第二章 禁忌搜索算法
- 格式:ppt
- 大小:983.00 KB
- 文档页数:81
禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
图节点着色问题中的禁忌搜索算法09-03-25 作者:编辑:校方人员图节点着色问题是组合最优化中典型的非确定多项式(NP)完全问题,也是图论中研究得最久的一类问题。
目前解决该问题的算法很多,如回溯算法、分支界定法、Welsh-Powell算法、神经网络、遗传算法以及模拟退火算法等。
综合比较各种算法,前两种算法是精确算法,但时间复杂性太大;后三种属于近似算法,虽然时间复杂性可接受,能够得到较好的近似解,但算法本身过于复杂,算法效率难以保证。
本文采用禁忌搜索算法,它同时拥有高效性和鲁棒性。
禁忌搜索是一种全局逐步寻优的人工智能算法,它常能有效的应用于一些典型NP问题,如TSP。
但禁忌搜索存在一些参数较难设置,这也是应用于通信系统时研究的热点。
本文提出针对着色问题的禁忌搜索的具体设计方案,较好的设置了参数,并优化了数据结构,通过实验比较得到了较好的效果。
最后提出通过领域简单的变化,禁忌搜索能较好的用于一般算法难以实现的List着色问题。
1图节点着色问题图的着色问题可分为边着色、顶点着色、List着色和全着色,其中最主要的给定一个无向图G=(V,E),其中V是节点集V={1,2,…n},E是边集,其中(i,j)表示有连接(i,j)的一条边。
若,且V i内部的任何两个节点没有E中的边直接相连,则称(V1,V2,…,V n)为V的一个划分。
图的节点着色问题可以描述为:求一个最小的k,使得(V1,V2,…,V n)为V的一个划分。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最优解,如Welsh-Powell算法和贪婪算法。
Welsh-Powell算法只能保证最多使用(为图中顶点的最大度)种颜色给一个图正常着色,而由Brooks定理,对于既不是完全图又不是奇圈的简单连通图,所需的颜色数。
、、、禁忌搜索算法优化物流调度禁忌搜索算法优化物流调度随着物流行业的不断发展,物流调度已经成为了企业运营中不可或缺的一环。
而物流调度的优化,也一直是企业所关注的问题之一。
在物流调度的优化中,搜索算法起到了至关重要的作用。
然而,对于一些敏感的物流领域,如事物资运输、药品配送等,一些特定的信息不应该被搜索算法所搜寻,这就需要禁忌搜索算法的应用。
禁忌搜索算法(Tabu Search)是一种智能化的优化算法,它通过约束条件来限制搜索空间,从而得到最优的解决方案。
禁忌搜索算法的核心思想是“不走回头路”,即避免搜索过程中陷入死循环。
在物流调度中,禁忌搜索算法可以通过设置禁忌表来约束搜索空间,从而避免出现重复的解决方案。
在物流调度中,禁忌搜索算法的应用主要分为两个方面:1. 避免重复路径的搜索在物流调度中,每个货物都需要按照一定的路径进行运输。
如果搜索算法在搜索过程中出现了重复路径,那么就会浪费宝贵的时间和资源。
禁忌搜索算法可以通过约束条件来避免搜索过程中出现重复路径的情况,从而提高物流调度的效率。
2. 隐私保护在一些敏感领域的物流调度中,一些特定的信息不应该被搜索算法所搜寻,例如事物资的运输路径、药品配送的细节等。
禁忌搜索算法可以通过设置禁忌表来限制搜索空间,从而避免搜索算法出现不应该搜索到的信息,从而保护隐私。
禁忌搜索算法在物流调度中的应用,可以大大提高物流调度的效率和准确性,同时也可以保护隐私。
然而,禁忌搜索算法也存在一些问题,例如搜索空间较大时算法的效率就会受到影响,这就需要在实际应用中进行合理的优化。
在禁忌搜索算法的优化中,可以采用以下几个方面:1. 禁忌表的合理设置禁忌表的设置是禁忌搜索算法中的关键。
在物流调度中,可以通过合理设置禁忌表来限制搜索空间,从而避免搜索算法出现重复路径和隐私泄露的情况。
禁忌表的设置需要根据具体的业务需求进行灵活调整。
2. 改进启发式函数启发式函数是禁忌搜索算法中的重要组成部分,它用于评估搜索过程中的解决方案。
一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。