仿真 (6)3.1 测试程序(test bench) (7)3.2 使用预编译库 (7)4. 逻辑综合 (8)4.1 逻辑综合的一些原则 (8)4.1.1 关于LeonardoSpectrum (8)4.1.1 大规模设计的综合 (8)4.1.3 必须重视工具产生的警告信息 (8)4.2 调用模块的黑盒子(Black box)方法 (8)参考 (10)修订纪录 (10)1. 基于HDL的FPGA设计流程概述1.1 设计流程图说明:●逻辑仿真器主要指modelsim,Verilog-XL等。
veriloghdl数字设计与综合答案.docveriloghdl 数字设计与综合答案【篇一:verilog 习题选答】txt> 答:fpga 中,由程序来转换为可烧录的二进制码。
ic 设计中,主要是由design-compiler 来实现。
2.能否说模块相当于电路图中的功能模块,端口相当于功能模块的3.assign 声明语句,实例元件,always 块,这三类描述中哪一种直接与电路结构有关?4.由连续赋值语句(assign )赋值的变量能否是reg 型的?答:赋值运算分为连续赋值和过程赋值两种。
(1)连续赋值连续赋值语句只能对线网型变量进行赋值,而不能对寄存器型变量进行赋值,基本的语法结构为:assign #( 延时量) 线网型变量名= 赋值表达式; 一个线网型变量一旦被连续赋值语句赋值后,赋值语句右端赋值表达式的值将持续对赋值变量产生连续驱动,只要右端表达式任一操作数的值发生变化,就会立即触发对赋值变量的更新操作。
(2)过程赋值过程赋值主要用于两种结构化模块(initial 和always )中的赋值语句。
在过程块中只能使用过程赋值语句,不能在过程块中出现连续赋值语句,同时过程赋值语句也只能用在过程赋值模块中。
基本的语法结构为:被赋值变量赋值操作符赋值表达式,其中,赋值操作符是“=”或“=,”它分别代表了阻塞赋值和非阻塞赋值类型。
过程赋值语句只能对寄存器类型的变量进行赋值,经过赋值后,上面这些变量的值将保持不变,直到另一条赋值语句对变量重新赋值为止。
5.如果都不带时间延迟、阻塞和非阻塞赋值有何不同?说明它们的不同点?答:代码1:module test(a,b,c,d,y); // 两个与逻辑, 1 个或逻辑inputa,b,c,d; output y;reg y,tmp1,tmp2;always @(a or b or c or d)// y 的值并不等于当前的tmp1 ,tmp2相或的值,而是等于上begin 一次运算时tmp1 ,tmp2 相或的值。
1.利用双输入端的nand门,用Verilog编写自己的双输入端的与门、或门和非门,把它们分别命名为my_or,my_and和my_not,并通过激励模块验证这些门的功能。
答:`timescale 1ns/1ns/**************************** ********** my_and *********** ****************************/ module my_and(in1,in2,out); input in1,in2;output out;wire out1;nand a1(out,out1,out1);nand a2(out1,in1,in2); endmodule/**************************** ********** my_or ************ ****************************/ module my_or(in1,in2,out);input in1,in2;output out;wire out1,out2;nand o1(out,out1,out2);nand o2(out1,in1,in1);nand o3(out2,in2,in2); endmodule/**************************** ********** my_not *********** ****************************/module my_not(in,out);input in;output out;nand n1(out,in,in);endmodule/**************************** ********** test ***************************************/module test;reg a,b;wire and_c,or_c,not_c;initialbegina<=0;b<=0;#10 a<=0;b<=1;#10 a<=1;b<=0;#10 a<=1;b<=1;#10 $stop;endmy_and myand1(a,b,and_c);my_or myor1(a,b,or_c);my_not mynot1(a,not_c);endmodule2.使用上题中完成的my_or,my_and和my_not门构造一个双输入端的xor门,其功能是计算z第5章门级建模41=x’y+x y’,其中x和y为输入,z为输出;编写激励模块对x和y的四种输入组合进行测试仿真。
基于Verilog HDL语言的可综合性设计1 引言逻辑综合带来了数字设计行业的革命,有效地提高了生产率,减少了设计周期时间。
在手动转换设计的年代,设计过程受到诸多限制,结更容易带来人为的错误。
而一个小小的错误就导致整个模块需进行重新设计,设计转换工作占去了整个设计周期的大部分时间,验证工作进行困难,设计技术无法重用等等。
而自动逻辑综合工具的出现,突破了上述种种限制,使得设计者从繁琐的转换工作中解脱出来,将更多的时间用于验证和优化,不仅保证了功能的实现,而且有利于提高性能。
可见,综合在逻辑设计中具有举足轻重的作用。
2 综合的概念及其过程2.1 逻辑综合概述综合就是在给定标准元件库和一定的设计约束条件下,把用语言描述的电路模型转换成门级网表的过程。
要完成一次综合过程,必须包含三要素:RTL级描述、约束条件和工艺库。
2.2 RTL级描述RTL级描述是以规定设计中采用各种寄存器形式为特征,然后在寄存器之间插入组合逻辑,其可以用如图1所示的“寄存器和云图”方式来表示。
图1 RTL级描述2.3 约束条件为了控制优化输出和映射工艺要用约束,它为优化和映射试图满足的工艺约束提供了目标,并且它们控制设计的结构实现方式。
目前综合工具中可用的约束包括面积、速度、功耗和可测性约束,未来我们或许会看到对封装的约束和对布图的约束等,但是,目前的最普遍的约束是按面积和按时间的约束。
时钟限制条件规定时钟的工作频率,面积限制条件规定该设计将花的最大面积。
综合工具将试图用各种可能的规则和算法尽可能地满足这些条件。
2.4 工艺库按照所希望的逻辑行为功能和有关的约束建立设计的网表时,工艺库持有综合工具必须的全部信息。
工艺库含有允许综合进程为建立设计做正确选择的全部信息,工艺库不仅含有ASIC单元的逻辑功能,而且还有该单元的面积、单元输入到输出的定时关系、有关单元扇出的某种限制和对单元所需的定时检查。
2.5 综合过程逻辑综合工具将RTL级描述转换成门级描述一般有3个步骤:(1)将RTL级描述转换成未优化的门级布尔描述(通常为原型门,如与门、或门、触发器和锁存器),这一步称为“展平”。
(2)执行优化算法,化简布尔方程,产生一个优化的布尔方程描述,这一步称为“优化”。
(3)按半导体工艺要求,采用相应的工艺库,把优化的布尔描述映射成实际的逻辑电路,这一步称为“设计实现”。
具体的综合过程如图2所示:图2 综合过程2.6 综合涉及的两个领域从代码到门级电路的“翻译”是通过综合工具内部的映射机制实现的,其中涉及的两个领域之间的映射机制如图3所示。
图3 综合涉及的两个领域因为不同综合工具的映射机制可能不同,所以相同的程序在不同综合工具下可能得到不同的电路。
3 可综合模型的设计Verilog HDL这种硬件描述语言允许用户在不同的抽象层次上对电路进行建模,这些层次从门级、寄存器传输级、行为级直至算法级。
因此,同一个电路就可以有多种不同的描述方式,但不是每一种描述都是可综合的。
图4中使用Verilog HDL以不同的方式描述了同一个电路。
某综合系统支持对方式A和方式B的综合,但可能不支持对方式C的综合。
而方式D可能根本就不可综合。
这一局限给设计者造成了严重障碍,因为设计者不仅需要理解Verilog HDL,而且还必须理解特定综合系统的建模方式,才能编写出可综合的模型。
图4 同样的行为,不同的建模方式3.1 可综合模型的结构如果程序只用于仿真,那么几乎所有的语法和编程语句都可以使用。
但如果程序是用于硬件实现,那么我们就必须保证程序的可综合性,即所编写的程序能被综合器转化为相应的电路结构。
不可综合的HDL 语句在用综合工具综合时将被忽略或者报错。
作为设计者,应该对可综合模型的结构有所了解。
虽然不同的综合工具对Verilog HDL语法结构的支持不尽相同,但Verilog HDL中某些典型的结构是很明确地被所有综合工具支持或不支持的。
(1)所有综合工具都支持的结构:always,assign,begin,end,case,wire,tri,aupply0,supply1,reg,integer,default,for,function,and,nand,or,nor,xor,xnor,buf,not,bufif0,bufif1,notif0,notif1,if,inout,input,instantitation,module,negedge,posedge,operators,output,parameter。
(2)所有综合工具都不支持的结构:time,defparam,$finish,fork,join,initial,delays,UDP,wait。
(3)有些工具支持有些工具不支持的结构:casex,casez,wand,triand,wor,trior,real,disable,forever,arrays,memories,repeat,task,while。
因此,要编写出可综合的模型,应尽量采用所有综合工具都支持的结构来描述,这样才能保证设计的正确性和缩短设计周期。
3.2 建立可综合模型的原则要保证Verilog HDL赋值语句的可综合性,在建模时应注意以下要点:(1)不使用初始化语句。
(2)不使用带有延时的描述。
(3)不使用循环次数不确定的循环语句,如forever、while等。
(4)不使用用户自定义原语(UDP元件)。
(5)尽量使用同步方式设计电路。
(6)除非是关键路径的设计,一般不采用调用门级元件来描述设计的方法,建议采用行为语句来完成设计。
(7)用always过程块描述组合逻辑,应在敏感信号列表中列出所有的输入信号。
(8)所有的内部寄存器都应该能够被复位,在使用FPGA实现设计时,应尽量使用器件的全局复位端作为系统总的复位。
(9)对时序逻辑描述和建模,应尽量使用非阻塞赋值方式。
对组合逻辑描述和建模,既可以用阻塞赋值,也可以用非阻塞赋值。
但在同一个过程块中,最好不要同时用阻塞赋值和非阻塞赋值。
(10)不能在一个以上的always过程块中对同一个变量赋值。
而对同一个赋值对象不能既使用阻塞式赋值,又使用非阻塞式赋值。
(11)如果不打算把变量推导成锁存器,那么必须在if语句或case语句的所有条件分支中都对变量明确地赋值。
(12)避免混合使用上升沿和下降沿触发的触发器。
(13)同一个变量的赋值不能受多个时钟控制,也不能受两种不同的时钟条件(或者不同的时钟沿)控制。
(14)避免在case语句的分支项中使用x值或z值。
4 综合结果的验证对综合后的网表进行功能验证的方法是将在设计模型的仿真过程中使用的那组激励拿来对网表进行仿真,将仿真结果保存在结果文件中,然后比较两者的仿真结果是否完全相同。
Verilog HDL模型综合成网表后,通过验证来确保综合出的网表的功能与设计初衷一致是很重要的,因为综合系统可能对Verilog HDL代码作了某些与设计初衷不一致的假设或解释。
下面介绍一些由于综合时采用了不同的解释而导致功能不一致的情况。
4.1 赋值语句中的延迟综合系统通常会忽略模型中的延迟,从而导致综合出的网表的仿真结果与设计模型的仿真结果存在相位差,或者在某一时刻的结果与原来设计的完全不一致。
如下面的模型:P = #3 ‘b1;if(Q)P = #5 ‘b0;…设计者的意图是在Q为真的情况下,P的值先为1,延迟5ns后其值再变为0。
而综合系统由于忽略了延迟,当Q为真时,P始终为0,中间不会出现跳变,导致与原设计不符。
4.2 事件表综合系统在综合时常常会忽略某个always语句的事件表,而按照always语句块中的语句产生相应的硬件。
如下面的模型:always @(Read)P = Read&Write;综合出的网表是对Read信号和Write信号都敏感的一个语门,Read和Write中任何一个发生变化,都会执行语句“P = Read&Write”,使P发生变化。
而原模型仿真出来的结果则是P只受Read信号的触发,只有Read信号发生变化,才会执行语句“P = Read&Write”。
4.3 锁存器综合系统推导出锁存器的规则是:(1)变量在条件语句(if或case语句)中被赋值。
(2)变量未在条件语句的所有分支中都被赋值。
(3)在always语句的多次调用之间需要保存变量值。
必须同时满足以上3个条件,才会将变量推导成锁存器。
在设计时应明确是否需要将某一个变量推导成锁存器,如果需要,就必须按照上面3条规则来编写代码。
否则就会导致综合前后功能的不一致。
4.4 阻塞与非阻塞建议在时序逻辑建模时使用非阻塞式赋值。
因为对于阻塞式赋值来说,赋值语句的顺序对最后的综合结果有着直接的影响,设计者稍不留意就会使综合结果与设计本意大相径庭。
而如果采用非阻塞式赋值,则可以不考虑赋值语句的排列顺序,只需将其连接关系描述清楚即可。
如下面的模型:always @ (posedge clkA) //Label AwA… = DataOut; //读DataOut的值always @ (posedge clkA) //Label AwBDataOut <= …; //采用非阻塞式赋值如果将上述模型改为阻塞式赋值“DataOut = …”,按照程序中的书写顺序模拟这些always语句,在clkA上升沿处,always语句AwA读取了DataOut的当前值,然后always语句AwB再向DataOut赋新值。
如果颠倒了这两条always语句的顺序(或仿真器选择重新排定这两条always语句的执行顺序),那么先执行always语句AwB,导致零时间内将新值赋给DataOut,随后always语句AwA读取的便是更新后的DataOut 值。
这看起来是由于always语句都可以执行时,向DataOut的赋值是在零时间内发生并完成的。
因此根据先执行哪一条always语句,AwA中读取的DataOut值可能是其原值,也可能是其新值。
使用非阻塞赋值就可以消除这种仿真行为的依赖性,这时,读取DataOut发生在当前时刻,而在当前仿真周期结束时(即所有的变量读取都已完成)才将新值赋给DataOut。
这样上述模型的行为不再受always语句执行顺序的影响。
因此,在某条always语句内对变量赋值而在该always语句外读取变量,那么赋值语句应是非阻塞式赋值。
5 综合工具使用简介常见的综合工具有Synopsys公司的FPGA Express和FPGA Compiler II、Synplicity公司的Synplify 以及Mentor Graphics公司的Leonardo Spectrum等,MAX+plusII中也集成了综合器。