数学分析复习提纲
- 格式:ppt
- 大小:894.50 KB
- 文档页数:20
数学分析〔3〕总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉〞等词的内容为较高要求内容,冠以“会、了解、知道〞等词的内容为较低要求内容。
第十二章各种积分之间的联系§1 各种积分之间的联系公式理解格林公式及高斯公式,了解斯托克斯公式;掌握利用格林公式计算平面曲线积分和利用高斯公式计算曲面积分的方法;会用斯托克斯公式计算空间闭曲线上的曲线积分,会用平面曲线积分计算平面图形的面积,会用曲面积分计算立体的体积。
§2曲线积分及路径的无关性理解平面曲线积分及路径无关的四个等价条件,了解空间曲线积分及路径无关的四个等价条件;掌握利用平面曲线积分及路径无关的条件计算平面曲线积分、以及求二元函数全微分的原函数的方法。
§3 场论初步理解场的概念;了解梯度场、散度场、及旋度场的物理意义,会求梯度、散度及旋度。
第十三章极限及实数理论§1 各种极限的准确定义理解各种极限定义的本质,掌握利用极限定义证明极限的根本方法;会表达极限不等于某常数的定义,知道数列极限存在的充要条件及归结原则。
§2关于实数的根本定理理解确界、闭区间套、有限覆盖及聚点等概念,熟悉关于实数完备性的六个等价定理的条件和结论;会用实数完备性定理证明一些简单命题。
§3 闭区间上连续函数性质的证明理解有界性定理、最值定理、零点定理、介值定理的条件和结论,理解一致连续的定义和一致连续性定理;会用一致连续的定义证明函数的一致连续性,会用闭区间上连续函数的性质定理证明相关命题。
第十四章隐函数定理及重积分的换元法§1隐函数存在定理理解隐函数〔组〕存在惟一性定理的条件和结论;了解反函数组及坐标变换的概念和反函数组定理的条件及结论;掌握坐标变换的雅可比行列式的计算。
§2 重积分的换元法理解二重积分的坐标变换公式,掌握用换元法计算二重积分的根本方法;了解三重积分的坐标变换公式,会用球面坐标计算三重积分。
数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。
以下是对数学分析中的一些关键知识要点的整理。
一、函数函数是数学分析的核心概念之一。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。
(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。
(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。
二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。
1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。
《数学分析》考试大纲一、本大纲适用于报考苏州科技学院基础数学专业的硕士研究生入学考试。
主要考核数学分析课程的基本概念、基本理论、基本方法。
二、考试内容与要求(一) 实数集与函数1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
要求:了解数学的发展史与实数的概念,理解绝对值不等式的性质,会解绝对值不等式;弄清区间和邻域的概念, 理解确界概念、确界原理,会利用定义证明一些简单数集的确界;掌握函数的定义及函数的表示法,了解函数的运算;理解和掌握一些特殊类型的函数。
(二) 数列极限1、极限概念;2、收敛数列的性质:唯一性,有界性,保号性,单调性;3、数列极限存在的条件:单调有界准则,迫敛性法则,柯西准则。
要求:逐步透彻理解和掌握数列极限的概念;掌握并能运用ε-N语言处理极限问题;掌握收敛数列的基本性质和数列极限的存在条件(单调有界函数和迫敛性定理),并能运用;了解数列极限柯西准则,了解子列的概念及其与数列极限的关系;了解无穷小数列的概念及其与数列极限的关系.(三) 函数极限1、函数极限的概念,单侧极限的概念;2、函数极限的性质:唯一性,局部有界性,局部保号性,不等式性,迫敛性;3、函数极限存在的条件:归结原则(Heine定理),柯西准则;4、两个重要极限;5、无穷小量与无穷大量,阶的比较。
要求:理解和掌握函数极限的概念;掌握并能应用ε-δ, ε-X语言处理极限问题;了解函数的单侧极限,函数极限的柯西准则;掌握函数极限的性质和归结原则;熟练掌握两个重要极限来处理极限问题。
(四) 函数连续1、函数连续的概念:一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类;2、连续函数的性质:局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性;3、初等函数的连续性。
2020数学分析1期末复习提纲一、极限1、熟练掌握数列极限的-N ε语言与函数极限的εδ-语言。
例如lim (,)n n a a a →∞==∞±∞,lim ()x af x b →=(,,,)(,)x a a b +-→∞±∞=∞±∞2、极限的运算法则p30-31例9,例10;p38-39习题9(1-3,6);p53习题2,4,7,8(3-4),10.3、L’Hospital 法则P165-168例1-10,p169习题1(1,2,3,5,6,10,11,12,13,19)4、无穷小量的阶(高阶,同阶,等价无穷小的定义)P167习题1二、连续函数与实数的基本定理1、连续函数的定义与性质(四则运算、反函数、复合),初等函数的连续性。
2、不连续点的类型。
3、有界闭区间上连续函数的性质(有界性,最值性,介值性,一致连续性)P60-63例3例5;p64-65习题7,9,14(1-8),16,174、实数系的六个基本定理(背下来)P79-80习题5,10,11三、导数与微分1、导数的定义,曲线的切线,基本的导数表(p103-104),左右导数P94-95习题2,5;p121习题1(1,2)。
2、导数的四则运算,反函数的导数,复合函数求导,对数求导法。
p109-111习题1-6,9,11,13.3、微分的定义、运算法则,一阶微分形式的不变性。
P114习题1(2,4),2,3(2,4),4(1,3,5)。
4、隐函数与参数方程求导P123例1~例6,p128-129习题3(1,2,3,5,8),5(1,2,5),14(1,3,4,6),15(1,3)。
5、高阶导数p128-129例1~例6;p128-129习题3(1,2,3,5,8),5(1,2,5),14(1,3,4,6),15(1,3)。
四、导数的应用1、中值定理(Fermat 引理,Rolled 、Lagrange 、Cauchy 中值定理)P135习题10、11、12、13、15.2、Taylor 公式,掌握常用的初等函数如1(,sin ,cos ,(1),ln(1),)1x a e x x x x x++-在0x =处的Taylor 展开式。
《数学分析》考试大纲Ⅰ 考试性质与目的本科插班生考试是针对专科毕业生参加的选拔性考试,我院将根据考生的成绩,按已确定的招生计划,德、智、体育、全面衡量,择优录取。
考试应有较高的信度,效度,必要的区分度和适当的难度。
Ⅱ 考试内容一、考试基本要求要求考生理解和掌握《数学分析》的基本概念,基本原理和基本方法,能运用本科目知识进行,具体分析问题和解决问题的基本能力。
二、考核知识点与考核要求第一章 函数一、考核知识点1、函数的概念函数的定义 函数的表示法 分段函数2、函数的简单性质单调性 奇偶性有界性 周期性3、复合函数、反函数的概念 反函数的图像4、函数的四则运算与复合运算5、基本初等函数类幂函数 指数函数 对数函数 三角函数 反三角函数6、初等函数的概念二、考核要求1.识记:①基本初等函数的简单性质及图像。
②初等函数的概念。
2.理解:①函数的概念②函数的单调性、奇偶性、有界性、周期性。
3.应用:复合函数的复合过程。
第二章 极限一、考核知识点1.数列N -ε定义2.数列极限的性质唯一性,有界性,保号性,保不等式,四则运算定理子数列的概念和性质3.数列极限存在的条件,单调有界定理,数列极限存在的柯西准则,夹逼定理4.函数当x 趋向∞时的极限的概念和函数当x 趋向0x 时的极限的概念和δε-定义 单侧极限的概念5.极限与单侧极限的关系6.函数极限的性质唯一性 有界性保号性 保不等式性 四则运算定理7.函数极限存在的条件单调有界定理 函数极限存在的柯西准则 夹逼定理 函数极限存在的归结原则8.两个重要的极限9.无穷小量与无穷大量,无穷小量阶的概念,无穷小量阶的比较二、考核要求1、识记:①数列、函数极限的性质②无穷小量阶的比较③归结原则2、理解:①数列ε-N定义,函数极限ε-δ定义②无穷小量、无穷大量的概念,无穷小量与无穷大量的关系③单调有界定理,柯西准则3、应用:①极限的四则运算法则②夹逼定理③用两个重要的极限求极限④无穷小量的性质求极限第三章函数的连续性一、考核知识点1.函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类2.函数在一点处连续的性质连续函数的四则运算复合函数连续性反函数的连续性3.闭区间上连续函数的性质有界性定理最大值与最小值定理介值性定理4.初等函数的连续性二、考核要求1识记:①函数在一点连续与间断的概念②函数在一点连续与极限存在的关系2.理解:①函数在一点处连续的性质连续函数的四则运算,复合函数连续性,反函数的连续性②闭区间上连续函数的性质③初等函数在其定义区间上的连续性3.应用:①求函数的间断点及确定其类型②运用介值定理推证简单命题③用连续性求极限第四章导数和微分一、考核知识点1.导数的定义,导数的几何意义,可导与连续的关系2.求导法则与导数的基本公式,导数的四则运算,反函数的导数3.求导方法复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数4.高阶导数的概念高阶导数的定义,高阶导数的计算5.微分的定义微分与导数的关系微分法则一阶微分形式的不变性二、考核要求1识记:导数的概念及其几何意义,可导性与连续性的关系,2理解:①导数的基本公式、四则运算法则及复合函数求导方法②隐函数的求导法、对数求导法以及由参数方程确定的函数的求导方法3.应用:①使用各种求导法则和微分法则求导数和微分。
707数学分析第1章函数1.1 集合与实数系1.2 函数概念1.3 函数的特性1.4 反函数和复合函数1.5 初等函数第2章极限与连续2.1 数列极限2.2 函数极限2.3 无穷小和无穷大2.4 连续函数第3章导数与微分3.1 导数的概念3.2 基本初等函数的导数公式3.3 导数的运算法则3.4 高阶导数3.5 微分3.6 导数与微分的简单应用第4章微分中值定理与导数的应用4.1 微分中值定理4.2 不定式的定值法4.3 泰勒公式4.4 导数在函数研究中的应用第5章不定积分5.1 原函数与不定积分5.2 换元积分法5.3 分部积分法5.4 有理函数和积分法5.5 三角函数有理式的积分法第6章定积分6.1 定积分的概念6.2 定积分的性质6.3 微积分基本定理6.4 定积分的计算6.5 定积分的应用6.6 广义积分6.7 广义积分的判别法第7章空间解析几何与向量代数7.1 空间直角坐标系7.2 向量代数7.3 空间平面7.4 空间直线7.5 空间曲面7.6 空间曲线第8章多元函数微分学8.1 多元函数的极限与连续8.2 偏导数与全微分8.3 多元复合函数的微分法8.4 隐函数的微分法8.5 多元函数的泰勒公式8.6 方向导数和梯度8.7 偏导数的应用第9章重积分9.1 二重积分9.2 三重积分第10章级数10.1 常数项级数的概念与性质10.2 正项级数10.3 任意项级数10.4 函数项级数的一致收敛10.5 幂级数10.6 泰勒级数10.7 傅里叶级数。
数学分析考研大纲第一部分 集合与函数1、集合 实数集、有理数与无理数的调密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限复盖定理。
2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广。
2、函数函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理。
初等函数以及与之相关的性质。
第二部分 极限与连续1、 数列极限数列极限的N ε-定义,收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质)数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)nn e n →∞+=及其应用。
2、 函数极限各种类型的一元函数极限的定义(εδ-、M ε-语言 ),函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限:sin10lim 1,lim(1)xx x x x x e →→∞=+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号о与O 的意义。
多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系。
3、 函数的连续性函数连续与间断的概念,一致连续性概念。
连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最值可达性、介值性、一致连续性)。
第三部分 微分学1、一元函数微分学(i )导数与微分导数概念及其几何意义,可导与连续的关系,导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性。
(ii )微分学基本定理及其应用Feimat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理, Taylor 公式(Peano 余项与Lagrange 余项)及应用,函数单调性判别法,极值、最值、曲线凹凸性讨论。
数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。
一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。
§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。
§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。
§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。
§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。
§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。
§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。
§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。
§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。
§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。
第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。
§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。
数学分析(1)复习纲要一实数集与函数1、理解实数的概念,了解实数的四则运算、有序性、稠密性、阿基米德性等主要性质,会绝对值的常用不等式。
2、了解区间与邻域的概念,了解有界集及上下确界的定义并会证明, 理解确界原理。
3、理解函数的概念和表示法,了解反函数和复合函数的概念,了解基本初等函数的性质和图形。
4、了解函数的单调性、有界性、奇偶性和周期性。
典型例题:P2,例1;P6,例2。
典型习题:P4,1;P9,4(1)(3)。
二数列极限1、理解数列极限的概念,并掌握用ε—N定义证明数列极限的一般方法。
2、了解收敛数列的性质:唯一性、有界性、保号性、保不等式性、迫敛性、四则运算和子列的性质,并且掌握求数列极限的相应方法。
3、掌握单调有界定理并会用于证明数列极限的存在性,了解Cauchy收敛准则。
典型例题:P24,例3;P29,例1、2、5;P36,例2。
典型习题:P27,1,2(2);P33,1(1) (4),4(6);P39,1(1) (3),3(2)。
三函数极限1、理解函数极限的概念(当自变量趋向于无穷或有限点时以及单侧极限),并掌握“ε—δ”和“ε—M”证明的一般方法。
2、了解函数极限的性质: 唯一性, 局部有界性, 局部保号性,保不等式性和四则运算法则,并且掌握求函数极限的相应方法。
3、了解函数极限存在的条件: 归结原则, 单调有界准则和Cauchy准则。
4、掌握两个重要极限及其求极限应用。
5、了解无穷小(大)量及其阶的概念和应用;了解曲线的渐近线的概念及其求法。
典型例题:P45,例5;P50,例2、3;P53,例1;P56,例1-5;P62,例2、5。
典型习题:P47, 1(1)(2), 2;P51, 1(3)(7), 2(1);P58, 1(8)(10), 2(3), 4(1);P66, 2, 4(3)。
四函数的连续性1、理解函数在一点连续的概念(三个等价定义及左右连续),并会判断间断点的类型。
《数学分析(3)》复习要点第十二章各种积分之间的联系1、格林公式及其简单应用。
2、高斯公式及其简单应用。
3、平面曲线积分与路径无关的四个等价条件,利用平面曲线积分与路径无关的条件计算平面曲线积分、以及求二元函数全微分的原函数。
4、求梯度、散度与旋度。
第十三章极限与实数理论1、叙述各种极限的精确定义,利用极限定义证明极限为某常数。
2、上确界与下确界的定义,求上下确界,并用定义验证之。
3、实数完备性六个等价定理的内容,用实数完备性定理证明一些简单命题。
4、一致连续的定义,用一致连续的定义证明简单函数的一致连续性,用闭区间上连续函数的性质定理证明相关命题。
第十四章隐函数定理与重积分的换元法1、坐标变换的雅可比行列式的计算。
2、用换元法计算二重积分3、用球面坐标计算三重积分。
第十五章可积性理论与反常积分的收敛性1、求简单函数的上下和与上下积分,用函数可积的第一充要条件验证函数的可积性。
2、三类可积函数的证明,用可积准则(第二充要条件)证明简单函数的可积性。
3、p-无穷积分与p-瑕积分的收敛性结论。
4、反常积分绝对收敛的柯西判别法的极限形式。
第十六章数项级数1、级数收敛的概念与级数收敛的必要条件。
2、等比级数与p-级数的收敛性结论。
3、正项级数收敛性的基本判别法:比值法与根值法、极限判别法、比较判别法。
4、交错级数收敛性的莱布尼茨判别法,级数绝对收敛性与条件收敛性的判别。
第十七章函数列与函数项级数1、求函数列的极限函数。
2、函数列一致收敛的最大距离判别法。
3、一致收敛函数列的极限函数的连续性、可积性与可微性定理。
4、函数项级数一致收敛性的余项判别法与优级数判别法(魏尔斯特拉斯判别法)。
5、一致收敛函数项级数的和函数的连续性定理、逐项积分性质与逐项求导性质。
第十八章幂级数1、阿贝尔定理。
2、幂级数收敛半径、收敛域的求法(常用方法与一般方法)。
3、六个常用函数的幂级数展开式。
4、函数展开成幂级数的间接法。
5、求简单幂级数的和函数及某些特殊常数项级数的和。