核电站安全壳预应力损失初步计算
- 格式:pdf
- 大小:218.14 KB
- 文档页数:3
预应力混凝土预应力损失及计算方法预应力混凝土是一种在混凝土构件承受使用荷载之前,预先对其施加压力的混凝土结构。
通过这种方式,可以有效地提高混凝土构件的抗裂性能、刚度和承载能力。
然而,在实际工程中,由于多种因素的影响,预应力会产生一定的损失。
准确计算和理解这些预应力损失对于保证预应力混凝土结构的安全性和可靠性至关重要。
预应力损失主要包括以下几个方面:锚具变形和钢筋内缩引起的预应力损失当预应力筋在锚固过程中,由于锚具的变形、钢筋与锚具之间的相对滑移以及混凝土的压缩等原因,会导致预应力的损失。
这种损失通常发生在预应力筋的锚固端,其大小与锚具的类型、锚具的尺寸、预应力筋的直径以及张拉控制应力等因素有关。
预应力筋与孔道壁之间的摩擦引起的预应力损失在预应力筋的张拉过程中,由于预应力筋与孔道壁之间存在摩擦力,使得预应力筋在沿孔道长度方向上的应力逐渐减小。
这种摩擦损失与孔道的形状、长度、预应力筋的类型以及施工工艺等因素有关。
混凝土加热养护时受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失在混凝土构件进行加热养护时,如果预应力筋已经张拉完成,由于钢筋与养护设备之间存在温差,会导致钢筋伸长,从而引起预应力的损失。
预应力筋的应力松弛引起的预应力损失预应力筋在长期保持高应力状态下,会产生应力松弛现象,即应力随时间逐渐降低。
这种损失与预应力筋的类型、初始应力水平、时间以及环境温度等因素有关。
混凝土的收缩和徐变引起的预应力损失混凝土在硬化过程中会发生收缩,在长期荷载作用下会产生徐变。
这些变形会导致预应力筋的回缩,从而引起预应力的损失。
收缩和徐变引起的预应力损失与混凝土的配合比、养护条件、构件的尺寸以及加载龄期等因素有关。
接下来,我们来探讨一下预应力损失的计算方法。
对于锚具变形和钢筋内缩引起的预应力损失,其计算公式通常为:\(\sigma_{l1} = a\times\frac{l}{E_{s}}\)其中,\(\sigma_{l1}\)为锚具变形和钢筋内缩引起的预应力损失,\(a\)为锚具变形和钢筋内缩值,\(l\)为张拉端至锚固端之间的距离,\(E_{s}\)为预应力筋的弹性模量。
预应力损失计算及其简化计算论文上传:playchap 留言论文作者:郭举李光瑞马杰您是本文第156位读者摘要:对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。
关键词:预应力损失简化计算预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。
引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。
我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。
此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。
现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。
1.预应力损失基本计算在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。
全部损失由两部分组成,即瞬时损失和长期损失。
其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。
长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。
我国新规范采用分项计算然后按时序逐项叠加的方法。
下面将分项讨论引起预应力损失的原因,损失值的计算方法。
1.1孔道摩擦损失σl2孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。
包括长度效应(kx)和曲率效应(μθ)引起的损失。
宜按下列公式计算:σl2=σcon(1-1/e kx+μθ)当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算:σl2=(kx+μθ)σcon1.张拉端 2.计算截面式中:X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);K--考虑孔道每米长度局部偏差的摩擦系数,按规范取值;μ--预应力钢筋与孔道壁之间的摩擦系数,按规范取值。
6.2 预应力损失值计算第6.2.1条预应力钢筋中的预应力损失值可按表6.2.1的规定计算。
当计算求得的预应力总损失值小于下列数值时,应按下列数值取用:当张法构件 100N/mm2后张法构件 80N/mm2预应力损失值(N/mm2) 表6.2.1第6.2.2条预应力直线钢筋由于锚具变形和预应力钢筋内缩引起的预应力损失值σl1可按下列公式计算:σl1=a/lEs(6.2.2)式中a--张拉端锚具变形和钢筋内缩值(mm),可按表6.2.2采用;l--张拉端至锚固端之间的距离(mm).锚具变形和钢筋内缩值a(mm) 表6.2.2块体拼成的结构,其预应力损失尚应计及块体间填缝的预压变形。
当采用混凝土或砂浆为填缝材料时,每条填缝的预压变形值可取为1mm.第6.2.3条后张法构件预应力曲线钢筋或折线由于锚具变形和预应力钢筋内缩引起的预应力损失值σl1,应根据预应力曲线钢筋或折线钢筋与孔道壁之间反向摩擦影响长度lf范围内的预应力钢筋变形值等于锚具变形和钢筋内缩值的条件确定,反向摩擦系数可按本规范表6.2.4中的数值采用。
常用束形的后张预应力钢筋在反向摩擦影响长度lf范围内的预应力损失值σl1可按本规范附录D计算。
第6.2.4条预应力钢筋与孔道壁之间的摩擦引起的预应力损失值σl2(图6.2.4),宜按下列公式计算:σl2=σcon(1-1/e kx+μθ) (6.2.4-1)当(kx+μθ)≤0.2时,σl2可按下列近似公式计算:σl2=(kx+μθ)σcon(6.2.4-2)式中X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);K--考虑孔道每米长度局部偏差的摩擦系数,按表6.2.4采用;μ--预应力钢筋与孔道壁之间的摩擦系数,按表6.2.4采用。
摩擦系数表6.2.4第6.2.5条混凝土收缩、徐变引起受拉区和受压区纵向预应力钢筋的预应力损失值σl5、σ'l5可按下列方法确定:1对一般情况先张法构件σl5=45+280σpc/f'cu/1+15ρ(6.2.5-1)σ'l5=45+280σ'pc/f'cu/1+15ρ'(6.2.5-2)后张法构件σl5=35+280σpc/f'cu/1+15ρ(6.2.5-3)σ'l5=35+280σ'pc/f'cu/1+15ρ'(6.2.5-4)式中σpc 、σ'pc--在受拉区、受压区预应力钢筋合力点处的混凝土去向压应力;f'cu--施加预应力时的混凝土立方体抗压强度;ρ、ρ'--受拉区、受压区预应力钢筋和非预应力钢筋的配筋率:对先张法构件,ρ=(Ap +As)/A,ρ'=(A'p+A's)/A;对后张法构件,ρ=(Ap +As)/An,ρ'=(A'p+A's)/An;对于对称配置预应力钢筋和非预应力钢筋的构件,配筋率ρ、ρ'应按钢筋总截面面积的一半计算。
第三章预应力与预应力损失计算预应力与预应力损失计算是结构工程领域中非常重要的一部分内容。
在第三章中,我们将深入探讨预应力的概念、计算方法和预应力损失的计算。
一、预应力概念预应力是指在结构正常使用过程中,在一定截面上施加的一种人为预先设置的压应力。
通过施加这种压应力,能够在结构中产生与它们相对应的弯矩和剪力,从而改善结构的控制性能、抗裂性能和承载性能。
二、预应力计算方法1. 预应力损失计算预应力损失是指预应力钢材所受的损失,主要分为两大类:瞬时损失和时间依赖性损失。
瞬时损失包括张拉初始损失、传递长度损失和锚固长度损失;时间依赖性损失包括徐变损失和材料损耗。
2. 预应力计算步骤(1)确定结构设计参数,包括材料参数、几何参数和受力状态等。
(2)计算预应力的大小和位置,根据结构受力分析确定所需的预应力大小和预应力钢材的位置。
(3)选择预应力的施加方式,包括预应力的初始张拉和锚固方式。
(4)进行预应力损失计算,按照相关规范和理论进行预应力损失的计算。
(5)校核预应力的效果,根据结构受力分析,检查预应力对结构性能的影响是否满足设计要求。
三、预应力损失计算1. 瞬时损失计算(1)张拉初始损失:包括初始张拉时应力的损失以及张拉应力在开锚后的递减。
(2)传递长度损失:由于预应力杆在传递过程中,受到局部应变的影响,导致预应力的损失。
(3)锚固长度损失:预应力锚固长度是指在预应力锚具有效长度之后的那部分长度,预应力损失主要发生在锚固长度的部分。
2. 时间依赖性损失计算(1)徐变损失:预应力杆所受到的长期荷载会导致预应力的逐渐减小,这部分损失称为徐变损失。
(2)材料损耗:主要指预应力钢材的弹性模量随时间的增加而减小,造成预应力的损失。
四、案例分析以某桥梁结构为例,根据设计参数进行预应力的计算和预应力损失的计算。
首先确定结构的受力状态、材料参数和几何参数,然后按照计算步骤进行预应力的计算,并考虑瞬时损失和时间依赖性损失的计算,最后校核预应力的效果是否满足设计要求。
预应力损失的计算预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。
引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。
我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。
此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。
现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。
1.预应力损失基本计算在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。
全部损失由两部分组成,即瞬时损失和长期损失。
其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。
长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。
我国新规范采用分项计算然后按时序逐项叠加的方法。
下面将分项讨论引起预应力损失的原因,损失值的计算方法。
1.1孔道摩擦损失σl2孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。
包括长度效应(kx)和曲率效应(μθ)引起的损失。
宜按下列公式计算:σl2=σcon(1-1/e kx+μθ)当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算:σl2=(kx+μθ)σcon1.张拉端 2.计算截面式中:X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);K--考虑孔道每米长度局部偏差的摩擦系数,按规范取值;μ--预应力钢筋与孔道壁之间的摩擦系数,按规范取值。
对摩擦损失计算用的K,μ值取为定值,是根据当前国内有关试验值确定的,与原规范GBJ10-89不同,与国外相比,μ值较高,是由于铁皮管质量不高或预压力筋与混凝土直接接触,从而增大摩擦力的缘故。
核电站安全壳预应力束损失与伸长量计算方法
王洪良
【期刊名称】《山西建筑》
【年(卷),期】2010(036)011
【摘要】以某核电站工程为例,对其混凝土安全壳预应力束形状进行了描述,分别介绍了环向标准预应力钢束和绕贯穿件预应力束的应力损失及伸长量,并对计算结果进行评价,得出了关于预应力束应力损失和伸长量的规律.
【总页数】3页(P79-81)
【作者】王洪良
【作者单位】上海核工程研究设计院,上海,200233
【正文语种】中文
【中图分类】TU378.7
【相关文献】
1.空间预应力束伸长量的简化计算方法 [J], 李刚
2.空间预应力束伸长量的简化计算方法 [J], 李刚
3.大体积混凝土(核电站安全壳)预应力损失分析 [J], 泮忠元;王社良
4.核电站安全壳预应力损失初步计算 [J], 程长亮
5.核电站混凝土安全壳中预应力的分布和损失 [J], 林松涛;张际斌
因版权原因,仅展示原文概要,查看原文内容请购买。
预应力损失计算1 引言由于受施工状况、材料性能和环境条件等因素的影响,预应力结构中预应力钢筋的预拉应力在施工和使用过程中将会逐渐减少。
这种减少的应力称为结构预应力损失[2]。
设计中所需的钢筋预应力值是扣除相应阶段的应力损失后钢筋中实际存在的有效应力值(pe σ)。
设钢筋初始张拉的预应力为con σ(称为张拉控制应力),相应的应力损失值为l σ,那么预应力钢筋的有效应力为:pe con lσσσ=-因此,要使结构获得所需的有效应力(peσ),除需要根据承受外荷载的情况和结构的使用性能确定张拉控制应力(con σ)外,关键是能准确估算出预应力损失值l σ。
引起结构预应力损失的因素是很多,要准确地估算预应力损失值是非常困难的。
根据目前的研究成果,预应力损失按损失完成时间分为瞬时损失和长期损失两大类。
瞬时损失是指施加预应力时短时内完成的损失,例如锚具变形和钢筋滑移、混凝土弹性压缩、分批张拉等引起的损失;长期损失指的是考虑了材料的时间效应所引起的预应力损失,主要包括混凝土的收缩、徐变、和钢筋预应力松弛引起的损失。
有关瞬时损失的计算在理论上已基本达成了一至的计算原则。
但是,对于长期损失的计算由于存在的不确定因素较多,有些因素(如混凝土的收缩、徐变及钢筋松弛)引起的预应力损失值是随着时间的增长和环境的变化而不断变化的;还有些因素之间互相影响导致预应力值降低,例如混凝土收缩、徐变使构件缩短,钢筋回缩引起预应力值降低;反过来,预应力值降低又将减小徐变损失;钢筋的松弛也将引起徐变损失的减小等。
各国学者、专家根据自己的试验结果及有关假设和推导提出了不同的的计算理论。
预应力损失估计准确与否,对预应力结构安全性能和使用性能(如结构的抗裂性、裂逢、挠度和反拱等)将有很大的影响。
预应力损失估计过大,结构中的混凝土将承受过高的持续压应力,产生过大的反拱度,对结构安全和使用产生不利的影响,同时造成材料的浪费;反之,则会造成局部预压应力不足,导致结构过早开裂,达不到预压的效果,甚至影响结构的安全性[15]。
预应力损失计算在预应力结构中,预应力损失的准确计算至关重要。
预应力损失是指在预应力施加后,由于各种因素的影响,预应力筋中的预拉应力逐渐减小的现象。
这一现象直接关系到预应力结构的性能和安全性,因此对预应力损失的计算必须精确可靠。
预应力损失主要包括以下几个方面:首先是锚具变形和钢筋内缩引起的损失。
当预应力筋在锚固过程中,锚具会发生一定的变形,同时钢筋也会向内收缩,这就导致了预应力的损失。
这种损失的大小与锚具的类型、尺寸,以及预应力筋的直径等因素有关。
例如,采用夹片式锚具时,由于夹片的嵌入和锚具的变形,会产生相对较大的损失;而对于镦头锚具,其损失则相对较小。
其次是预应力筋与孔道壁之间的摩擦引起的损失。
在预应力筋通过弯曲的孔道时,由于摩擦力的作用,预应力筋中的应力会逐渐减小。
这种摩擦损失与孔道的形状、预应力筋的类型以及施工工艺等因素密切相关。
例如,采用较长且弯曲度较大的孔道时,摩擦损失会显著增加;而使用光滑的孔道壁材料和良好的润滑措施,则可以减小摩擦损失。
接着是混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的损失。
在混凝土养护过程中,如果预应力筋和张拉设备之间存在温差,就会导致预应力筋的伸长量不同,从而产生预应力损失。
为了减少这种损失,可以采取同步升温的养护措施,或者在计算中合理考虑温差的影响。
然后是钢筋应力松弛引起的损失。
钢筋在高应力长期作用下会发生应力松弛,即应力逐渐降低。
这种松弛损失与钢筋的种类、初始应力水平以及时间等因素有关。
高强度钢材通常具有较大的应力松弛特性,初始应力越高、时间越长,松弛损失也就越大。
再者是混凝土收缩和徐变引起的损失。
混凝土在硬化过程中会发生收缩,在长期荷载作用下会产生徐变。
这两种现象都会导致预应力筋的回缩,从而引起预应力损失。
收缩和徐变损失的大小与混凝土的配合比、养护条件、加载龄期以及结构的尺寸等因素有关。
例如,使用高强度等级的水泥、减少水灰比、加强养护等措施,可以减小混凝土的收缩和徐变,从而降低预应力损失。
简介:对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。
关键字:预应力损失简化计算预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。
引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。
我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。
此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。
现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。
1.预应力损失基本计算在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。
全部损失由两部分组成,即瞬时损失和长期损失。
其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。
长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。
我国新规范采用分项计算然后按时序逐项叠加的方法。
下面将分项讨论引起预应力损失的原因,损失值的计算方法。
1.1孔道摩擦损失σl2孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。
包括长度效应(kx)和曲率效应(μθ)引起的损失。
宜按下列公式计算:σl2=σcon(1-1/e kx+μθ)当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算:σl2=(kx+μθ)σcon1.张拉端 2.计算截面式中:X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);K--考虑孔道每米长度局部偏差的摩擦系数,按规范取值;μ--预应力钢筋与孔道壁之间的摩擦系数,按规范取值。