禁忌搜索算法教程
- 格式:ppt
- 大小:525.00 KB
- 文档页数:49
图节点着色问题中的禁忌搜索算法09-03-25 作者:编辑:校方人员图节点着色问题是组合最优化中典型的非确定多项式(NP)完全问题,也是图论中研究得最久的一类问题。
目前解决该问题的算法很多,如回溯算法、分支界定法、Welsh-Powell算法、神经网络、遗传算法以及模拟退火算法等。
综合比较各种算法,前两种算法是精确算法,但时间复杂性太大;后三种属于近似算法,虽然时间复杂性可接受,能够得到较好的近似解,但算法本身过于复杂,算法效率难以保证。
本文采用禁忌搜索算法,它同时拥有高效性和鲁棒性。
禁忌搜索是一种全局逐步寻优的人工智能算法,它常能有效的应用于一些典型NP问题,如TSP。
但禁忌搜索存在一些参数较难设置,这也是应用于通信系统时研究的热点。
本文提出针对着色问题的禁忌搜索的具体设计方案,较好的设置了参数,并优化了数据结构,通过实验比较得到了较好的效果。
最后提出通过领域简单的变化,禁忌搜索能较好的用于一般算法难以实现的List着色问题。
1图节点着色问题图的着色问题可分为边着色、顶点着色、List着色和全着色,其中最主要的给定一个无向图G=(V,E),其中V是节点集V={1,2,…n},E是边集,其中(i,j)表示有连接(i,j)的一条边。
若,且V i内部的任何两个节点没有E中的边直接相连,则称(V1,V2,…,V n)为V的一个划分。
图的节点着色问题可以描述为:求一个最小的k,使得(V1,V2,…,V n)为V的一个划分。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最优解,如Welsh-Powell算法和贪婪算法。
Welsh-Powell算法只能保证最多使用(为图中顶点的最大度)种颜色给一个图正常着色,而由Brooks定理,对于既不是完全图又不是奇圈的简单连通图,所需的颜色数。
一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。
禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。
一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。
其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。
禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。
禁忌搜索算法的核心是寻找最优化解。
具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。
当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。
在禁忌搜索算法中,选择邻域解是非常重要的一环。
邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。
邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。
而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。
二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。
下面我们就通过几个实际案例来了解禁忌搜索算法的应用。
1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。
在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。
禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。
2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。
比如在公路路径设计中,需要从成千上万的路径中选择最优解。
禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。