七年级数学下学期第一章整式的乘除章节测试(北师版)
- 格式:doc
- 大小:219.00 KB
- 文档页数:2
整式的乘除——整式混合运算及化简求值专项练习一、单选题(共6小题)1.下列计算中正确的是( )A.m÷n·1n=m B.m·n÷m·n=1C.n·1n ·m·1m=1 D.m3÷1m÷m2=12.已知除式是x2+2x,商式是x,余式是-1,则被除式是( )A.x3+2x2−1B.x2+2xC.x2−1D.x2−3x+13.已知2a2−a−3=0,则(2a+3)(2a−3)+(2a−1)2的值是( )A.6B.−5C.−3D.44.现规定一种运算:a△b=ab+a−b,其中a,b为实数,则a△b△a等于( )A.a2b+a2+bB.a2b−a2+bC.a2b+a2−bD.a2b−a2−b5.若m是任意整数,则代数式2[m(m−1)+m(m+1)]·[m(m−1)−m(m+1)]的值可能为( )A.4B.8C.−27D.−366.计算(x−1)(2x+1)−(x2+x−2)的结果,与下列哪一个式子相同( )A.x2−2x−3B.x2−2x+1C.x2+x−3D.x2−3二、填空题(共6小题)7.已知x+y=3,xy=1,则(x−1)(y−1)的值等于.8.如果长方形的长为(2a+b)米,宽为(a−2b)米,则其周长为米.9.若(−2x2)(3x2−ax−6)−3x3+x2中不含x的三次项,则a=.10.若M=(x−2)(x−8),N=(x−3)(x−7),则M−N=.11.规定a∗b=ab+a−b,其中a,b为实数,则a∗b+(b−a)∗b=12.A·(x+y)=x2−y2,则A=.三、解答题(共9小题)13.化简:(1)(x+5)2−(4+x)(4−x);(2)4x(x2+x+3)+(−2x−5)(2x−5)−(−2x)2;(3)(3x−4y)(3x+4y)−(3x+y)214. 已知x=13,求(2x+1)(2x−1)+x(3−4x)的值.15. 已知3x2−2x−3=0,求的值.16. 先化简,再求值:(2−a)(2+a)−2a(a+3)+3a2,其中a=−13.17. 先化简,再求值:(2x+y)2−(2x+y)(2x−y)−2y(x+y),其中x=(12)2023,y=22022.18.先化简,再求值:−a2b+(3a b2−a2b)−2(2a b2−a2b),其中a=1,b=−2.19.先化简,再求值:(x−y)2+y(4x−y)−8x]÷2x,其中x=8,y=2021.20.已知m2−m−2=0,求代数式m(m−1)+(m+1)(m−2)的值.21.先化简,再求值:[(3m+4n)(3m+2n)−2n(3m+4n)]÷(−6m),其中m=2,n=3.参考答案1.C2.A3.D4.C5.B6.B7.−18.(6a−2b)9.3210.−511.b²−b12.x−y【解析】A=(x2−y2)÷(x+y)=[(x+y)(x−y)]÷(x+y)=x−y,故答案为:x−y.13.(1)解:原式=x2+10x+25−16+x2=2x2+10x+9.(2)原式=4x3+4x2+12x+25−4x2−4x2=4x3−4x2+12x+25.(3)原式=9x2−16y2−9x2−6xy−y2=−17y2−6xy.14.解:(2x+1)(2x−1)+x(3−4x)=4x2−1+3x−4x2=−1+3x.当x=13时,原式=−1+3×13=0.15.解:原式=x2−2x+1+x2+23x=2x2−43x+1,∵3x2−2x−3=0,∴x2−23x=1,∴原式=2×1+1=3.16.解:(2−a)(2+a)−2a(a+3)+3a2,=4−a2−2a2−6a+3a2,=4−6a;当a=−13时,原式=4−6×(−13)=4+2=6.17.解:原式=4x2+4xy+y2−(4x2−y2)−2xy−2y2 =4x2+4xy+y2−4x2+y2−2xy−2y2=2xy.当x=(12)2023,y=22022时,原式=2×(12)2023×22022=2×12×(12)2022×22022=1.18.解:原式=−a2b+3a b2−a2b−4a b2+2a2b=(−1−1+2)a2b+(3−4)a b2=−a b2.当a=1,b=−2时,原式=−1×(−2)2=−4.19.解:[(x−y)2+y(4x−y)−8x]÷2x=(x2−2xy+y2+4xy−y2−8x)÷2x=(x2+2xy−8x)÷2x=12x+y−4.当x=8,y=2021时,原式=12×8+2021−4=2021.20.解:原式=m2−m+m2−2m+m−2=2m2−2m−2=2(m2−m)−2.∵m2−m−2=0,∴m2−m=2,∴原式=2×2−2=2.21.解:原式=(9m2+18mn+8n2−6mn−8n2)÷(−6m) =(9m2+12mn)÷(−6m)=−3m−2n,2当m=2,n=3时,原式=−3×2−2×3=−9.2。
北师大七下第一章整式的乘除单元测试1.已知多项式 x2+kx+36 是一个完整平方式,则 k=()A. 12B.6C. 12 或—12D. 6或—62.以下计算正确的选项是( )A. b3b3 2b3B. (x+2)(x—2)=x2—2C. (a+b)2= a2 + b2D. (- 2a)2= 4a2 3.一个长方体的长、宽、高分别是3x-4, 2x 和 x,则它的体积是()A. 3x3-4x2B. 22x2-24xC. 6x2-8xD. 6x3-8x24.以下运算正确的选项是()A. a 2a3a6B. a6a2 3C. a2 3a6D. a3 2a5a5.计算 a 1 a 1 a2 1 a4 1 的结果是().A. a8 1 B. a8 1 C. a16 1 D. 以上答案都不对6.已知多项式2是一个完整平方式,则k=()x +kx+36A. 12B. 6C. 12或—12D. 6或—67.已知x m a , x n b ,则x m 2n能够表示为().A. ab 2B. a b2C. a 2bD. a b28.有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其他两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?()A. 小刚 B. 小明 C. 相同大 D. 没法比较9.已知 a+b =3, ab= 1,则 a 2+ b2= _______10.已知2m5,2 n9 ,则2m + n=11.如图1是一个边长为4a 、宽为 b 的长方形,沿图中虚线用剪刀均匀分红四块小长方形,而后用四块小长方形拼成的一个“回形”正方形(如图 2 ).(1)图 2 中的暗影部分的面积为__________.(用含a、 b 的代数式表示)(2 )依据图 2 ,写出一个切合图形的因式分解的等式__________.12.我们已经学过用面积来说明公式,如x y 2x22xy y2就能够用如图甲中的面积来说明.请写出图乙的面积所说明的公式:p x q x.13.已知x2 2 m 1 xy 16 y2是一个完整平方式,则m 的值是.14.已知 x 知足x2162 ,则 x1的值为 __________. x2 x15.化简.22441616 (1)( x- y)( x+ y) ( x + y ) ( x + y ) · ·+ y(x );(2)(2 2+1)(24 +1)(28+1)(216+1).2-5x 3 ,求(2 x-1)( 2x-1)-(2 x 2 1的值.16.已知x 1)17.如图,最大正方形的面积可用两种形式表示:①;②,这两个代数式表示同一块面积,由此获得完整平方公式.18 .已知 a b 5, ab 6 ,求:(1)a2b ab2的值;(2)a2 b2的值;(3)a b的值 .19 .阅读后作答 : 我们知道, 有些代数恒等式能够用平面图形的面积来表示, 比如(2a+b)(a+b)=2a2+3ab+b2,就能够用图 1 所示的面积关系来说明 .(1) 依据图 2 写出一个等式 ;(2) 已知等式 (x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.20.从边长为 a 的正方形中剪掉一个边长为 b 的正方形(如图 1),而后将节余部分拼成一个长方形(如图 2).( 1)上述操作能考证的等式是;(请选择正确的一个)A、 a2﹣ 2ab+b2=( a﹣ b)2B、 a2﹣b 2=( a+b)( a﹣ b)C、 a2+ab=a( a+b)(2)应用你从( 1)选出的等式,达成以下各题:①已知 x2﹣4y2=12, x+2y=4,求 x﹣ 2y 的值.②计算:( 1﹣1)( 1﹣ 1 )(1﹣ 1 )(1﹣ 1 )( 1﹣ 1 ).22 32 42 19 2 20 2参照答案1. C2. D3. D4. C5. A6. C7. A8. B9. 710. 4511.2 2 2b a a b 4ab b a12.x2xq xp pq 13.3或 514.8或-815. (1)x32- y32(2)1(232-1) .316. 717.a 22ab b222ab b2b ;a2 ;a ba218.( 1) -30;(2)37 ;( 3)719. (1) 2a2+5ab+2b2;(2)略20.(1)答案是B;(2)①x﹣2y=3;原式= 21 .40。
第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。
一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
北师大版七年级数学下册第一章整式的乘除单元测试题含答案北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x^3·x^2等于()A。
2B。
x^5C。
2x^5D。
2x^62.下列运算正确的是()A。
x^2·x^3=a^6B。
(x^3)^2=x^6C。
(-3x)^3=27x^3D。
x^4+x^5=x^93.下列计算结果为a^6的是()A。
a^8-a^2B。
a^12÷a^2C。
a^3·a^2D。
(a^2)^34.若(x+2m)(x-8)中不含有x的一次项,则m的值为()A。
4B。
-4C。
0D。
4或-45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”。
如4=2^2-2^2,12=4^2-2^2,20=6^2-4^2,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A。
56B。
66C。
76D。
866.下列各式,能用平方差公式计算的是()A。
(2a+b)(2b-a)B。
(a+b)^2C。
(2a-3b)(-2a+3b)D。
(-a-2b)(-a+2b)7.若x^2+(m-3)x+16是完全平方式,则m的值是()A。
-5B。
11C。
-5或11D。
-11或58.已知a+b=2,ab=-2,则a^2+b^2=()A。
4B。
8C。
-4D。
99.下列运算中,正确的是()A。
a^2+a^2=2a^4B。
(a-b)^2=a^2-b^2C。
(-x^6)·(-x)^2=x^8D。
(-2a^2b)^3÷4a^5=-2ab^310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1,图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A。
一、选择题1.下列计算正确的是( )A .32a a a -=B .623a a a ÷=C .624a a a -=D .32a a a ÷= 2.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.下列式子中,计算正确的是( )A .235a a a +=B .236a a a ⋅=C .)(235a a -=D .)(326a a -=- 4.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③④B .②④C .①③D .①④ 5.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 6.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 7.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9 C .9±D .12 8.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-59.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3 10.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .2411.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .9812.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .7二、填空题13.计算:()322()ab ab ÷-=________.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.若2330x x --=,则()()()123x x x x ---的值为______.16.若()()253x x x bx c +-=++,则b+c=______. 17.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.18.若5a b +=,3ab =,则22a b +=_____.19.若13x x -=,则221x x+= _______________. 20.若9×32m ×33m =322,则m 的值为_____. 三、解答题21.认真观察下面的算式,并结合你发现的规律,完成下列问题:算式①53573021⨯=算式②38321216⨯=算式③84867224⨯=算式④71795609⨯=…(1)请你再写出两个符合上述规律的算式:① ___________;② __________.(2)请用含a ,b 的等式表示上述规律,并证明你发现的规律.(3)利用你发现的规律计算6367⨯及295的值.22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(2)运用(1)中的结论,完成下列各题:①已知:3a b -=,2224a b -=,求+a b 的值;②计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭. 24.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-.25.计算:4a 2·(-b )-8ab ·(b -12a ). 26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2请你写出()2a b +、()2a b -、ab 之间的等量关系是______;(2)拓展应用:若()()22202020217m m -+-=,求()()20202021m m --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据合并同类项法则和同底数幂的除法分别计算,再判断即可.【详解】解:A.等式左边不是同类项不能合并,故计算错误,不符合题意;B. 624a a a ÷=,故原选项计算错误,不符合题意;C. 等式左边不是同类项不能合并,故计算错误,不符合题意;D. 32a a a ÷=,故计算正确,符合题意.故选:D .【点睛】本题考查合并同类项和同底数幂的除法.熟记运算公式是解题关键.2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.D解析:D【分析】分别运用合并同类项法则,同底数幂乘法法则以及幂的乘方法则计算出各选项的结果再进行判断即可.【详解】解:A 、235a a a +≠,故此选项不符合题意;B 、235a a a ⋅=,故此选项不符合题意;C 、)(236a a -=,故此选项不符合题意;D 、)(326a a -=-计算正确,符合题意; 故选:D .【点睛】此题主要考查了合并同类项、同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答此题的关键.4.C解析:C【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误.【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm ,∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确;④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2,当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误.综上所述,正确的说法有①③.故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键. 5.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 7.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 8.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.9.A解析:A【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断.【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误;故选:A .【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.10.C解析:C表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②,=12a 2﹣12ab+12b 2, =12 [(a+b )2﹣3ab], =12(100﹣54) =23,故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.11.D解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 12.D解析:D【分析】根据222()2a b a b ab +=+-直接代入求值即可.【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7.故选:D .【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键二、填空题13.【分析】先进行积的乘方然后进行整式除法运算即可【详解】原式故答案为:【点睛】本题考查了积的乘方单项式除单项式解答本题的关键是熟练掌握运算法则解析:4ab【分析】先进行积的乘方,然后进行整式除法运算即可.【详解】原式362232624--=÷==a b a b a b ab故答案为:4ab【点睛】本题考查了积的乘方,单项式除单项式,解答本题的关键是熟练掌握运算法则. 14.【分析】由新规定的运算可得3a=53b=6m=32a-b 再将32a-b 转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b 根据新规定的运算可得3a=53b=6m=32a- 解析:256【分析】由新规定的运算可得3a =5,3b =6,m=32a-b ,再将32a-b ,转化为2(3)3a b 后,再代入求值即可.【详解】解:由于(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a ab b m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x +3)(−2x +解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x 2−3x−3=0,∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6)=(2x +3)(−2x +9)=−4x 2+12x +27=−4(3x +3)+12x +27=−12x−12+12x +27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键. 16.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.17.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.18.19【分析】利用完全平方公式得到然后利用整体代入的方法求解即可【详解】解:∵∴故答案为:19【点睛】本题考查了完全平方公式灵活运用完全平方公式是解答此类问题的关键完全平方公式为:解析:19【分析】利用完全平方公式得到222()2a b a b ab +=+-,然后利用整体代入的方法求解即可.【详解】解:∵5a b +=,3ab =,∴2222()2=52325619a b a b ab +=+--⨯=-=.故答案为:19.【点睛】本题考查了完全平方公式,灵活运用完全平方公式是解答此类问题的关键,完全平方公式 为:222()2a b a ab b ±=±+. 19.11【分析】先利用差的完全平方公式逆运算进行整理然后整体代入求值即可【详解】解:∵∴故答案为:11【点睛】此题主要考查求代数式的值解题的关键是将式子整理为能够整体代入的形式解析:11【分析】先利用差的完全平方公式逆运算进行整理,然后整体代入求值即可.【详解】 解:222112x x x x ⎛⎫+=-+ ⎪⎝⎭ ∵13x x -= ∴222132=11x x+=+ 故答案为:11.此题主要考查求代数式的值,解题的关键是将式子整理为能够整体代入的形式.20.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m=32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m×33m=32×32m×33m=32+2m+3m=322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.三、解答题21.(1)81×89=7209,34×36=1224;(答案不唯一);(2)()()()()101010100110++-=++-a b a b a a b b⎡⎤⎣⎦,证明见解析;(3)4221;9025【分析】(1)观察上面几个式子,发现:左边两个因数的十位数字相同,个位数字和是10;则右边的结果是一个四位数,其中个位和十位上的数是左边两个因数的个位相乘,百位和千位上的数是左边十位上的数字和大于十位数字1的数相乘.根据这一规律即可写出;(2)根据(1)发现的两个数的特点,用字母表示出来,然后运用公式展开进行证明;(3)根据所得规律进行计算即可.【详解】解:(1) 81×89=720934×36=1224;故答案为:81×89=7209,34×36=1224;(答案不唯一)(2)设十位上的数字为a,个位上的数字为b,则上述规律可表示为:()()()()++-=++-101010100110a b a b a a b b⎡⎤⎣⎦证明:∵(10a+b)[10a+﹙10-b﹚]=(10a+b)×10a+(10a+b)×﹙10-b﹚=2210010010++-a ab b=100a﹙a+1﹚+b﹙10-b﹚∴左边等于右边∴()()()()101010100110a b a b a a b b ++-=++-⎡⎤⎣⎦成立.(3)63×67=422129595959025=⨯=【点睛】此题主要考查了整式混合运算的应用,找出题中的规律是解本题的关键.22.(1)a 2-b 2=(a+b )(a-b );(2)①8;②20214040 【分析】(1)分别表示拼接前后的阴影部分的面积,可得等式a 2-b 2=(a+b )(a-b ),得出答案; (2)①利用平方差公式将a 2-b 2化为(a+b )(a-b ),再整体代入即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)图1中阴影部分的面积为a 2-b 2,图2中阴影部分的面积为(a+b )(a-b ), 因此有a 2-b 2=(a+b )(a-b ),∴能验证的等式是a 2-b 2=(a+b )(a-b )(2)①∵a 2-b 2=(a+b )(a-b )=24,a-b=3,∴a+b=8;②原式=11111111(1)(1)(1)(1)(1)(1)...(1)(1)22334420202020-+-+-+-+ 1324352019,223344202020202021=⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040= 【点睛】本题考查平方差公式的意义和应用,理解和掌握平方差公式的结构特征是正确应用的前提.23.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷=115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则. 24.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷ ()2462x xy x =-÷23x y =-当2,3x y ==-时,原式()2233=⨯-⨯- 4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 25.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.26.(1)()()224a b a b ab +--=;(2)3-.【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b )2-(b-a )2=(a+b )2-(a-b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=,根据()2222ab b a b a -=++求解【详解】解:(1)()()224a b a b ab +--=(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=由()2222ab b a b a -=++∴()2127ab --= ∴3ab =-即()()202020213m m --=-.【点睛】本题考查了完全平方公式的几何背景,解决此类题目的关键在于同一个图形的面积用两种不同的方法表示.。
北师大版七年级数学下册第一章整式的乘除章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A .224x x x +=B .235x x xC .()33xy x y =D .()347x x = 2、如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有( )个A .1B .2C .3D .4 3、已知()()202220202021x x --=,那么()()2220222020x x -+-的值是( ).A .22021B .4042C .4046D .20214、下列各式运算结果为9a 的是( )A .63a a +B .33a a ⋅C .()33aD .182÷a a5、下列计算中,正确的是( )A .3515a a a ⋅=B .22a b ab +=C .()2362a b a b =D .()2224a a =++ 6、若2434a a b ++-=-,那么-a b 的值是( ).A .5B .5-C .1D .77、计算13-的结果是( )A .3-B .13- C .13 D .18、下列计算正确的是( )A .a +3a =4aB .b 3•b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 79、下列运算正确的是( )A .x 2+x 2=x 4B .2(a ﹣1)=2a ﹣1C .3a 2•2a 3=6a 6D .(x 2y )3=x 6y 3 10、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1 C .(2a )3=6a 3 D .m 6÷m 2=m 3 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)23m m ⋅=______ ;(2)()23x =______;(3)()23a b ⋅=______;(4)63a a ÷=______.2、计算:022********-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 3、若(x +2)(x +a )=x 2+bx ﹣8,则a b的值为_____.4、在边长为a 的正方形中挖去一个边长为b 的小正方形(其中a >b )(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证的乘法公式是_______________________ .5、乘积(5)(2)x x +-的计算结果是_______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:()()()22x y x y x y x ⎡⎤-+-+÷⎣⎦,其中3x =-,15y =.2、计算:(1)()3223x y xy ⋅-(2)()()122x x x ++-÷⎡⎤⎣⎦(3)()()22a b c a b c +++-3、计算:()()()2327x x x x -+-+.4、计算:20432022π--+--().5、计算:(1)()31233a b a a -÷;(2)2-+-+.a b a b a b()(2)()-参考答案-一、单选题1、B【分析】利用合并同类项的法则,同底数幂的乘法法则,积的乘方法则,幂的乘方法则对各项进行运算即可.【详解】解:A、x2+x2=2x2,故A不符合题意;B、235x x x,故B符合题意;C、()333=,故C不符合题意;xy x yD、()3412=,故D不符合题意;x x故选:B.【点睛】本题主要考查合并同类项,同底数幂乘法,积的乘方法则,幂的乘方法则,解答的关键是掌握对应的运算法则.2、C【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积差列方程.【详解】①大正方形的边长为a+b,面积为100()2100+=a b222100a ab b ++=故①正确②小正方形的边长为a-b ,面积为16()216a b -=22216a ab b -+=故②正确③()()2241001684ab a b a b =+--=-=21ab ∴=()222210022158a b a b ab ∴+=+-=-⨯= 故③错④()()2210016a b a b +-=⨯ ()()40a b a b ∴+-=2240a b ∴-=故④正确故选C【点睛】此题考察了平方差公式、完全平方公式及数形结合的应用,关键是能够结合图形和图形的面积公式正确分析,对每一项进行分析计算,进而得出结果.3、C【分析】设2022,2020a x b x =-=-,则得2021ab =将()()2220222020x x -+-变形得到2()2a b ab -+,即可求解.【详解】解:设2022,2020a x b x =-=-,则2021ab =, ()()2222220222020()2x x a b a b ab -+-=+=-+,2222021=+⨯, 4046=,故选:C .【点睛】本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解.4、C【分析】根据同底数幂的乘除法及幂的乘方可直接进行排除选项.【详解】解:A 、6a 与3a 不是同类项,不能合并,故不符合题意;B 、336a a a ⋅=,计算结果不为9a ,故不符合题意;C 、()339a a =,故符合题意; D 、61821a a a ÷=,计算结果不为9a ,故不符合题意;故选C .【点睛】本题主要考查同底数幂的乘除法及幂的乘方,熟练掌握同底数幂的乘除法及幂的乘方是解题的关键.5、C【分析】根据同底数幂的乘法、合并同类项、积的乘方、幂的乘方运算法则以及完全平方公式对各项进行计算即可解答.【详解】解:A . 3583+5=a a a a ⋅=,故原选项计算错误,不符合题意;B . 2a 与b 不能合并,故原选项计算错误,不符合题意;C . ()2362a b a b =,计算正确,符合题意; D . ()22244a a a +=++,故原选项计算错误,不符合题意.故选:C .【点睛】本题主要考查了同底数幂的乘法、合并同类项、幂的乘方运算法则以及完全平方公式等知识点,灵活运用相关运算法则是解答本题的关键.6、B【分析】原式移项后,利用完全平方式变形,得到平方和绝对值的和形式,进而求得a 、b 值,即可得解.【详解】 ∵2434a a b ++-=-, ∴24430a a b +++-=, ∴2(2)30a b ++-=,∴20a +=,3b -=0,解得:a =-2,b =3,则235a b -=--=-,故选:B【点睛】此题考查了完全平方公式的运用,掌握完全平方公式是解答此题的关键.7、C【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案.【详解】 解:1111333-==. 故选:C.【点睛】本题考查负整数指数幂的运算,解题的关键是正确理解负整数指数幂的意义.8、A【分析】根据合并同类项判断A 选项;根据同底数幂的乘法判断B 选项;根据同底数幂的除法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式=4a ,故该选项符合题意;B 选项,原式=b 6,故该选项不符合题意;C 选项,原式=a 2,故该选项不符合题意;D 选项,原式=a 10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.9、D【分析】直接利用合并同类项,单项式乘单项式法则,同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【详解】解:A.x2+x2=2x2,故本选项错误;B.2(a﹣1)=2a﹣2,故本选项错误;C.3a2•2a3=6a5,故本选项错误;D.(x2y)3=x6y3,故本选项正确.故选:D.【点睛】此题主要考查了整式运算,正确掌握相关运算法则是解题关键.10、A【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;B、当0a 时,0a无意义,故选项错误,不符合题意;C、(2a)3=8a3,故选项错误,不符合题意;D 、m 6÷m 2=m 4,故选项错误,不符合题意.故选:A .【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.二、填空题1、5m 6x 62a b 3a【分析】(1)根据同底数幂相乘法则,即可求解;(2)根据幂的乘方法则,即可求解;(3)根据积的乘方法则,即可求解;(4)根据同底数幂相除法则,即可求解.【详解】解:(1)235m m m ⋅=;(2)()236x x =; (3)()2362a b a b ⋅=; (4)633a a a ÷=故答案为:(1)5m ;(2)6x ;(3)62a b ;(4)3a【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方、同底数幂相除,熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除法则是解题的关键.2、-4【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】 解:02202211122-⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭ =114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键. 3、116【分析】先计算等号左边,再根据等式求出a 、b 的值,最后代入求出a b的值.【详解】解:∵(x +2)(x +a )=x 2+(2+a )x +2a ,又∵(x +2)(x +a )=x 2+bx ﹣8,∴x 2+(2+a )x +2a =x 2+bx ﹣8.∴2+a =b ,2a =﹣8.∴a =﹣4,b =﹣2.∴a b =(﹣4)﹣2 =21(4)-=116. 故答案为:116. 【点睛】本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a 、b 的值是解决本题的关键.4、a 2-b 2=(a +b )(a -b )【分析】第一个图形中阴影部分的面积计算方法是边长是a 的正方形的面积减去边长是b 的小正方形的面积,等于a 2-b 2;第二个图形阴影部分是一个长是(a +b ),宽是(a -b )的长方形,面积是(a +b )(a -b );这两个图形的阴影部分的面积相等.【详解】解:阴影部分的面积=(a +b )(a -b )=a 2-b 2;因而可以验证的乘法公式是(a +b )(a -b )=a 2-b 2,故答案为:a 2-b 2=(a +b )(a -b ).【点睛】本题主要考查了平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.5、2310x x +-【分析】根据多项式乘以多项式的运算法则即可得.【详解】解:22(5)(2)2510310x x x x x x x +-=-+-=+-,故答案为:2310x x +-.【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题关键.三、解答题1、x y -;18-.【分析】先根据完全平方公式及平方差公式进行化简,然后计算除法,最后将已知值代入求解即可.【详解】解:()()()22x y x y x y x ⎡⎤-+-+÷⎣⎦, 222222x xy y x y x ⎡⎤=-++-÷⎣⎦, ()2222x xy x =-÷, x y =-;当3x =-,15y =时,原式315=--18=-.【点睛】题目主要考查整式的混合运算,熟练掌握运算法则及完全平方公式和平方差公式是解题关键.2、(1)436x y -(2)3x +(3)22242a b c ab +-+【分析】(1)根据单项式乘以单项式可直接进行求解;(2)先去括号,然后再利用多项式除以单项式进行求解即可;(3)把a +b 看作整体,然后利用平方差公式及完全平方公式进行化简.(1)解:原式=324366x x y y x y -⋅⋅⋅=-;(2)解:原式=()2322x x x ++-÷=()23x x x +÷=3x +(3)解:原式=()()222a b c +-=22242a b c ab +-+.【点睛】本题主要考查整式的混合运算,熟练掌握乘法公式及整式的运算是解题的关键.3、2314x x --【分析】根据整式乘法、整式加减法的性质,先算乘法、后算加减法,即可得到答案.【详解】()()()2327x x x x -+-+ 2226514x x x x =-++-2314x x =--.【点睛】本题考查了整式运算的知识;解题的关键是熟练掌握整式乘法、整式加减法的性质,从而完成求解. 4、139【分析】先计算绝对值、负指数和0指数,再加减即可.【详解】 解:-2043(2022)π-+--1419=+- 139=. 【点睛】本题考查了含负指数和0指数的实数运算,解题关键是明确负指数和0指数的算法,准确进行计算.5、(1)241a b -;(2)23ab b --.【分析】(1)根据多项式除以单项式的运算法则进行计算即可;(2)根据多项式乘以多项式,完全平方公式展开,进而根据合并同类项进行计算即可【详解】解:(1)原式312333a b a a a =÷-÷241a b =-.(2)原式2222(22)(2)a ab ab b a ab b =+---++2222222a ab ab b a ab b =+-----23ab b =--.【点睛】本题考查了整式的混合运算,掌握整式的运算法则是解题的关键.。
2023-2024学年北师大版初中数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、选择题(本大题共计30小题,每题3分,共计90分)1.下列计算正确的是( )A. left( -a^3bright) ^2=a^6b^2B. a^3cdot a^2=a^6C. 2a+3b=5abD. left( a-2right) ^2=a^2-2a+4【答案】A【解析】解: A,\left( -a^3b\right) ^2=a^6b^2,故 A正确;B,a^3\cdot a^2=a^3+2=a^5,故 B错误;C,3a和2b不是同类项,不能进行合并,故 C错误;D,\left( a-2\right) ^2=a^2-4a+4,故 D错误.故选 A.2.若m为有理数,则\left(-m\right)^3+\left(-m\right)^3的结果是( )A. 2m^3B. -2m^3C. 0D. m^6【答案】B【解析】解:原式=-m^3-m^3=-2m^3.故选 B.3.下列代数式的运算,一定正确的是()A. 3a^2-a^2=2B. (3a)^2=9a^2C. (a^3)^4=a^7D. a^2+ b^2=(a+ b)(a-b)【答案】B【解析】4.计算(-0.25)^2019\times (-4)^2020等于()A. -1B. + 1C. + 4D. -4【答案】D【解析】5.下列计算正确的是()A. sqrt9=pm sqrt3B. sqrt2+sqrt3=sqrt6C. sqrt4div sqrt2=2D. sqrt8=2sqrt2【答案】D【解析】解:\mathrm A.\sqrt9=3,故选项错误;\mathrm B.\sqrt2与\sqrt3不是同类二次根式,不能合并,故选项错误;\mathrm C.\sqrt4\div\sqrt2=\sqrt\dfrac42=\sqrt2,故选项错误;\mathrm D.\sqrt8=2\sqrt2,故选项正确.故选\mathrm D.6.下列计算结果正确的是( )A. 3a^4-2a^4=1B. left( a^4right) ^2=a^6C. left( -2a^2right) ^3=-8a^6D. a^5cdot a^2=a^25【答案】C【解析】解: A,3a^4-2a^4=a^4,故 A错误;B,\left( a^4\right) ^2=a^8,故 B错误;C,\left( -2a^2\right) ^3=-8a^6,故 C正确;D.a^5\cdot a^2=a^7,故 D错误.故选 C.7.计算\left(-a^4\right)^2的结果为( )A. -a^6B. -a^8C. a^6D. a^8【答案】D【解析】解:(-a^4)^2=(-1)^2\times (a^4)^2=a^8.故选 D.8.计算x^2\cdot x^5的结果是()A. x^10B. x^7C. 2x^7D. 2x^10【答案】B【解析】解:x^2\cdot x^5=x^2+5=x^7.故选 B.9.计算\left( -ab^3\right) ^2的结果是( )A. a^2b^6B. -a^2b^6C. a^2b^9D. -a^2b^9【答案】A【解析】解:\left( -ab^3\right) ^2=a^2b^6.故选 A.10.下列运算正确的是()A. a^3cdot a^2=a^6B. left( -a^2right) ^3=a^6C. left(-a^3right)^2=a^6D. -2mn-mn=-mn【答案】C【解析】解:\mathrm A,因为a^3\cdot a^2=a^3+2=a^5,故\mathrm A错误;\mathrm B,因为\left(-a^2\right)^3=-a^6,故\mathrm B错误;\mathrm C,因为\left(-a^3\right)^2=a^6,故\mathrm C正确;\mathrm D,因为-2mn-mn=-3mn,故\mathrm D错误.故选\mathrm C.11.下列计算正确的是( )A. m^3+m^2=m^5B. m^6div m^2=m^3C. left( -2mright) ^3=-8m^3D. left(m+1right)^2=m^2+1【答案】C【解析】解:\textA,m^3和m^2不是同类项,不能合并,故\textA错误;\textB,m^6\div m^2=m^6-2=m^4,故\textB错误;\textC,(-2m)^3=-8m^3,故\textC正确;\textD,(m+1)^2=m^2+2m+1,故\textD错误.故选\textC.12.下列运算中,正确的是()A. a^3cdot a^2=a^6B. a+ a=a^2C. (a-b)^2=a^2-b^2D. (a^2)^3=a^6【答案】D【解析】a+ a=2a,故选项B不合题意(1)(a-b)^2=a^2-2ab+ b^2,故选项C不合题意(2)(a^2)^3=a^6,正确,故选项D符合题意.故选:D.13.下列运算正确的是()A. a^2+a^3=a^5B. acdot a^3= a^4C. (ab)^4= ab^4D. (a^3)^3= a^6【答案】B【解析】解: A,a^2与a^3不是同类项,不能合并,故此选项错误;B,a\cdot a^3=a^4,此选项正确;C,\left(ab\right)^4=a^4b^4,故此选项错误;D,\left(a^3\right)^3=a^9,故此选项错误.故选 B.14.下列各式计算结果为a^5的是( )A. a^3+a^2B. a^3times a^2C. left(a^2right)^3D. a^10div a^2【答案】B【解析】解: A,a^3和a^2不是同类项,不能合并,故 A错误;B,a^3\times a^2=a^3+2=a^5,故 B正确;C,(a^2)^3=a^2\times 3=a^6,故 C错误;D,a^10\div a^2=a^10-2=10^8,故 D错误.故选 B.15.下列运算正确的是( )A. sqrt2+sqrt3=sqrt5B. 3xy-xy=3C. dfraca^2+b^2a+b=a+bD. (a^2b)^3=a^6b^3【答案】D【解析】解:\textA, \sqrt2+\sqrt3eq\sqrt5,故\textA错误;\textB, 3xy-xy=2xy,故\textB错误;\textC, \dfraca^2+b^2a+beq a+b,故\textC错误;\textD, \left(a^2b\right)^3=a^6b^3,故\textD正确.故选\textD.16.下列运算结果为a^6的是( )A. a^2+a^4B. a^2cdot a^3C. left(-a^2right)^3D. left(-a^3right)^2【答案】D【解析】解: A,a^2 与a^4不是同类项,不能合并;B,a^2\cdot a^3=a^2+3=a^5 ;C,\left(-a^2\right)^3=-a^6 ;D,\left(-a^3\right)^2=a^6.故选 D.17.下列计算错误的是( )A. x^2+x^2=2x^2B. (x-y)^2=x^2-y^2C. left(x^2 yright)^3=x^6 y^3D. (-x)^2 cdot x^3=x^5【答案】B【解析】解:x^2+x^2=2 x^2 ,故选项 A正确;(x-y)^2=x^2-2 x y+y^2,故选项 B不正确;\left(x^2 y\right)^3=x^6 y^3,故选项 C正确;(-x)^2 \cdot x^3=x^2 \cdot x^3=x^5,故选项 D正确.故选 B.18.下列各式运算正确的是( )A. a^3times a^2=a^6B. left(a^2right)^4=a^8C. left(-aright)^2+a^2=0D. left(2a^3right)^2=2a^6【答案】B【解析】解: A,a^3\times a^2=a^5 ,该选项错误;B,\left(a^2\right)^4=a^8 ,该选项正确;C,\left(-a\right)^2+a^2=2a^2 ,该选项错误;D,\left(2a^3\right)^2=4a^6,该选项错误.故选 B.19.下列计算正确的是()A. a^2+a^4=a^6B. a^2cdot a^3=a^6C. left( a^2right) ^4=a^8D. left( dfraca2right) ^2=dfraca^22【答案】C【解析】解: A,a^2与a^4不是同类项,不能合并,故 A错误;B,a^2\cdot a^3=a^5,故 B错误;C,(a^2)^4=a^8,故 C正确;D,\left( \dfraca2\right) ^2=\dfraca^24,故 D错误.故选 C.20.计算\left(-x^2y\right)^3=( )A. x^2y^3B. -x^6y^3C. x^6y^3D. -x^5y^3【答案】B【解析】解:(-x^2y)^3=-x^6y^3.故选\textB.21.计算: \left(0.25\right)^2020\times 4^2020=( )A. 0.25B. 4C. 1D. 2020【答案】C【解析】解:\left(0.25\right)^2020\times4^2020=\left(0.25\times4\right)^2020=1^2020=1. 故选\mathrm C.。
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
七年级数学下学期第一章整式的乘除章节测试(北师版)
(满分100分,考试时间45分钟)
一、选择题(每小题3分,共15分) 1. 下列计算正确的是( )
A .459a a a +=
B .236(3)9a a -=-
C .236()m m m ⋅=
D .34()()q q q -⋅-=
2. 计算21(21)2ab a ab ⎛⎫
-⋅-- ⎪⎝⎭
的结果是( )
A .3221
2a b a b -+
B .32211
22a b a b ab --
C .22211
22a b a b ab -++
D .3221122a b a b ab -++
3. 已知125282x x x ++⋅=,则x 的值为( )
A .-1
B .1
C .0
D .2
4. 从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼
成一个矩形(如图2),上述操作所能验证的等式是( )
图2
图1
b
a
b
a
A .2
2
2
()2a b a ab b -=-+ B .22()()a b a b a b -=-+ C .222()2a b a ab b +=++
D .2()a ab a a b +=+
5. 将一个正方形一组对边减少3cm ,另一组对边增加3cm ,所得的长方形面积与将原正方
形边长减少1cm 后的正方形面积相等,则原正方形的边长为( )cm . A .8
B .4
C .5
D .2
二、填空题(每小题3分,共18分)
6. 有一句谚语说:“捡了芝麻,丢了西瓜”,意思是说有些人办事只抓一些无关紧要的小
事,却忽略了具有重大意义的大事.据测算,25万粒芝麻才1 000克,那么1粒芝麻有 _______________克.
7. 计算2201420132015-⨯的值为__________.
8. 若222(3)9124x ky x xy y -=++,则k 的值为___________. 9. 已知36m =,39n =,则29m n -的值为_____________.
10. 计算(3)(3)a b a b +--+的结果为__________________.
11. 下图是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五
百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()n a b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;再如,33223()33a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式
4()a b +=_______________________________________.
……
1
1
13
312111
三、计算题(本大题共3小题,满分23分)
12. (7分)计算:424822351(2)(2)()(8)8xy x y x x y y ⎛⎫
--+-÷--⋅- ⎪⎝⎭
.
13. (7分)计算:22014
2014
20142111(3)62223--⎛⎫⎛⎫
⎛⎫
π-⨯-+⨯⨯- ⎪ ⎪
⎪⎝⎭⎝⎭
⎝⎭
.
14. (9分)当2a =时,求2(21)(21)(12)a a a ---+-+的值.
四、解答题(本大题共4小题,满分44分) 15. (9分)若34x y xy +==-,,求x y -的值.
16. (10分)若2(2)()x px x q -+-的展开式中不含x 的二次项,请回答下列问题:
(1)p 与q 有什么样的关系? (2)计算32()(1)p q p q +---+的值.
17. (12分)小明在做一道计算题目24816
(21)(21)(21)(21)(21)+++++的时候是这样分析
的:这个算式里面每个括号内都是两数和的形式,跟最近学的两大公式作对比,发现跟平方差公式很类似,但是需要添加两数的差,于是添了(21)-,并做了如下的计算:
24816248162
2
4
8
16
32 (21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)21
+++++=-+++++=-++++=-
请按照小明的方法,计算24816(31)(31)(31)(31)(31)+++++.
18. (13分)请用直观的方法说明22(2)(2)252a b a b a ab b ++=++.。