现代信号处理第6章连续小波变换
- 格式:ppt
- 大小:1.47 MB
- 文档页数:59
现代信号处理思考题(含答案)第一章绪论1、试举例说明信号与信息这两个概念的区别与联系。
信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。
如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。
2、什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9 正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。
从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。
傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。
正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。
3、为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法?在信号处理各种运算中内积变换发挥了重要作用。
内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。
对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数 x( t)与基函数 e i t通过内积运算。
匹配出信号x( t )中圆频率为 w 的正弦波 .而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x(t )中包含与小波基函数最相关或最相似的分量。
“特征波形基函数信号分解”旨在灵活运用小波基函数a, b (t)去更好地处理信号、提取故障特征。
用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。
不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。
cwt 小波变换1. 介绍小波变换(Wavelet Transform)是一种用于信号处理和数据分析的数学工具,它可以将信号分解成不同频率的子信号,并提供了对信号在时间和频率上的局部分析能力。
连续小波变换(Continuous Wavelet Transform,CWT)是其中一种基本形式。
CWT 是通过将信号与一个母小波函数进行卷积来实现的,这个母小波函数可以进行平移和缩放。
通过调整平移和缩放参数,CWT 可以提供不同尺度下的频谱信息,从而提供了对信号局部特征的多尺度分析能力。
2. 算法原理CWT 的算法原理如下:1.选择一个合适的母小波函数(通常选择具有紧支集、平滑性和可调节性质的小波函数),如 Morlet 小波、Mexican Hat 小波等。
2.对于给定的输入信号 x(t) 和尺度参数 a,计算连续小波系数 C(a, b):其中 x(t) 是输入信号,ψ(a, t) 是母小波函数在尺度 a 和时间 t 上的形状。
3.对不同尺度参数 a 进行迭代,计算得到一系列连续小波系数矩阵。
4.可以通过对连续小波系数矩阵进行反变换,恢复原始信号。
3. 特点与应用CWT 具有以下特点和应用:•多尺度分析能力:CWT 可以提供对信号在不同尺度下的频谱信息,从而实现多尺度分析。
这使得 CWT 在信号处理、图像处理、模式识别等领域有广泛应用。
•局部特征提取:CWT 可以通过调整母小波函数的尺度参数,实现对信号局部特征的提取。
例如,在音频处理中,可以利用 CWT 提取不同频率范围内的声音特征。
•压缩表示与去噪:CWT 可以将信号分解成不同频率的子信号,并且具有压缩表示的能力。
这使得 CWT 在数据压缩和去噪方面有应用潜力。
•图像处理与边缘检测:CWT 在图像处理中可以实现边缘检测、纹理分析等功能。
通过将图像进行连续小波变换,并根据不同尺度下的系数信息来进行图像分割和特征提取。
•信号识别与分类:CWT 可以提取信号的局部特征,并结合机器学习算法进行信号识别和分类。
MATLAB 连续小波变换简介连续小波变换(Continuous Wavelet Transform,CWT)是一种广泛应用于信号处理和图像处理领域的数学工具。
MATLAB是一种强大的数值计算和科学编程语言,也提供了丰富的工具箱以支持小波变换和相关分析。
本文将介绍 MATLAB 中如何进行连续小波变换,并说明其基本原理和算法,以帮助读者理解连续小波变换的概念和应用。
连续小波变换原理连续小波变换是一种将信号分解成一系列不同尺度的小波基函数的过程。
它可以提供时间和频率域上的局部信息,并且在处理非平稳信号时具有重要的作用。
连续小波变换通过将信号与不同尺度和平移的小波基函数进行卷积来实现。
对于一个连续的信号 x(t),连续小波变换可以表示为:其中,ψ(a, b) 是小波基函数,a 是尺度因子,b 是平移因子,* 表示卷积操作。
通过改变 a 和 b 的值,可以得到在不同时间和频率分辨率上的频谱图。
MATLAB 中的连续小波变换在 MATLAB 中,进行连续小波变换需要使用 Wavelet Toolbox。
该工具箱提供了一系列函数来实现小波分析和小波变换。
以下是在 MATLAB 中进行连续小波变换的基本步骤:1.导入信号数据:首先,需要将待处理的信号数据导入 MATLAB。
可以使用load函数或者直接在代码中定义一个信号向量。
2.创建小波对象:使用wavelet函数来创建一个小波对象。
可以选择不同类型的小波,如‘haar’、‘db4’、‘sym8’ 等。
wname = 'db4';w = wavelet(wname);3.进行连续小波变换:使用cwt函数来进行连续小波变换。
需要指定输入信号、小波对象、尺度范围和平移因子范围。
scales = 1:100;shifts = 1:100;[cfs, frequencies] = cwt(signal, scales, w, 'Shift', shifts);cfs是连续小波变换得到的系数矩阵,frequencies是对应的频率向量。
2.1.1 连续小波变换(1)连续小波基函数所谓小波(Wavelet),即存在于一个较小区域的波。
小波函数的数学定义是:设)(t ψ为一平方可积函数,即)()(2R L t ∈ψ,若其傅立叶变换)(ˆw ψ满足: ∞<=⎰dw w w C R 2)(ψψ (2-1)时,则称)(t ψ为一个基本小波或小波母函数,并称式(2-1)是小波函数的可容许条件。
根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可容许性条件可知0)(0==w w ψ,即直流分量为零,因此小波又具有正负交替的波动性。
将小波母函数)(t ψ进行伸缩和平移,设其伸缩因子(亦称尺度因子)为a ,平移因子为b ,并记平移伸缩后的函数为)(,t b a ψ,则: 0;,,)(21,≠∈⎪⎭⎫ ⎝⎛-=-a R b a a t a t b a τψψ (2-2) 并称)(,t b a ψ为参数a 和b 小波基函数。
由于a 和b 均取连续变换的值,因此又称为连续小波基函数,它们是由同一母函数)(t ψ经伸缩和平移后得到的一组函数系列。
定义小波母函数)(t ψ的窗口宽度为t ∆,窗口中心为0t ,则可以求得连续小波基函数)(,t b a ψ的窗口中心及窗口宽度分别为:t a t b at t a b a ∆=∆+=τ,0,, (2-3) 设)(ˆw ψ是)(t ψ的傅立叶变换,频域窗口中心为0w ,窗口宽度为w ∆,)(t ψ的傅立叶变换为)(,w b a ψ,则有:)()(,aw e a w jwb b a φψ-= (2-4) 所以此时频域窗口中心及窗口宽度分别为:w aw w a w b a b a ∆∆1,1,0,== (2-5) 由此可见,连续小波的时、频窗口中心和宽度均是尺度因子a 的函数,均随着a 的变化而伸缩,并且还有w t w t b a b a ∆⋅∆=∆⋅∆,, (2-6)即连续小波基函数的窗口面积是不变的,这正是Heisenberg 测不准原理。
连续小波变换的定义连续小波变换(Continuous Wavelet Transform,CWT)是一种数学工具,用于在时域和频域之间转换信号。
它通过将信号与母小波进行卷积来分析信号的频率成分和时域特征。
连续小波变换在诸多领域中得到广泛应用,如信号处理、图像处理、模式识别等。
一、母小波母小波是连续小波变换中的基函数,用于分析信号的局部特征。
母小波必须满足一定的数学条件,其中最重要的是零平均性和正交性。
零平均性要求母小波的积分为零,这样可以排除信号的直流成分。
正交性要求母小波与不同尺度和平移的版本之间具有正交性,以便在不同频率和时间上分析信号。
一些常用的母小波包括Morlet小波、Haar小波以及高斯小波。
每种母小波都有其特定的频率响应和时域特性,适用于不同类型的信号分析。
二、连续小波变换的计算步骤连续小波变换可以通过以下步骤进行计算:1.选择合适的母小波函数。
根据信号的特征选择适合的母小波函数,例如需要较好的时域分辨率时可以选择Morlet小波。
2.对母小波函数进行尺度变换和平移变换。
通过缩放和平移母小波函数,生成在不同时间尺度下的小波函数。
3.将信号与小波函数进行卷积。
对信号和不同尺度下的小波函数进行卷积运算,得到连续小波系数。
4.可选的信号重建。
根据需要,可以通过反向连续小波变换将小波系数重构为原始信号。
三、连续小波变换的特点连续小波变换相比于离散小波变换具有以下特点:1.连续性:连续小波变换可以在时间域上连续地变换信号,不需要进行离散化处理。
这使得连续小波变换对信号的时域特征更加敏感。
2.尺度可调性:连续小波变换可以通过改变母小波的尺度来分析不同频率成分的信号。
不同尺度的小波函数可以捕捉信号在不同频率范围内的变化。
3.多分辨率分析:连续小波变换可以提供多个尺度下的频谱信息,从而实现对信号的多尺度分析。
这有助于对信号中的局部特征进行更详细的分析和处理。
4.良好的时-频局部化特性:连续小波变换可以在时-频平面上对信号进行局部化分析,对信号的瞬时频率和局部时域特征进行更准确的刻画。
连续小波变换公式连续小波变换(Continuous Wavelet Transform,CWT)是信号处理中一种用于分析非平稳信号的方法。
它是由子带滤波技术发展而来, 相对于传统的傅里叶变换更适用于分析时域变化的信号。
连续小波变换公式描述了如何通过小波函数对信号进行分解和重构。
CWT(a, b) = \int_{-\infty}^{\infty} f(t) \cdot \psi_{a,b}(t) dt\]其中,\(f(t)\) 表示输入信号,\(\psi_{a,b}(t)\) 是小波函数,\(a\) 和 \(b\) 是小波函数的尺度和平移参数。
小波函数是一种可以自适应调整尺度和平移的函数。
在连续小波变换中,小波函数的尺度参数\(a\)控制着小波函数的频率,而平移参数\(b\)控制着小波函数相对于时间轴的位置。
通过调整尺度和平移参数,可以对不同频率和时域位置的信号成分进行分析。
在连续小波变换中,小波函数通常选择为母小波(mother wavelet),它是一个能够完备描述信号的特征的函数。
常用的母小波包括Morlet小波、Haar小波、Daubechies小波等。
不同的小波函数具有不同的频率和时域分辨率特性,适用于不同类型的信号分析。
为了实现小波变换,通常采用数值方法进行离散化计算。
离散小波变换(Discrete Wavelet Transform,DWT)是连续小波变换的一种离散近似方法,通过对连续小波变换公式进行离散采样和求和来表示信号的小波变换。
DWT是一种非常高效的信号分析方法,被广泛应用于图像处理、信号压缩和模式识别等领域。
除了连续小波变换和离散小波变换,还有一种相对较新的小波变换方法,称为连续小波包变换(Continuous Wavelet Packet Transform,CWPT)。
连续小波包变换是连续小波变换的扩展,通过对小波系数进行进一步的分解,可以获得更高分辨率的小波变换结果。
第6章 连续小波变换6.1 小波及连续小波变换● 定义6.1 设函数12()()()t L R L R ψ∈ ,并且ˆ(0)0ψ=,既()0t dtψ+∞-∞=⎰,则称为一个基本小波或母小波。
对母小波()t ψ做伸缩平移得,()a b t b t a ψ-⎛⎫=⎪⎝⎭(6-1) 称为,()a b t ψ小波函数,简称小波。
其中0a ≠,b 、t 均为连续变量:1) a 为尺度因子,b 为平移因子。
变量a 反映了函数的宽度,b 反映了小波在t 轴上的平移位置,小波函数,()a b t ψ是基本小波函数()t ψ先b 做移位再由a 做伸缩,,a b 不断变化产生的一组函数,又称作小波基函数,或小波基。
2) 母小波的能量集中在原点,小波函数,()a b t ψ的能量集中在b 点。
3)一般,尺度因子0a >,作用是使小波()t ψ做伸缩,a 越大,()t aψ越宽,既小波的持续时间随aa 变化时保持小波,()ab t ψ的能量相等,既2,()a b t ψ2()t ψ=(保范性质)。
● 定义 6.2 设12()()()t L R L R ψ∈ ,且满足条件2ˆ()c d ψψωωω+∞-∞=<∞⎰(6-2) 则称()t ψ为允许小波,上式为允许条件。
由c ψ<+∞知,ˆ(0)0ψ=,既()0t dt ψ+∞-∞=⎰,因此允许小波一定是基本小波;反之,若()t ψ满足1()(1)(0)t c t εψε--≤+>,且ˆ(0)0ψ=,其中c 是一个常数,则式(6-2)成立。
这表明允许条件与()0t dt ψ+∞-∞=⎰几乎是等价的。
从小波的定义知,小波要求由振荡性,既包含着某些频率特征,还要求具有一定的局部性,既它在一定的区间上恒等于零或很快收敛到零。
● 设()t ψ是一个基本小波,,()b a t ψ是连续小波函数,对于()f t 2()L R ∈,其连续小波变换定义为(,)f WT ab ()*t b f t dt a ψ+∞-∞-⎛⎫=⎪⎝⎭,,a b f ψ= (6-3)其中,0a ≠,b 、t 均为连续变量,*()t ψ表示()t ψ的共轭。
实验一:连续小波变换实验目的:通过编程更好地理解连续小波变换,从而对连续小波变换增加了理性和感性的认识,并能提高编程能力!通过连续小波变换了解信号中的频率分量。
实验原理:一维连续小波变换公式:()1*2(,)f t b W a b af t dt a ψ+∞--∞-⎛⎫= ⎪⎝⎭⎰当小波函数()t ψ为实函数时(,)f W a b ()12(,)f t b W a b af t dt a ψ+∞--∞-⎛⎫== ⎪⎝⎭⎰在给定尺度下,对待分析信号()f t 和小波函数()t ψ按照s t nT =,s b nT =进行采样,其中s T 为采样间隔,则小波变换可近似如下:()12()(,)s f s sn n k T W a b T af nT a ψ-⎛⎫-= ⎪⎝⎭∑ =()12nn k T af n a ψ--⎛⎫∆ ⎪⎝⎭∑对给定的a 值,依次求出不同a 值下的一组小波系数,由于数据采样间隔∆t 为0.03(常量),所以可以把这个系数忽略,并通过公式下面对小波变换矩阵进行归一化处理。
(,)(,)min*255max minm n wfab m n I -=-、实验结果:程序附录:(1)墨西哥小波函数function Y=mexh0(x)if abs(x)<=5Y=((pi^(-1/4))*(2/sqrt(3)))*(1-x*x)*exp(-(x*x)/2);elseY=0;end;(2)实验程序load('data.mat');n=length(dat);amax=70; % 尺度a的长度a=zeros(1,amax);wfab=zeros(amax,n); %小波系数矩阵mexhab=zeros(1,n); % ,某尺度下小波系数for s=1:amax %s 表示尺度for k=1:nmexhab(k)=mexh0(k/s);endfor t=1:n % t 表示位移wfab(s,t)=(sum(mexhab.*dat))/sqrt(s); %将积分用求和代替mexhab=[mexh0(-1*t/s),mexhab(1:n-1)]; %mexhab 修改第一项并右移 endendwfab_abs=abs(wfab);for index=1:amaxmax_coef=max(wfab_abs(index,:));min_coef=min(wfab_abs(index,:));ext=max_coef-min_coef;wfab_abs(index,:)=255*(wfab_abs(index,:)-min_coef)/ext;endfigure(1);plot(dat);title('原始数据图');xlabel('时间')ylabel('幅度')figure(2);image(wfab_abs);colormap(pink(255));title('连续小波变换系数图');xlabel('时间')ylabel('尺度')。
2.1.1 连续小波变换(1)连续小波基函数所谓小波(Wavelet),即存在于一个较小区域的波。
小波函数的数学定义是:设)(t ψ为一平方可积函数,即)()(2R L t ∈ψ,若其傅立叶变换)(ˆw ψ满足: ∞<=⎰dw w w C R 2)(ψψ (2-1)时,则称)(t ψ为一个基本小波或小波母函数,并称式(2-1)是小波函数的可容许条件。
根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可容许性条件可知0)(0==w w ψ,即直流分量为零,因此小波又具有正负交替的波动性。
将小波母函数)(t ψ进行伸缩和平移,设其伸缩因子(亦称尺度因子)为a ,平移因子为b ,并记平移伸缩后的函数为)(,t b a ψ,则: 0;,,)(21,≠∈⎪⎭⎫ ⎝⎛-=-a R b a a t a t b a τψψ (2-2) 并称)(,t b a ψ为参数a 和b 小波基函数。
由于a 和b 均取连续变换的值,因此又称为连续小波基函数,它们是由同一母函数)(t ψ经伸缩和平移后得到的一组函数系列。
定义小波母函数)(t ψ的窗口宽度为t ∆,窗口中心为0t ,则可以求得连续小波基函数)(,t b a ψ的窗口中心及窗口宽度分别为:t a t b at t a b a ∆=∆+=τ,0,, (2-3) 设)(ˆw ψ是)(t ψ的傅立叶变换,频域窗口中心为0w ,窗口宽度为w ∆,)(t ψ的傅立叶变换为)(,w b a ψ,则有:)()(,aw e a w jwb b a φψ-= (2-4) 所以此时频域窗口中心及窗口宽度分别为:w aw w a w b a b a ∆∆1,1,0,== (2-5) 由此可见,连续小波的时、频窗口中心和宽度均是尺度因子a 的函数,均随着a 的变化而伸缩,并且还有w t w t b a b a ∆⋅∆=∆⋅∆,, (2-6)即连续小波基函数的窗口面积是不变的,这正是Heisenberg 测不准原理。
连续小波变换python代码连续小波变换(CWT)是一种信号处理技术,用于分析非平稳信号的时间-频率特性。
在Python中,可以使用PyWavelets库实现CWT。
本文将介绍如何使用PyWavelets库实现CWT,并提供完整的Python代码示例。
一、PyWavelets库简介PyWavelets是一个开源的Python库,用于计算各种小波变换和小波分析技术。
它支持多种小波族和多种小波滤波器,并提供了许多有用的工具函数来帮助用户分析信号。
二、连续小波变换概述连续小波变换是一种将信号分解成不同频率的技术。
它使用一组基函数(称为小波),这些基函数具有不同的频率和时间延迟。
通过对每个基函数进行缩放和平移,可以获得不同频率和时间分辨率的近似。
CWT可以表示为以下公式:$$C(a,b) = \frac{1}{\sqrt{|a|}}\int_{-\infty}^{\infty}x(t)\psi^{*}\left(\frac{t-b}{a}\right)dt$$其中,$x(t)$是输入信号,$\psi^{*}(t)$是复共轭小波函数,$a$和$b$是尺度参数和平移参数。
三、使用PyWavelets实现连续小波变换首先,我们需要安装PyWavelets库。
可以使用以下命令在终端中安装:```pythonpip install PyWavelets```接下来,我们将使用以下Python代码示例来演示如何使用PyWavelets库实现CWT:```pythonimport numpy as npimport matplotlib.pyplot as pltimport pywt# 生成信号t = np.linspace(-1, 1, 200, endpoint=False)sig = np.sin(2*np.pi*7*t) + np.cos(2*np.pi*2*t)# 连续小波变换widths = np.arange(1, 31)cwtmatr, freqs = pywt.cwt(sig, widths, 'morl')# 绘制结果plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) plt.colorbar()plt.show()```该代码将生成一个包含7 Hz和2 Hz正弦和余弦信号的人工信号,并将其输入到CWT中。