四年级奥数举一反三-用假设法解题鸡兔同笼..
- 格式:ppt
- 大小:2.59 MB
- 文档页数:10
假设法巧解鸡兔同笼问题及相关例题下面是我整理的公务员考试行测,希望可以对大家的公务员考试行测备考有所帮助。
假设法巧解鸡兔同笼问题:“假设法”解题的思路是:假设全为鸡,按照头数计算出脚的只数,然后与实际的脚数对比,缺少的脚数就是将兔子假设成鸡而减少的总脚数,再除以每只兔子减少的脚数,则为兔子的数量。
公式:兔数=总脚数-2×总头数÷2“得失”问题公式:损失数=每件应得×总件事-实得数÷每件应得+每件损失【例1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。
问甲教室当月共举办了多少次这项培训?A.8B.10C.12D.15【答案】D【解析】解法1:根据题意,设甲教室当月举办了x次培训,乙教室当月举办了27-x次培训,则x+y=27、5×10x+9×5y=1290当然,这道题目可以进行解方程求解,但是数字比较大,运算量较大。
解法2:用奇偶特性就非常简单,直接秒杀。
由,50x+45y=1290,1290是偶数,50x是偶数,则45y一定是偶数,即y是偶数。
又,因为x+y=27,27是奇数,则x一定是奇数,选D项。
解法3:若全在甲教室培训,总共可以培训50×27=1350人次,但实际只有1290人次,而甲教室比乙教室多培训5人,所以乙教室培训的次数为1350-12905=12次,则可以得出甲的为15次。
【例2】有大小两个瓶,大瓶可以装水5千克,小瓶可装水1千克,现在有100千克水共装了52瓶。
问大瓶和小瓶相差多少个?A. 26个B. 28个C. 30个D. 32个【答案】B【解析】:将大瓶装水量视为兔脚,小瓶装水量为鸡脚,则大瓶数为100-1×52÷5-1=12个,小瓶数为5×52-100÷5-1=40个。
鸡兔同笼问题《代换法》一、列举法二、古人算法:兔数=总脚数÷2-总头数三、代换法1.假设全是鸡:兔数=(总脚数-2×总头数)÷(4-2)2.假设全是兔:鸡数=(4×总头数-总脚数)÷(4-2)四、列方程的解法。
1、鸡兔同笼,共有50个头,170只脚,问笼中有鸡多少只?兔有多少只?2、48名学生去划船,一共乘坐10只船,其中大船坐6人,小船4人,则大船有多少只?小船有多少?3、李老师和40名同学一起去植树,李老师植树5棵,男同学每人栽3棵,女同学每人栽2棵,他们一共栽树103棵,男同学多少人?女同学有多少人?4、兔子妈妈拔萝卜,晴天每天可拔20个,雨天每天拔12个,它一连几天拔了112个萝卜,平均每天拔14个,这几天当中有多少天是雨天?5、一共有30枚硬币,由2角和5角组成,共值8元7角,2角硬币有多少个?5角硬币有多少个?10、学校买回5个篮球和7个排球,一共用了290元,一个篮球比一个排球贵10元,篮球的单价是多少元?排球的单价是多少元?11、100个和尚吃100个馒头,每个大和尚吃3个馒头,三个小和尚吃1个馒头,问大小和尚各有多少个人?有一群鸡和兔,脚的总数比头的总数的2倍还多22,兔有多少只?推广题:已知鸡比兔多(或少)多少只及总脚数,求鸡兔各多少只?如果鸡多,则兔数=(总脚数-2×多的鸡数)÷(4+2)如果兔多,则鸡数=(总脚数-4×多出总数)÷(4+2)13、鸡兔同笼,共有脚700只,兔比鸡少50只,那么兔有多少只?鸡有多少只?14、鸡兔同笼,一共有280只脚,兔比鸡少20只,那么兔有多少只?鸡有多少只?15、买了一些4角和8角的邮票,一共用去40元,已知8角邮票比4角邮票多20张,那么8角邮票买了多少张?16、鸡兔同笼,鸡比兔多30只,共有脚300只,问鸡有多少只?兔有多少只?得失问题:不合格数=(产品总数×合格品得分数-实得总分数)÷(合格得分数+扣分数)20、某小学举行数学竞赛,共20道题,若做对一题得5分,做错或没有做一题扣2分,李明得了72分,他做对了多少道?21、某次数学竞赛,共25道题,若做对一题得4分,做错或没有做一题扣1分,小刚得了80分,他做对了多少道?。
小学数学“鸡兔同笼”问题解题技巧基本题型已知鸡兔的总只数和总腿数。
求鸡和兔各多少只。
解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。
解题规律:方法1、假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数);方法2、假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例1:有鸡兔共20只,脚44只,鸡兔各几只?解:方法1、假设全是鸡( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。
兔的只数(总腿数-总只数× 2)÷(每只兔的脚数-每只鸡的脚数)20-2=18(只)。
鸡的只数方法2、假设全是兔( 20 ×4-44) ÷( 4 - 2 )=18(只)。
鸡的只数(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例 2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:方法1、假设都是小船大船:(6×15+22)÷(6+10)=7(只); 小船:15-7=8(只)方法2、假设都是大船小船:(10×15-22)÷(6+10)=8(只) 大船:15-8=7(只) 20-18=2 (只)。
兔的只数常见题型1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,方法1:(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法2:(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
方法3:列方程解答根据鸡兔脚数的差数,找出鸡与兔的只数关系例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解法1:兔数:(2×30+60)÷(2+4)=20(只); 鸡数:30-20=10(只)解法2:鸡数:(4×30+60)÷(2+4)=10(只)兔数:30-10=20(只)解法3:根据“兔脚比鸡脚多60只也就是“鸡脚比兔脚少60只,那么鸡的只数比兔的2倍少(60÷2=)30(只)解:设兔有X只,那么鸡有2X-60÷2(只)即:2X-30(只)2X-60÷2+X=303X-30=303X=60X=20 30-20=10(只)(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。
鸡兔同笼解题方法公式1,假设法设全是鸡,则兔的只数为:(总头数×2-总脚数)÷2设立全系列就是兔,则鸡的只数为:(总头数x4-总脚数)÷2总只数-鸡只数=兔只数基本原理:总头数x2如果=总脚数,表明全系列就是鸡,如果<总脚数,表明其中存有兔,每少2只脚就存有1只兔。
总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。
2,公式法:总脚数÷2-总头数=兔只数总只数-兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。
用脚总数÷2就是按全系列就是鸡去排序的,如果商=总头数,表明全系列就是鸡,如果商>总头数,表明其中存有兔。
每多1个头就是1只兔。
因为1只兔存有4只脚,前面÷的就是2,1只兔就变为2个头,也就多了1个头,所以总脚数÷2-总头数的高就是多少就存有多少只兔。
3,排除法:(脚总量-总头数x2)÷2=兔只数:总只数-兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。
前面抬起2只脚,现在每只兔还剩下2只脚。
所以用总脚数-总头数×2的差再÷2就是兔的只数。
1.最万能的方程法2.最酷的金鸡独立法分析:使每只鸡都一只脚俯卧着,每只兔都用两只后脚俯卧着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数就是兔的头数的2倍,因此从19里乘以头数14,剩去的就是兔的头数19-14=5只,鸡存有14-5=9只。
3.最逗的吹哨法4.最常用的假设法5.最牛的特异功能法假设孙悟空变为兔子,说道“变小”,每只兔子又短出来一个头去,然后对妖精说道“将它打碎”,变为“一头两脚”的`两只“半兔”,半兔与鸡都就是两只脚,因而共计28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就存有14-5=9只。
假设法一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法一两个量的“鸡兔同笼”问题——变例【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【例 2】张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中___________发。
第一部分:典型例题:例题1:甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地。
已知乙到达A 地时,甲已先到B 地5小时。
求AB 两地的距离。
思路点拨:假设甲到达B 地后,继续前行走。
那么当乙到达A 地时,甲乙又走了60512=⨯。
就是在这相同时间内,甲比乙多走的路程,由于甲每小时比乙多走12-8=4,因此看60千米里面有几个4千米,就得出乙走完全程的时间。
再用乙的速度×时间就可以求出AB 两地的距离。
()[]1208-125128=÷⨯⨯例题2:小王骑车到甲地到乙地往返一次。
去时的速度是每小时20千米,回来时的速度是每小时12千米,求他往返的平均速度。
思路点拨:要求往返的平均速度,应该用总路程÷往返的总时间,而这道题的具体路程是个未知量。
我们可以假设路程是60千米,那么总路程就是120260=⨯(千米)。
往返的总时间是812602060=÷+÷(小时),用158120=÷(千米)就是往返的平均速度,当然假设的路程也可以是别的数据,但最好既是12的倍数,又是20的倍数。
()()155312012602060260=+=÷+÷÷⨯例题3:学校举行乒乓球比赛。
已知参加单打的小组比双打多13组,参加单打的人数比双打多16人。
参加单打和双打的各有多少人?思路点拨:单打每组2人,双打每组4人。
我们可以假设每组也只有2人,既然单打比双打多13组,那么单打的人数应比双打多26132=⨯(人),但实际上只多16人。
为什么会相差1016-26=(人)、这是因为每组双打的人数少算4-2=2(人)。
所以参加双打的有5210=÷(组) 双打的人数:单打的人数:孰能生巧:1.一列快车从甲地开往乙地,每小时行200千米,以此同时一列慢车从乙地开往甲地,每小时行160千米。
途中快车因故停留4小时,所以比慢车迟1小时到达目的地。
鸡兔同笼问题解题方法
鸡兔同笼问题解法如下:
方法一、假设法
在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。
常用的假设有:假设笼子里都是兔或者都是鸡,比如:笼子里有30只头,68只脚,兔多少?鸡多少?
解题方法是假设笼子里都是兔子,这样就可以得到鸡的只数(4×30-68)÷(4-2)=26(只),那么兔子就是30-26=4(只)
方法二、砍腿法
顾名思义,砍腿法就是把多余的腿给去掉,即把兔子的腿变为两条,那么笼子里还剩下的腿的数量应该是:30×2=60,而原来应该是有68只脚,那么这里应该减少了68-60=8(只)脚,当兔子去掉了2条腿,笼子里腿的数量就会减2,那么就是有8÷2=4(只)兔子,得出兔子的只数,鸡的数量也就可以得到了。
方法三、抬腿法
与砍腿法一样,抬腿法的方法也是与名字一样。
这个方法的步骤是让鸡抬起一只腿,兔子抬起两只腿,这样的话,笼子里腿的数量就会变成原来数量的一半,即68÷2=34。
然后让鸡和兔子抬起的腿落地,这样兔子的脚就会比兔子的数多1,而鸡的脚就是鸡的只数。
因此就可以推出,兔子的只数就是腿的数减去头的数,即34-30=4(只),而鸡的数量也就是30-4=26只。
设法解题专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数X鸡兔总数)十(每只兔子脚数-每只鸡脚数) 用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
例题1 .1 鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?思路导航:假设全是鸡,共有脚:30X 2=60 只;比实际少:84-60=24 只;这是因为把4 只脚的兔子都按2 只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24 只脚,说明把:24- 2=12只兔子按鸡算了。
所以,共有兔子12只,有鸡30-12=18只。
例:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。
假设全是面值2 元的人民币,那么27 张人民币是2X 27=54元,与实际相比减少了99-54=45 元,减少的原因是每把一张面值2 元的人民币当作一张面5 元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45- 3=15张,面值2元的人民币有27—15=12张。
练习一1 ,鸡、兔共100 只,共有脚280只。
鸡、兔各多少只?2,鸡、兔共50只,共有脚160只。