福建南平2011中考数学试题-解析版
- 格式:doc
- 大小:373.19 KB
- 文档页数:14
1二○一一年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.6的相反数是 A.6−B.16C.6±2.福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为 A.60.1810⨯米B.61.810⨯米C.51.810⨯米D.41810⨯米3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是4.图1是我们学过的反比例函数图象,它的函数解析式可能是 A.2y x =B.4y x=C.3y x=−D.12y x =5.下列四个角中,最有可能与70o 角互补的角是6.不等式组11112x x +≥−⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是图1BACDABDC122−ADBC27.一元二次方程(2)0x x −=根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 8.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是 A.0B.13C.23D.19.如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C , 若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足A.RB.3R r =C.2R r =D.R =10.如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 A.2 B.3C.4D.5二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:225x −= .12.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中 飞来一块陨石落在地球上,则落在陆地上的概率是 .13.如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度. 14.化简1(1)(1)1m m −++的结果是 .15.以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a图2图3BCD图4A O 图560三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:0|−4|+2011 (2)化简:2(3)(2)a a a ++− 17.(每小题8分,共16分)(1)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =. 求证AB ED =.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 18.(满分10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据 数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回 答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,19.(满分12分)如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,A图6BCDE图7-145%5%实践与综合应用统计与概率数与代数 空间与图形 40%67a44数与式函数数与代数(内容)图7-2课时数方程(组)与不等式(组)图7-3方程(组)与不等式(组)课时数则y 随x 的增大而 (填“增大”或“减小”).20.(满分12分)如图9,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =求:(1)tan C ;(2)图中两部分阴影面积的和. 21.(满分12分) 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.22.(满分14分)已知,如图11,二次函数223y ax ax a =+−(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y x =对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.B A BCDEF 图10-1 O图10-2 备用图 备用图2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、错误!未找到引用源。
福建省9市2011年中考数学专题7:统计与概率精品试题分类解析汇编一、选择题1.(福建福州4分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、13C、23D、1【答案】B。
【考点】列表法或树状图法,概率。
【分析】画树状图:图中可知,共有6种等可能情况,积是正数的有2种情况,故概率为2163。
故选B。
2.(福建泉州3分)下列事件为必然事件的是A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖【答案】C。
【考点】随机事件。
【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为一枚普通的正方体骰子只有1~6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误。
故选C。
3.(福建漳州3分)下列事件中,属于必然事件的是A.打开电视机,它正在播广告B.打开数学书,恰好翻到第50页C.抛掷一枚均匀的硬币,恰好正面朝上D.一天有24小时【答案】D 。
【考点】必然事件。
【分析】根据必然事件的定义:一定发生的事件,即可判断:A 、是随机事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是必然事件,故选项正确。
故选D 。
4.(福建漳州3分)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是A .79,85B .80,79C .85,80D .85,85【答案】C 。
【考点】众数,中位数。
【分析】众数是一组数据中出现次数最多的数据,数据85出现了两次最多为众数;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
1二○一一年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.6的相反数是 A.6-B.16C.6±2.福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为 A.60.1810⨯米B.61.810⨯米C.51.810⨯米D.41810⨯米3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是4.图1是我们学过的反比例函数图象,它的函数解析式可能是 A.2y x =B.4y x=C.3y x=-D.12y x =5.下列四个角中,最有可能与70o 角互补的角是6.不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是图1BACDABDC1202-ADBC27.一元二次方程(2)0x x -=根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 8.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是 A.0B.13C.23D.19.如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C , 若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足A.R =B.3R r =C.2R r =D.R =10.如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 A.2 B.3C.4D.5二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:225x -= .12.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中 飞来一块陨石落在地球上,则落在陆地上的概率是 .13.如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度. 14.化简1(1)(1)1m m -++的结果是 .15.以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a图2图3BCD图4A O 图560三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:0|-4|+2011 (2)化简:2(3)(2)a a a ++- 17.(每小题8分,共16分)(1)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =. 求证AB ED =.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 18.(满分10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据 数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回 答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,19.(满分12分)如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,A图6B CDE图7-145%5%实践与综合应用统计与概率数与代数 空间与图形 40%67a44数与式函数数与代数(内容)图7-2课时数方程(组)与不等式(组)图7-3方程(组) 与不等式(组)课时数则y 随x 的增大而 (填“增大”或“减小”).20.(满分12分)如图9,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =求:(1)tan C ;(2)图中两部分阴影面积的和. 21.(满分12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.22.(满分14分)已知,如图11,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y 对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.一、选择题(每小题4分,共40分)1.A2.C3.A4.B5.D6.D7.A8.B9.C 10.C 二、填空题(每小题4分,共20分)11.(5)(5)x x -+ 12.31013.270 14.m 15.42a -≤≤-B图9 A B C D E 图10-1 O 图10-2 备用图三、解答题(满分90分)16.(每小题7分,共14分) (1)解:原式414=+- 1=(2)解:原式22692a a a a =+++-89a =+ 17.(每小题8分,共16分)(1)证明:∵AB BD ⊥,ED BD ⊥∴90ABC D ∠=∠= 在ABC ∆和EDC ∆中 ABC D BC DCACB ECD∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴ABC ∆≌EDC ∆ ∴AB ED =(2)解:设励东中学植树x 棵.依题意,得(23)834x x +-=解得279x =∴2322793555x -=⨯-=答:励东中学植树279棵,海石中学植树555棵. 18.(满分10分)(1)36; (2)60;14(3)解:依题意,得45%6027⨯=答:唐老师应安排27课时复习“数与代数”内容. 19.(满分12分)(1)设直线AB 的函数解析式为y kx b =+ 依题意,得(10)A ,,(02)B ,∴{020k b b =+=+解得{22k b =-=∴直线AB 的函数解析式为22y x =-+当02y ≤≤时,自变量x 的取值范围是01x ≤≤.(2)线段BC 即为所求增大20.(满分12分)解:(1)连接OE∵AB 、AC 分别切O 于D 、E 两点∴90ADO AEO ∠=∠= 又∵90A ∠=o∴四边形ADOE 是矩形 ∵OD OE =∴四边形ADOE 是正方形AB CDE∴OD ∥AC ,3OD AD == ∴BOD C ∠=∠∴在Rt BOD ∆中,2tan 3BD BOD OD ∠==∴2tan C =(2)如图,设O 与BC 交于M 、N 两点.由(1)得,四边形ADOE 是正方形 ∴90DOE ∠=∴90COE BOD ∠+∠=∵在Rt EOC ∆中,2tan 3C =,3OE = ∴9EC = ∴29113O DOM EON DOE S S S S +===π⨯=π扇形扇形扇形∴()399BOD COE DOM EON S S S S S ∆∆=+-+=-π阴影扇形扇形∴图中两部分阴影面积的和为399-π21.(满分12分)(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O ∴OA OC =∴AOE ∆≌COF ∆∴OE OF =∴四边形AFCE 为平行四边形 又∵EF AC ⊥∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x = ∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形 ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,∴5PC t =,124QA t =-∴5124t t =-,解得43t =∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得A B C D E F O12a b+=iii)如图3,当P点在AB上、Q点在CD上时,AP CQ=,即12a b-=,得12a b+=综上所述,a与b满足的数量关系式是12a b+=(0)ab≠22.(满分14分)解:(1)依题意,得2230ax ax a+-=(0)a≠解得13x=-,21x=∵B点在A点右侧∴A点坐标为(30)-,,B点坐标为(10),∵直线l:y当3x=-时,(3)0 y-∴点A在直线l上(2)∵点H、B关于过A点的直线l∴4AH AB==过顶点H作HC AB⊥交AB于则12AC AB==,HC=∴顶点(H-代入二次函数解析式,解得a=∴二次函数解析式为y=(3)直线AH的解析式为y+直线BK的解析式为y=由y xy⎧⎪=⎨⎪=-⎩解得{x y==即K,则4BK=∵点H、B关于直线AK对称∴HN MN+的最小值是MB,KD KE==过点K作直线AH的对称点Q,连接QK,交直线AH于E则QM MK=,QE EK==AE QK⊥∴BM M K+的最小值是BQ,即BQ的长是HN NM MK++的最小值∵BK∥AH∴90BKQ HEQ∠=∠=︒由勾股定理得8QB=∴HN NM MK++的最小值为8(不同解法参照给分)图1图2图3。
初中毕业升学考试(福建南平卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣3的倒数是()A.3 B.﹣3 C. D.【答案】D.【解析】试题分析:∵(﹣3)×()=1,∴﹣3的倒数是.故选D.考点:倒数.【题文】如图所示的几何体的左视图是()A. B. C. D.【答案】A.【解析】试题分析:从左面看可得到一个三角形.故选A.考点:简单几何体的三视图.【题文】如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()评卷人得分A.44° B.46° C.134° D.54°【答案】D.【解析】试题分析:如图所示,∵直线a∥b,∠1=46°,∴∠1=∠3=46°.∵∠2与∠3是对顶角,∴∠2=∠3=46°.故选B.考点:平行线的性质.【题文】下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>0【答案】C.【解析】试题分析:A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖为随机事件,不符合题意;B.一组数据1,2,4,5的平均数是4是不可能事件,不符合题意;C.三角形的内角和等于180°为必然事件,符合题意;D.若a是实数,则|a|>0为事件事件,不符合题意.故选C.考点:随机事件.【题文】2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:则这11名队员身高的众数和中位数分别是()(单位:cm)A.180,182 B.180,180 C.182,182 D.3,2【答案】B.【解析】试题分析:∵180出现的次数最多,∴众数是180.将这组数据按照由大到小的顺序排列:176、178、178、180、180、180、182、182、186、188、192.所以众数为180.故选B.考点:众数;中位数.【题文】若正六边形的半径长为4,则它的边长等于()A.4 B.2 C. D.【答案】A.【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.【题文】下列运算正确的是()A.3x+2y=5xy B.C. D.【答案】C.【解析】试题分析:A.3x+2y≠5xy,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选C.考点:平方差公式;合并同类项;幂的乘方与积的乘方;约分.【题文】下列一元二次方程中,没有实数根的是()A. B.C. D.【答案】B.【解析】试题分析:A.a=1,b=﹣2,c=﹣3,△=4+12=16>0,有两个不相等的实数根,故此选项错误;B.a=1,b=﹣1,c=1,△=1﹣4=﹣3<0,没有实数根,故此选项正确;C.a=1,b=2,c=1,△=4﹣4=0,有两个相等的实数根,故此选项错误;D.a=1,b=0,c=﹣1,△=4>0,有两个不相等的实数根,故此选项错误;故选B.考点:根的判别式.【题文】闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为()A.60﹣x=20%(120+x) B.60+x=20%×120C.180﹣x=20%(60+x) D.60﹣x=20%×120【答案】A.【解析】试题分析:设把x公顷旱地改为林地,根据题意可得方程:60﹣x=20%(120+x).故选A.考点:由实际问题抽象出一元一次方程.【题文】如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、An(n,0),作垂直于x轴的直线交l于点B1、B2、…、Bn,将△OA1B1,四边形A1A2B2B1、…、四边形An﹣1AnBnBn﹣1的面积依次记为S1、S2、…、Sn,则Sn=()A.n2 B.2n+1 C.2n D.2n﹣1【答案】D.【解析】试题分析:观察,得出规律:S1=OA1•A1B1=1,S2=OA2•A2B2﹣OA1•A1B1=3,S3=OA3•A3B3﹣OA2•A2B2=5,S4=OA4•A4B4﹣OA3•A3B3=7,…,∴Sn=2n﹣1.故选D.考点:一次函数图象上点的坐标特征;规律型.【题文】甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是=0.2,=0.5,则设两人中成绩更稳定的是(填“甲”或“乙”)【答案】甲.【解析】试题分析:∵=0.2,=0.5,则<,可见较稳定的是甲.故答案为:甲.考点:方差;算术平均数.【题文】计算:=.【答案】28.【解析】试题分析:原式==28.故答案为:28.考点:二次根式的乘除法.【题文】分解因式:=.【答案】.【解析】试题分析:原式==.故答案为:.考点:提公因式法与公式法的综合运用.【题文】写出一个y关于x的二次函数的解析式,且它的图象的顶点在y轴上:.【答案】(答案不唯一).【解析】试题分析:由题意可得:(答案不唯一).故答案为:(答案不唯一,只要中a≠0,b=0即可).考点:二次函数的性质;开放型.【题文】如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.【答案】3.【解析】试题分析:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF ;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.考点:正方形的性质;全等三角形的判定与性质;分类讨论.【题文】如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD 与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.【解析】试题分析:①∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ,∴①正确;②∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°﹣(∠ACP+BCQ+∠ACB)=360°﹣(120°+120°)=120°,∴∠PCQ的大小不变;∴②正确;③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ,∴S△PCQ=CP×QE=CP×CQ=,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小===,∴③错误;④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.考点:几何变换综合题;定值问题;最值问题;综合题;翻折变换(折叠问题).【题文】计算:.【答案】5.【解析】试题分析:首先计算零次幂、绝对值、开立方,然后计算有理数的加减即可.试题解析:原式=1+6﹣2=5.考点:实数的运算;零指数幂.【题文】解分式方程:.【答案】x=3.【解析】试题分析:先去分母,再解一元一次方程即可.试题解析:去分母得,3(1+x)=4x,去括号得,3+3x=4x,移项、合并得,x=3,检验:把x=3代入x(x+1)=3×4=12≠0,∴x=3是原方程的解.考点:解分式方程.【题文】解不等式组:.【答案】1<x<3.【解析】试题分析:分别求出各不等式的解集,再求出其公共解集即可.试题解析:由①得,x<3,由②得,x>1,故不等式组的解集为:1<x<3.考点:解一元一次不等式组.【题文】国务院办公厅在2015年3月16日发布了《中国足球发展改革总统方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:(1)被调查的学生共有人.(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为度;(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?【答案】(1)300;(2)108;(3)0.4.【解析】试题分析:(1)根据统计图中的数据可以求得本次调查的人数;(2)根据条形统计图中的数据可以求得在扇形统计图中,表示“比较了解”的扇形的圆心角度数;(3)根据统计图中的数据可以求得从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率.试题解析:(1)由题意可得,被调查的学生有:60÷20%=300(人),故答案为:300;(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为:360°×=108°,故答案为:108;(3)由题意可得,从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是:=0.4,即从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是0.4.考点:概率公式;扇形统计图;条形统计图;统计与概率.【题文】如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===4.考点:相似三角形的判定与性质.【题文】如图,PA,PB是⊙O的切线,A,B为切点,点C在PB上,OC∥AP,CD⊥AP于D(1)求证:OC=AD;(2)若∠P=50°,⊙O的半径为4,求四边形AOCD的周长(精确到0.1)【答案】(1)证明见解析;(2)18.4.【解析】试题分析:(1)只要证明四边形OADC是矩形即可.(2)在RT△OBC中,根据sin∠BCO=,求出OC即可解决问题.试题解析:(1)证明:∵PA切⊙O于点A,∴OA⊥PA,即∠OAD=90°,∵OC∥AP,∴∠COA=180°﹣∠OAD=180°﹣90°=90°,∵CD∥PA,∴∠CDA=∠OAD=∠COA=90°,∴四边形AOCD是矩形,∴OC=AD.(2)解:∵PB切⊙O于等B,∴∠OBP=90°,∵OC∥AP,∴∠BCO=∠P=50°,在RT△OBC中,sin∠BCO=,OB=4,∴OC=≈5.22,∴矩形OADC的周长为2(OA+OC)=2×(4+5.22)=18.4.考点:切线的性质.【题文】已知正比例函数(a≠0)与反比例函数(k≠0)的图象在第一象限内交于点A(2,1)(1)求a,k的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答时x的取值范围.【答案】(1),k=2;(2)﹣2<x<0或x>2.【解析】试题分析:(1)将A坐标代入双曲线解析式中,求出k的值,确定出反比例函数解析式,将A坐标代入一次函数解析式中,求出a的值,确定出一次函数解析式;(2)画出两函数图象,由函数图象,即可得到时x的取值范围.试题解析:(1)将A(2,1)代入正比例函数解析式得:1=2a,即a=,故;将A(2,1)代入双曲线解析式得:1=,即k=2,故;(2)如图所示:由图象可得:当时,﹣2<x<0或x>2.考点:反比例函数与一次函数的交点问题.【题文】已知,抛物线(a≠0)经过点A(4,4).(1)求抛物线的解析式;(2)如图1,抛物线上存在点B,使得△AOB是以AO为直角边的直角三角形,请直接写出所有符合条件的点B的坐标:.(3)如图2,直线l经过点C(0,﹣1),且平行与x轴,若点D为抛物线上任意一点(原点O除外),直线DO交l于点E,过点E作EF⊥l,交抛物线于点F,求证:直线DF一定经过点G(0,1).【答案】(1);(2)B(﹣4,4)或(﹣8,16);(3)证明见解析.【解析】试题分析:(1)利用待定系数法求出抛物线解析式,(2)分两种情况,先确定出直线OB或AB,和抛物线解析式联立确定出点B的解析式;(3)先设出点D坐标,确定出点F坐标,进而得出直线DF解析式,将点G坐标代入直线DF看是否满足解析式.试题解析:(1)∵抛物线(a≠0)经过点A(4,4),∴16a=4,∴a=,∴抛物线的解析式为,(2)存在点B,使得△AOB是以AO为直角边的直角三角形,理由:如图1,∵使得△AOB是以AO为直角边的直角三角形,∴直角顶点是点O,或点A,①当直角顶点是点O时,过点O作OB⊥OA,交抛物线于点B,∵点A(4,4),∴直线OA解析式为y=x,∴直线OB解析式为y=﹣x,∵,∴(舍)或,∴B(﹣4,4),②当直角顶点为点A,过点A作AB⊥OA,由①有,直线OA的解析式为y=x,∵A(4,4),∴直线AB解析式为y=﹣x+8,∵,解得:(舍)或,∴B(﹣8,16),∴满足条件的点B(﹣4,4)或(﹣8,16);故答案为:B(﹣4,4)或(﹣8,16);(3)证明:设点D(m,),∴直线DO解析式为,∵l∥x轴,C(0,﹣1),令y=﹣1,则x=,∴直线DO与l交于E(,﹣1),∵EF⊥l,l∥x轴,∴F横坐标为,∵点F在抛物线上,∴F(,).设直线DF解析式为y=kx+b,∴,∴,∴直线DF解析式为,∴点G(0,1)满足直线DF解析式,∴直线DF一定经过点G.考点:二次函数综合题.【题文】已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【答案】(1)①证明见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP.【解析】试题分析:(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.试题解析:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵∠PHG=∠PDF,PH=PD,∠GPH=∠FPD,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG ,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∠GPH=∠FPD,∠GHP=∠FDP,PH=PD,∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG ﹣DF,∴DG﹣DF=DP.考点:四边形综合题;探究型;和差倍分;变式探究;压轴题.。
福建省南平市初中升学考试中考数学试卷试题2011年福建省南平市初中毕业、升学考试中考试题数学(满分:150分;考试时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分。
每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.(2010福建南平,1,4分)2的相反数等于A . -2B .2C .-21D .21 【答案】A2.(2010福建南平,2,4分)方程组⎩⎨⎧=-=+326y x y x 的解是A .⎩⎨⎧-==39y xB .⎩⎨⎧-==17y xC .⎩⎨⎧==15y xD .⎩⎨⎧==33y x 【答案】C3.(2010福建南平,3,4分)下列调查中,适宜采用全面调查方式的是A .了解南平市的空气质量情况B .了解闽江流域的水污染情况C .了解南平市居民的环保意识D .了解全班同学每周体育锻炼的时间【答案】D4.(2010福建南平,4,4分)下列运算中,正确..的是A .1553a a a =⋅B .253a a a =÷C .632)(a a -=-D .623)(ab ab =【答案】C5.(2010福建南平,5,4分)下列说法错误..的是 A .必然事件发生的概率是1 B .不确定事件发生的概率是0.5C .不可能事件发生的概率是0D .随机事件发生的概率介于0和1之间【答案】B6.(2010福建南平,6,4分)边长为4的正三角形的高为A .2B .4C .3D .32【答案】D7(2010福建南平,7,4分).已知⊙O 1、⊙O 2的半径分别是2、4,若O 1O 2=6,则⊙O 1与⊙O 2的位置关系是A .内切B .相交C .外切D .外离【答案】C8.(2010福建南平,8,4分)有一等腰梯形纸片ABCD,(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下。
由△DEC与四边形ABED不一定...能.拼接成的图形是DACA.直角三角形B.矩形C.平行四边形D.正方形【答案】D9.(2010福建南平,9,4分)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价。
福建省南平市2011年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣D、2、(2011•南平)方程组的解是()A、B、C、D、3、(2011•南平)下列调查中,适宜采用全面调查方式的是()A、了解南平市的空气质量情况B、了解闽江流域的水污染情况C、了解南平市居民的环保意识D、了解全班同学每周体育锻炼的时间4、(2011•南平)下列运算中,正确的是()A、a3•a5=a15B、a3÷a5=a2C、(﹣a2)3=﹣a6D、(ab3)2=﹣ab65、(2011•南平)下列说法错误的是()A、必然事件发生的概率为1B、不确定事件发生的概率为0.5C、不可能事件发生的概率为0D、随机事件发生的概率介于0和1之间6、(2011•南平)边长为4的正三角形的高为()A、2B、4C、D、27、(2011•南平)已知⊙O1、⊙O2的半径分别是2、4,若O1O2=6,则⊙O1和⊙O2的位置关系是()A、内切B、相交C、外切D、外离8、(2011•南平)有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC 与四边形ABED不一定能拼成的图形是()A、直角三角形B、矩形C、平行四边形D、正方形9、(2011•南平)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程正确的是()A、=15%B、=15%C、92﹣x=15%D、x=92×15%10、(2011•南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为()A、78B、66C、55D、50二、填空题:(本大题共8小题,每小题3分,共24分)11、计算:=_________.12、分解因式:mx2+2mx+m=_________.13、(2011•南平)已知△ABC的周长为18,D、E分别是AB、AC的中点,则△ADE的周长为_________.14、(2011•南平)抛掷一枚质地均匀的硬币两次,正面都朝上的概率是_________.15、(2011•南平)已知反比例函数y=的图象经过点(2,5),则k=_________.16、(2011•南平)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45 135 149 180乙45 135 151 130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀).其中正确的命题是_________.(只填序号)17、(2011•南平)如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为_________.(结果保留π)18、(2011•南平)一个机器人从点O出发,每前进1米,就向右转体a°(1<a<180),照这样走下去,如果他恰好能回到O点,且所走过的路程最短,则a的值等于_________.三、解答题(本大题共8小题,共86分.)19、(2011•南平)先化简,再求值:x(x+1)﹣(x﹣1)(x+1),其中x=﹣1.20、(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.21、(2011•南平)如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)(2)△A′B′C′的面积是:_________.22、(2011•南平)在“5•12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整):请根据上述图表提供的信息,完成下列问题:(1)分别补全频数分布表和频数分布直方图;(2)若从该校随机1名学生进行这项测验,估计其成绩不低于80分的概率约为_________.23、(2011•南平)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?24、(2011•南平)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE 为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=28°,⊙O的半径为6,求线段AD的长.(结果精确到0.1)25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.26、(2011•南平)定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)】.答案与评分标准一、选择题(本大题共10小题,每小题4分,共40分)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣D、考点:相反数。
福建省2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (福建福州4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是A、B、C、D、【答案】A。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
球的主视图、左视图、俯视图都是圆形。
故选A。
2.(福建泉州3分)下面如图是一个圆柱体,则它的正视图是A、B、C、D、【答案】A。
【考点】简单几何体的三视图。
【分析】正视图是从物体的正面看得到的视图,从正面看到圆柱体为长方形,故选A。
3.(福建泉州3分)下列正多边形中,不能铺满地面的是A、正三角形B、正方形C、正六边形D、正七边形【答案】D。
【考点】平面镶嵌(密铺),多边形内角和定理。
【分析】由多边形内角和定理分别求出所给图形的内角,根据密铺的性质(内角的度数能被360°整除)进行判断即可:解:A、∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面,故本选项正确;B、∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面,故本选项正确;C、∵正六边形的内角是120°,3×120°=360°,∴正六形能铺满地面,故本选项正确;D、∵正七形的内角是29007,29007同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面,故本选项错误。
故选D。
4.(福建漳州3分)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是【答案】C 。
【考点】由三视图判断几何体【分析】根据题意得:小正方体有两排组成,而A ,B ,D ,都有3排,故只有C 符合。
故选C 。
5.(福建三明4分)由5个大小相同的正方体组成的几何体如图所示,其主视图是【答案】A 。
2011年福建省南平市初中毕业、升学考试语文试题(满分:150分;考试时间:120分钟)★友情提示友情提示::所有答案都必须填在答题卡相应的位置上所有答案都必须填在答题卡相应的位置上,,答在本试卷上一律无效答在本试卷上一律无效。
第Ⅰ卷选择题(18分)一、选择题(共6小题,每小题3分,共18分。
请在答题卡的相应位置填涂)1.下列词语中加点字的读音全都正确....的一项是:A .玷.(diàn )污带挈.(qiè)鞭笞.(tái )诘.(ji é)责B .讪.(shàn )笑粗糙.(c āo )静谧.(mì)攒.(cuán )成C .恣.(zì)睢慰藉.(jí)污秽.(huì)忏.(chàn )悔D .滞.(zhì)笨尴尬.(ɡà)徘徊.(huí)绽.(zhàn )开2.下列词语中没有错别字.....的一项是:A .枯涸玲珑剔透来势凶凶沥尽心血B .憧憬杳无音信惟妙惟肖跚跚来迟C .禁锢暗然失色无动于衷相形见绌D .鸟瞰根深蒂固面面相觑奄奄一息3.下列句子中加点成语使用恰当....的一项是:A .武夷山山好水好,人文底蕴深厚,具有德高望重....的生态、文化、旅游资源优势。
B .许多爱心人士蠢蠢欲动....地投入长江中下游地区的抗旱工作。
C .面对多国部队一轮又一轮的空袭,丧失制空权的卡扎菲束手无策....。
D .日本3·11大地震发生后,“日本加油、世界给力”的口号络绎不绝....。
4.对下列病句修改错误....的一项是:A .为了避免物价不再飞涨,国家采取了许多有效措施。
修改:删除“不再飞涨”中的“不再”。
B .通过举办世博会,使全世界的目光都聚焦到飞速发展的上海。
修改:删除“通过”或“使”。
C .我们要发扬和继承中华民族“一方有难,八方支援”的优良传统。
福建省福州市2011年中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分)1、(2011•福州)6的相反数是()A、﹣6B、错误!未找到引用源。
C、±6D、错误!未找到引用源。
考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、错误!未找到引用源。
福建省南平市2011年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣错误!未找到引用源。
D、错误!未找到引用源。
2、(2011•南平)方程组错误!未找到引用源。
的解是()A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
3、(2011•南平)下列调查中,适宜采用全面调查方式的是()A、了解南平市的空气质量情况B、了解闽江流域的水污染情况C、了解南平市居民的环保意识D、了解全班同学每周体育锻炼的时间4、(2011•南平)下列运算中,正确的是()A、a3•a5=a15B、a3÷a5=a2C、(﹣a2)3=﹣a6D、(ab3)2=﹣ab65、(2011•南平)下列说法错误的是()A、必然事件发生的概率为1B、不确定事件发生的概率为0.5C、不可能事件发生的概率为0D、随机事件发生的概率介于0和1之间6、(2011•南平)边长为4的正三角形的高为()A、2B、4C、错误!未找到引用源。
D、2错误!未找到引用源。
7、(2011•南平)已知⊙O1、⊙O2的半径分别是2、4,若O1O2=6,则⊙O1和⊙O2的位置关系是()A、内切B、相交C、外切D、外离8、(2011•南平)有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC 与四边形ABED不一定能拼成的图形是()A、直角三角形B、矩形C、平行四边形D、正方形9、(2011•南平)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程正确的是()A、错误!未找到引用源。
=15%B、错误!未找到引用源。
=15%C、92﹣x=15%D、x=92×15%10、(2011•南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为()A、78B、66C、55D、50二、填空题:(本大题共8小题,每小题3分,共24分)11、计算:错误!未找到引用源。
=_________.12、分解因式:mx2+2mx+m=_________.13、(2011•南平)已知△ABC的周长为18,D、E分别是AB、AC的中点,则△ADE的周长为_________.14、(2011•南平)抛掷一枚质地均匀的硬币两次,正面都朝上的概率是_________.15、(2011•南平)已知反比例函数y=错误!未找到引用源。
的图象经过点(2,5),则k=_________.16、(2011•南平)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45 135 149 180乙45 135 151 130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀).其中正确的命题是_________.(只填序号)17、(2011•南平)如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为_________.(结果保留π)18、(2011•南平)一个机器人从点O出发,每前进1米,就向右转体a°(1<a<180),照这样走下去,如果他恰好能回到O点,且所走过的路程最短,则a的值等于_________.三、解答题(本大题共8小题,共86分.)19、(2011•南平)先化简,再求值:x(x+1)﹣(x﹣1)(x+1),其中x=﹣1.20、(2011•南平)解不等式组:错误!未找到引用源。
,并把它的解集在数轴上表示出来.21、(2011•南平)如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)(2)△A′B′C′的面积是:_________.22、(2011•南平)在“5•12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整):请根据上述图表提供的信息,完成下列问题:(1)分别补全频数分布表和频数分布直方图;(2)若从该校随机1名学生进行这项测验,估计其成绩不低于80分的概率约为_________.23、(2011•南平)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?24、(2011•南平)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE 为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=28°,⊙O的半径为6,求线段AD的长.(结果精确到0.1)25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.26、(2011•南平)定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)] 【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣错误!未找到引用源。
,顶点坐标是(﹣错误!未找到引用源。
,错误!未找到引用源。
)】.答案与评分标准一、选择题(本大题共10小题,每小题4分,共40分)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣错误!未找到引用源。
D、错误!未找到引用源。
考点:相反数。
专题:常规题型。
分析:根据相反数的定义即可求解.解答:解:2的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2、(2011•南平)方程组错误!未找到引用源。
的解是()A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
考点:解二元一次方程组。
专题:计算题。
分析:解:先把第一个方程化成和第二个方程系数相同,再根据解二元一次方程组的方法解答即可.解答:解:由错误!未找到引用源。
变形得,错误!未找到引用源。
,①+②得,3x=15解得,x=5,把x=5代入①解得,y=1,故答案为C.点评:本题考查了用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用错误!未找到引用源。
的形式表示.3、(2011•南平)下列调查中,适宜采用全面调查方式的是()A、了解南平市的空气质量情况B、了解闽江流域的水污染情况C、了解南平市居民的环保意识D、了解全班同学每周体育锻炼的时间考点:全面调查与抽样调查。
专题:推理填空题。
分析:A、根据全面调查方式的可行性即可判定;B、根据全面调查的可行性即可判定;C、根据全面调查的可行性即可判定;D、根据全面调查的可行性即可判定.解答:解:A、了解南平市的空气质量情况,由于南平市地域大,时间多,不能全面调查,故选项错误;B、了解闽江流域的水污染情况,由于工作任务太大,具有破坏性,不能全面调查,故选项错误;C、了解南平市居民的环保意识,由于南平市居民人口多,任务重,不能全面调查,故选项错误;D、了解全班同学每周体育锻炼的时间,任务不重,能全面调查,故选项正确.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、(2011•南平)下列运算中,正确的是()A、a3•a5=a15B、a3÷a5=a2C、(﹣a2)3=﹣a6D、(ab3)2=﹣ab6考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方。
专题:计算题。
分析:A、根据同底数幂的乘法法则:底数不变指数相加即可计算出结果,作出判断;B、根据同底数幂的除法法则:底数不变指数相减即可计算出结果,作出判断;C、根据积的乘方法则给积中每一个因式分别乘方与幂的乘方法则底数不变指数相乘即可计算出结果,作D、根据积的乘方法则给积中每一个因式分别乘方与幂的乘方法则底数不变指数相乘即可计算出结果,作出判断.解答:解:A、a3•a5=a3+5=a8,本选项错误;B、a3÷a5=a3﹣5=a﹣2=错误!未找到引用源。
,本选项错误;C、(﹣a2)3=(﹣1)3•(a2)3=﹣a2×3=﹣a6,本选项正确;D、(ab3)2=a2•(b3)2=a2b6,本选项错误.故选C.点评:本题考查同底数幂的乘法、除法法则,以及积的乘方与幂的乘方法则.其中同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.5、(2011•南平)下列说法错误的是()A、必然事件发生的概率为1B、不确定事件发生的概率为0.5C、不可能事件发生的概率为0D、随机事件发生的概率介于0和1之间考点:概率的意义。
分析:本题需先根据概率的意义和求法分别对每一项进行分析,即可求出答案.解答:解:A、∵必然事件发生的概率为1,故本选项正确;B、∵不确定事件发生的概率介于1和0之间,故本选项错误;C、∵不可能事件发生的概率为0,故本选项正确;D、∵随机事件发生的概率介于0和1之间,故本选项正确;故选B.点评:本题主要考查了概率的意义,在解题时要能根据概率的意义确定每一类事件发生的概率是本题的关键.6、(2011•南平)边长为4的正三角形的高为()A、2B、4C、错误!未找到引用源。