仪控系统中EMI的控制与消除
- 格式:pdf
- 大小:61.49 KB
- 文档页数:2
EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。
电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。
”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC 并不总是能够做到。
例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。
EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
EMI有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。
EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。
对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。
无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。
金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为SEdB=A+R+B其中A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况)一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB。
关于控制医疗仪器中的EMI噪声的解决方案在当今的医疗设备中充满了日益复杂的电子设备,以此来完善设备在监测,显示,协助和警告患者的一系列功能。
最新一代的医疗设备电子设备体积更小,结构更紧凑,却能塞进更多的监测仪器,随之而来的最大的设计难点就在于,如何能有效的降低外界电磁波对设备的干扰?”好消息是现在发现了在军事和卫星系统在狭小的空间中具有解决(EMI)和电缆噪声控制问题,军事和卫星系统的电缆和连接器体验却意外的为医疗设备行业解决电磁干扰的控制问题铺平道路。
该行业的电缆和连接器的成熟经验有助于为医疗行业内采用更为安全的电缆。
从设计用于军事和卫星系统的电缆获得的经验十分重要,因为许多较新的ICU仪器是需要在以千兆赫兹速度运行的数字信号的基础之上的,同时紧靠其他电子仪器。
通常,这会有助于确定在仪器机架内布线的电缆是否会被外界的电磁波所干扰(不需要的EMI的接收器),或者如果电缆可能是EMI噪声的发射器以传播到其他设备。
无论哪种情况,EMI噪声都可能导致整个医疗设备的性能出现严重问题或不同程度的降低仪器的准确性。
医疗电缆和设计人员有多种解决方案来控制医疗仪器中的EMI噪声问题,以下罗列了目前主流的几种解决EMI噪声办法:1.选择性滤波电路可以通过找到干扰噪声的频率并在仪器电路板上添加选择性滤波电路,或是在电缆线束上的连接器中添加滤波器来解决EMI的问题。
薄膜电容器和电阻可以通过在噪声源附近接地来消除不需要的信号噪声。
然而,电缆和连接器必须做的足够小才行,如果尺寸太大就会限制同轴滤波器电路的性能,从而就会对抗电磁干扰的效能产生一定的影响。
2.整体屏蔽当涉及到要从外部复杂环境中隔绝干扰电磁波时,在线缆上采用编织屏蔽的方法一直是主流方法之一。
业界普遍认可编织通常是最好的屏蔽解决方案,它可以轻松提供高达85dB 的与外部噪声隔离的水平。
为了减少进出系统时的线路数量,医疗设备可以使用混合电缆和连接器,将电源、信号、触发器组合到一个连接器和电缆系统中。
EMI处理方法(精选5篇)第一篇:EMI处理方法技术应用-开关电源的EMI处理新方法关键字:技术应用开关电源 EMI 处理方法 2009-05-11一、开关电源EMI整改中,关于不同频段干扰原因及抑制办法。
1MHZ以内,以差模干扰为主。
①增大X电容量;②添加差模电感;③小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,①对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量;②对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;③也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管1N4007。
5M以上,以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10MHZ 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
20-30MHZ,①对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;②调整一二次侧间的Y1 电容位置及参数值;③在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
④改变PCB LAYOUT;⑤输出线前面接一个双线并绕的小共模电感;⑥在输出整流管两端并联RC滤波器且调整合理的参数;⑦在变压器与MOSFET之间加BEAD CORE;⑧在变压器的输入电压脚加一个小电容。
⑨可以用增大MOS驱动电阻.30-50MHZ,普遍是MOS管高速开通关断引起。
①可以用增大MOS驱动电阻;②RCD缓冲电路采用1N4007 慢管;③VCC供电电压用1N4007 慢管来解决;④或者输出线前端串接一个双线并绕的小共模电感;⑤在MOSFET的D-S脚并联一个小吸收电路;⑥在变压器与MOSFET之间加BEAD CORE;⑦在变压器的输入电压脚加一个小电容;⑧PCB心LAYOUT 时大电解电容,变压器,MOS构成的电路环尽可能的小;⑨变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
伺服系统感应电及EMI干扰问题的解决方法1.感应电及EMI干扰问题现象伺服系统(伺服驱动器、伺服电机)上电待机时,所有设备工作正常;伺服系统在使能或者伺服电机启动时设备带电,触摸时有麻手感;伺服系统在使能或者伺服电机启动时,控制、测量设备(如PLC、计算机、触摸屏等)有采集数据有偏差、控制精度降低、丢失数据或指令脉冲等现象;干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。
其中:按噪声产生的原因不同,分为放电噪声、偶发噪声等:按声音干扰模式不同,分为差模干扰(注①)和共模干扰(注②)。
共模干扰是信号对地面的电位差,主要是由电网串入,地电位差及空间电磁辐射在信号线上感应的共态电压所加形成。
共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。
共模电压通过不对称电路可转换成共模电压,直接影响测控信号,造成元器件坏,这种共模干扰可为直流、亦可谓交流。
共模干扰是指用于信号两级间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
常见的干扰现象有以下几点:1) 系统发指令时,电机无规则地转动;2) 信号等于零时,数字显示表数值乱跳;3) 传感器工作时,PLC采集过来的信号与实际参数所对应得信号值不吻合,且误差值是随机的,无规律的;4) 与交流伺服系统共用同一电源工作不正常。
2.感应电及EMI干扰产生概述1)伺服系统感应电及EMI干扰问题不属于漏电问题。
漏电本质是设备在一定的环境或外力条件下,电气绝缘性能下降或绝缘遭到破坏而出现设备外壳带电的现象。
现市场上主流驱动器(包括国产和进口)都采用PWM调制方式产生电机旋转电压,PWM调制方式都会采用电力电子开关器件(如IGBT、IPM模块等)。
而这些电力电子开关器件动作时在设备外壳感应出的电压和电流且能量较小(一般感应电流不超过50mA),不会对人体和设备造成破坏性损害;2)EMI问题分为传导干扰和辐射干扰,传导干扰主要是由于干扰源产生干扰(共模、差模电流和电压),经过传播途径(设备外壳、多点接地、传输线路回路),在敏感器件引起现场设备通信中断、采集数据偏差、控制精度降低、数据或指令脉冲传输丢失等现象,从而影响设备的正常工作。
emi滤波原理
EMI滤波原理是指利用滤波器对电磁干扰(Electromagnetic Interference,EMI)进行抑制和消除的一种技术手段。
电磁干
扰是指电子器件或系统之间通过电磁场相互作用而引起的电流、电压或功率的异常现象。
这种干扰可能导致设备的信号失真、通信故障、设备损坏甚至系统崩溃。
EMI滤波的基本原理是通过滤波器的能力选择性地抑制或消
除电磁波谱中特定频率范围内的信号,从而达到减少或清除干扰的目的。
滤波器通常根据干扰源的频谱、功率和特征阻抗来选择合适的滤波方式。
常见的EMI滤波器包括低通滤波器、带通滤波器、带阻滤波
器和高通滤波器。
低通滤波器将高频成分滤除,只保留低频信号,可用于抑制高频噪声和射频干扰。
带通滤波器可以选择性地通过一定频率范围内的信号,用于滤除或减弱特定频率引起的干扰。
带阻滤波器则可以选择性地滤除一定频率范围内的信号,用于消除特定频率的干扰。
而高通滤波器则用于滤除低频信号,保留高频信号。
在实践应用中,EMI滤波器常常作为被保护系统的接入点,
用于阻断或减弱从外部环境进入系统的电磁干扰。
此外,EMI
滤波器的性能评估通常通过干扰抑制比、频率响应、群延迟等参数来进行。
为了提高滤波效果,还可以采取多级联结的滤波器电路和使用适当的滤波器拓扑结构。
总之,EMI滤波原理通过选择合适的滤波方式和滤波器来抑
制和消除电磁干扰,保证被保护系统的正常运行。
它在电子设备和通信系统的设计中起着重要的作用,能有效提高系统的抗干扰能力,保证信号质量和设备的可靠性。
几种解决EMI问题的方法对策一:尽量减少每个回路的有效面积图1 回路电流产生的传导干扰传导干扰分差模干扰DI和共模干扰CI两种。
先来看看传导干扰是怎么产生的。
如图1所示,回路电流产生传导干扰。
这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或变压器线圈的初、次级,当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。
减少干扰的最有效方法就是尽量减少每个回路的有效面积。
对策二:屏蔽、减小各电流回路面积及带电导体的面积和长度图2 屏蔽、减小各电流回路面积及带电导体的面积和长度如图2 所示,e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。
共模信号的一端是整个线路板,另一端是大地。
线路板中的公共端不能算为接地,不要把公共端与外壳相接,除非机壳接大地,否则,公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严重。
降低辐射干扰的方法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。
对策三:对变压器进行磁屏蔽、尽量减少每个电流回路的有效面积图3 变压器漏磁对回路产生的电磁感应如图3所示,在所有电磁感应干扰之中,变压器漏感产生的干扰是最严重的。
如果把变压器的漏感看成是变压器感应线圈的初级,则其它回路都可以看成是变压器的次级,因此,在变压器周围的回路中,都会被感应产生干扰信号。
减少干扰的方法,一方面是对变压器进行磁屏蔽,另一方面是尽量减少每个电流回路的有效面积。
对策四:用铜箔对变压器进行屏蔽图4 减少线路中的EMI如图4所示,对变压器屏蔽,主要是减小变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。
从原理上来说,非导磁材料对漏磁通是起不到直接屏蔽作用的,但铜箔是良导体,交变漏磁通穿过铜箔的时候会产生涡流,而涡流产生的磁场方向正好与漏磁通的方向相反,部分漏磁通就可以被抵消,因此,铜箔对磁通也可以起到很好的屏蔽作用。
EMI控制方法:屏蔽、滤波、接地我们知道,造成设备性能降低或失效的电磁干扰必须同时具备三个要素,首先是有一个电磁场所,其次是有干扰源和被干扰源,最后就是具备一条电磁干扰的耦合通路,以便把能量从干扰源传递到受干扰源。
因此,为解决设备的电磁兼容性,必须围绕这三点来分析。
一般情况下,对于EMI的控制,我们主要采用三种措施:屏蔽、滤波、接地。
这三种方法虽然有着独立的作用,但是相互之间是有关联的,良好的接地可以降低设备对屏蔽和滤波的要求,而良好的屏蔽也可以使滤波器的要求低一些。
下面,我们来分别介绍屏蔽、滤波和接地。
1屏蔽屏蔽能够有效的抑制通过空间传播的电磁干扰。
采用屏蔽的目的有两个,一个是限制内部的辐射电磁能量外泄出控制区域,另一个就是防止外来的辐射电磁能量入内部控制区。
按照屏蔽的机理,我们可以将屏蔽分为电场屏蔽、磁场屏蔽、和电磁场屏蔽。
1.1 电场屏蔽一般情况下,电场感应可以看成是分布电容间的耦合,图1是一个电场感应的示意图。
图1 电场感应示意图其中A为干扰源,B为受感应设备,其中Ua和Ub之间的关系为Ub=C1*Ua/(C1+C2)C1为A、B之间的分布电容;C2为受感应设备的对地电容。
根据示意图和等式,为了减弱B上面的地磁感应,使用的方法有增大A和B之间的距离,减小C1。
减小B和地之间的距离,增大C2。
在AB之间放置一金属薄板或将A使用金属屏蔽罩罩住A,C1将趋向0数值。
相对来说1和2比较容易理解,这里主要针对第3种方法进行分析。
由图2可以看出,插入屏蔽板后(屏蔽板接地)。
就造成两个分布电容C3和C4,其中C3被屏蔽板短路到地,它不会对B点的电场感应产生影响。
而受感应物B的对地和对屏蔽板的分布电容,C3和C4,实际上是处在并联的位置上。
这样,B设备的感应电压ub'应当是A点电压被A、B之间的剩余电容C1'与并联电容C2和C4的分压,即Ub=C1'*Ua/(C1'+C2+C4)图2 加入金属板后的电场感应图由于C1'远小于为屏蔽的C1,所以在B的感应电压就会减小很多。
排除机械电子设备中电气干扰的主要措施探究电气干扰(EMI)是指由电子设备产生的电磁辐射或其他干扰信号,可能会干扰其他设备的正常功能或产生负面影响。
在今天的现代社会中,电子设备的使用非常普遍,因此如何排除机械电子设备中的电气干扰就显得尤为重要。
本文将探讨一些排除电气干扰的主要措施。
要排除电气干扰,就需要了解电子设备产生干扰的原因。
电子设备产生的电磁辐射可以通过空气传播到其他设备或电路中,导致干扰。
通常情况下,电子设备的高速信号传输、大电流的开关、电源线噪声等都会产生电磁干扰。
为了排除这些干扰,可以采取以下措施。
对于电子设备的设计和布局可以进行优化,以减少电磁干扰的产生。
电子设备的内部布局要合理规划,尽量减少信号线和功率线的交叉,从而避免干扰的产生。
可以通过在电路中添加滤波器来减少电源线上的噪声,从而降低电磁辐射。
也可以采用屏蔽措施,例如在关键电路或线路周围加上金属屏蔽罩,以阻挡电磁辐射的产生。
对于电子设备的电源线和信号线,也可以采取一些措施来排除电气干扰。
在设计电路时,可以采用地线回路的设计,通过设计良好的地线回路可以有效减少信号线和功率线之间的干扰。
可以使用屏蔽的电源线和信号线,以减少电磁干扰的传播。
对于电子设备的外壳设计也非常重要。
通过在设备的外壳上加装金属屏蔽罩,可以有效地隔离电磁辐射,从而减少干扰的产生。
还可以通过外壳的设计来减少电气干扰的传播,例如采用螺旋缠绕的外壳设计或者采用低电磁辐射材料制作外壳。
除了在电子设备的设计和布局中采取措施外,对于电子设备的测试和验证也非常重要。
在设计完成后,通过电磁兼容性测试可以验证设备是否存在电气干扰问题,从而及时发现问题并予以解决。
在设备的使用过程中,也可以通过电磁干扰监测仪器对设备进行定期检测,以确保设备的正常运行。
排除机械电子设备中的电气干扰需要综合考虑设备的设计、布局、材料选择以及测试验证等方面。
只有通过综合的措施,才能充分排除电气干扰,保证设备的正常运行和稳定性。
emi整改小结-回复[EMI整改小结]EMI(Electromagnetic Interference)是指电磁干扰,广泛存在于各种电子设备和系统中。
当电子设备未能通过相关电磁兼容测试或实际应用中出现EMI问题时,需要进行整改措施,以减少或消除电磁干扰。
本文将从整改的目标、步骤、方法和效果等方面展开介绍。
一、整改目标EMI整改的目标是确保电子设备或系统在工作过程中不产生或不接收到对其正常工作产生不良影响的电磁干扰。
具体而言,需要达到以下目标:1. 减少电磁辐射:通过采用合适的设计措施或材料,减少电子设备或系统所产生的电磁辐射,以避免对周围设备或人体造成干扰或伤害。
2. 提高抗干扰能力:通过提升电子设备或系统的抗干扰能力,使其能够接受外界电磁干扰的能力,以保证设备在复杂电磁环境中正常工作。
二、整改步骤EMI整改一般分为以下步骤:1. 问题分析:首先需要明确电子设备或系统存在的EMI问题,并对具体的干扰源和受影响器件进行分析和识别,确定整改的重点和方向。
2. 措施制定:基于问题分析的结果,制定相应的整改措施,并根据实际情况制定合理的实施计划。
整改措施包括电磁屏蔽、滤波、地线优化、设备布局等。
3. 设计优化:通过对电子设备或系统的电路、线路布局、接地方式等进行优化设计,以减少电磁辐射和提高抗干扰能力。
4. 实施验证:对整改后的电子设备或系统进行全面测试和验证,确保其满足相关的电磁兼容性要求。
5. 整改总结:根据实施验证的结果,对整改过程进行总结,包括整改所采用的措施的有效性和可行性等方面的评估。
三、整改方法EMI整改的方法主要包括以下几个方面:1. 电磁屏蔽:通过采用合适的屏蔽材料或屏蔽措施,减少电子设备或系统的电磁辐射和对外界电磁干扰的敏感度。
2. 滤波:在电子设备的电源线、通信线路等关键位置部署滤波器,以减少由电源和通信线路带入的干扰信号。
3. 设备布局:合理规划电子设备或系统的布局,尽量减少不同模块之间的相互干扰,并减少对外界设备的干扰。
伺服系统感应电及EMI⼲扰问题的解决⽅法伺服系统感应电及EMI⼲扰问题的解决⽅法1.感应电及EMI⼲扰问题现象伺服系统(伺服驱动器、伺服电机)上电待机时,所有设备⼯作正常;伺服系统在使能或者伺服电机启动时设备带电,触摸时有⿇⼿感;伺服系统在使能或者伺服电机启动时,控制、测量设备(如PLC、计算机、触摸屏等)有采集数据有偏差、控制精度降低、丢失数据或指令脉冲等现象;⼲扰类型通常按⼲扰产⽣的原因、噪声的⼲扰模式和噪声的波形性质的不同划分。
其中:按噪声产⽣的原因不同,分为放电噪声、偶发噪声等:按声⾳⼲扰模式不同,分为差模⼲扰(注①)和共模⼲扰(注②)。
共模⼲扰是信号对地⾯的电位差,主要是由电⽹串⼊,地电位差及空间电磁辐射在信号线上感应的共态电压所加形成。
共模电压有时较⼤,特别是采⽤隔离性能差的电器供电室,变送器输出信号的共模电压普遍较⾼,有的可⾼达130V以上。
共模电压通过不对称电路可转换成共模电压,直接影响测控信号,造成元器件坏,这种共模⼲扰可为直流、亦可谓交流。
共模⼲扰是指⽤于信号两级间得⼲扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模⼲扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
常见的⼲扰现象有以下⼏点:1) 系统发指令时,电机⽆规则地转动;2) 信号等于零时,数字显⽰表数值乱跳;3) 传感器⼯作时,PLC采集过来的信号与实际参数所对应得信号值不吻合,且误差值是随机的,⽆规律的;4) 与交流伺服系统共⽤同⼀电源⼯作不正常。
2.感应电及EMI⼲扰产⽣概述1)伺服系统感应电及EMI⼲扰问题不属于漏电问题。
漏电本质是设备在⼀定的环境或外⼒条件下,电⽓绝缘性能下降或绝缘遭到破坏⽽出现设备外壳带电的现象。
现市场上主流驱动器(包括国产和进⼝)都采⽤PWM调制⽅式产⽣电机旋转电压,PWM调制⽅式都会采⽤电⼒电⼦开关器件(如IGBT、IPM模块等)。
⽽这些电⼒电⼦开关器件动作时在设备外壳感应出的电压和电流且能量较⼩(⼀般感应电流不超过50mA),不会对⼈体和设备造成破坏性损害;2)EMI问题分为传导⼲扰和辐射⼲扰,传导⼲扰主要是由于⼲扰源产⽣⼲扰(共模、差模电流和电压),经过传播途径(设备外壳、多点接地、传输线路回路),在敏感器件引起现场设备通信中断、采集数据偏差、控制精度降低、数据或指令脉冲传输丢失等现象,从⽽影响设备的正常⼯作。