2018届高考数学二轮复习专题四数列第2课时等差、等比数列的综合问题(能力课)课件(全国通用)
- 格式:ppt
- 大小:1.32 MB
- 文档页数:48
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d .(2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1q n -1.(4)等比数列前n 项和公式: S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2).(7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n -m .(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
专题四 数列江苏 新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课) [常考题型突破]等差、等比数列的基本运算[必备知识]1.通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1.2.求和公式 等差数列:S n =n a 1+a n2=na 1+n n -12d ;等比数列:S n =a 11-q n 1-q =a 1-a n q 1-q(q ≠1).[题组练透]1.(2017·镇江期末)已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d =________.解析:设等比数列{a n }的公比为q , 则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7,即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为 S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a 11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,所以⎩⎪⎨⎪⎧2×a 11-q 91-q =a 11-q 31-q +a 11-q 61-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案: 2 [方法归纳]等差(比)数列基本运算的策略(1)在等差(比)数列中,首项a 1和公差d (公比q )是两个最基本的元素.(2)在进行等差(比)数列项的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体代换法,以减少计算量.等差、等比数列的性质[必备知识]等差数列等比数列性 质(1)若m ,n ,p ,q ∈N *, 且m +n =p +q ,则a m +a n =a p +a q (1)若m ,n ,p ,q ∈N *, 且m +n =p +q , 则a m ·a n =a p ·a q (2)a n =a m +(n -m )d(2)a n =a m qn -m(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S m ≠0)[题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n(n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n(n ≥3),得a 2n =22n,则a n =2n,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×6-12d =6. 答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n n -12d ,∴S n =d2n 2+⎝ ⎛⎭⎪⎫1-d 2n .∵函数y =d 2x 2+⎝ ⎛⎭⎪⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d<-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0, 得n -1<1-d.∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳] 1等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m+a n =a p +a q ”这一性质与求和公式S n =n a 1+a n2的综合应用.[课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+1010-12×2=110. 法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10a 1+a 102=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24.答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1. 答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 解析:由题意S 5S 3=5a 1+10d3a 1+3d=3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179.答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则 k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +12,1S n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2nn +1. 答案:2n n +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n,a 1=2, 可得1a n +1=1a n+3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5, 所以a 20=2115.答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n=a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n=n ,所以b n =1nn +1=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎢⎡⎦⎥⎤4q 2-2+q 2-2+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×q 2-2+4=48(当且仅当q =2时等号成立).答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n,则数列{a n }的通项公式a n=________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n-2n -1=2a n +2n -1,从而a n +1+2n=3(a n +2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n}是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,①a 1+(p -1)d =2k +1,②两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2. 则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m m -12d =m (2m -1)-m (m -1)=m 2.答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8. 故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n n (-1)2=n n n n n 2273++22222=2--.记t =-n 22+7n2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________. 解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n n +12.由题意可知,N >100,令n n +12>100,得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n-1,前n 组的所有项的和为21-2n1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t-1应与-2-k 互为相反数,即2t-1=k +2, ∴2t =k +3, ∴t =log 2(k +3),∴当t =4,k =13时,N =13×13+12+4=95<100,不满足题意;当t =5,k =29时,N =29×29+12+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破]等差、等比数列的综合运算[例1] *n n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ; (2)若对任意n ∈N *,S n =a 2n +n2恒成立,求数列{a n }的通项公式;(3)若S 2n =3(2n-1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =31-3n1-3=3n +1-32. (2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1, 整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q . 即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列; 故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =31-2n1-2=3(2n-1).综上所述,a n=⎩⎪⎨⎪⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]有关递推数列问题常见的处理方法将第n 项和第n +1项合并在一起,看是否是一个特殊数列.若递推关系式含有a n 与S n ,则考虑是否可以将a n 与S n 进行统一,再根据递推关系式的结构特征确定是否为熟悉的、有固定方法的递推关系式向通项公式的转换类型,否则可以写出数列的前几项,看能否找到规律,即先特殊、后一般、再特殊.已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a n b n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n,S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n ,所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n+2=12.(2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t , 即1+1n =⎝⎛⎭⎪⎫1+1k ·⎝⎛⎭⎪⎫1+1t , 即1n =1k +1t +1kt,则t =n k +1k -n,取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .等差、等比数列的判定与证明[例2] n n +1)a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n-a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正,得a 2n +1n +1=4·a 2nn ,所以a n +1n +1=2·a n n, 因此a n +1n +1a n n=2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n ,所以b n =a 2n t n =a 21·4n -1·n t n,如果数列{b n }是等差数列,则2b 2=b 1+b 3,即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t3,则t 2-16t +48=0,解得t =4或t =12. 当t =4时,b n =a 21·n4,因为b n +1-b n =a 21n +14-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3, 所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4. (3)由(2)得b n =a 21n4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n n +12-a 41n 2=16a 21m4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n 4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意;当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m . [方法归纳]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明数列{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[变式训练]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S n n,(n +2)c n =a n +1+a n +22-S n n,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn=a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2n +12-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S n n,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =n +2b n +1-nb n2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S n n,① (n +2)λ=12(a n +1+a n +2)-S nn,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.特殊数列的判定[例3] n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此, 当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .② 由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③a n +2+a n +3=4a n +1-(a n -1+a n ).④将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d ′. 在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4, 所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3, 所以a 1=a 3-2d ′, 所以数列{a n }是等差数列. [方法归纳] 本题中第1问根据“P k数列”的定义,利用等差数列的基本量进行论证,第2问通过变形转化,化归为a n -1,a n ,a n +1三项的关系式,若这种方法一点都不会,也可以按照递推公式多写几项,借助归纳推理求解.[变式训练]设数列{a n }的前n 项的和为S n .定义:若∀n ∈N *,∃m ∈N *,S n =a m ,则称数列{a n }为H 数列.(1)求证:数列{(n -2)d }(n ∈N *,d 为常数)是H 数列; (2)求证:数列{(n -3)d }(n ∈N *,d 为常数,d ≠0)不是H 数列. 证明:(1)∵a n =(n -2)d ,∴S n =n -1+n -22d =n n -32d .令n n -32d =(m -2)d .(*)当d =0时,存在正整数m 满足(*).当d ≠0时,m =2+n n -32,∵∀n ∈N *,n n -32∈Z ,∴m ∈Z ,且n n -32≥-1,∴m ≥1,m ∈N *,故存在m ∈N *满足(*). 所以数列{(n -2)d }是H 数列. (2)数列{(n -3)d }的前n 项之和为S n =n -2+n -32d =n n -52d .令n n -52d =(m -3)d .因为d ≠0,所以m =3+n n -52,当n =2时,m =0,故{(n -3)d }不是H 数列.[课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n.(2)∵b n =a n log 12a n =2n log 122n =-n ·2n,∴S n =-(1×2+2×22+…+n ·2n),① 2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),②②-①得S n =2+22+23+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62,∴n +1>6,n >5, ∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 11-q n1-q+1,所以q nb n =11-q +1a 1-qn1-q,即b n =⎝⎛⎭⎪⎫11-q +1a 1⎝ ⎛⎭⎪⎫1q n -11-q,所以存在实数λ=11-q ,使得b n +λ=⎝⎛⎭⎪⎫11-q +1a 1⎝ ⎛⎭⎪⎫1q n ,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q,此时{b n +λ}为等比数列,所以存在实数λ=11-q ,使得{b n +λ}为等比数列.法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q, 所以b n +11-q =1q ⎝ ⎛⎭⎪⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列.3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2, 所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列. 若b n =2n -1,则S n =2n-1,取n =2,m =1,则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数,所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2ss -12p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s s -12∈N *, 不妨设k =t +1-2ss -12,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1.①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧a 1+d a 1+2d =15,4a 1+6d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去).所以a n =2n -1. (2)①∵b 1=a 1,b n +1-b n =1a n a n +1,∴b 1=a 1=1,b n +1-b n =1a n a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,即b 2-b 1=12⎝ ⎛⎭⎪⎫1-13,b 3-b 2=12⎝ ⎛⎭⎪⎫13-15,…,b n -b n -1=12⎝ ⎛⎭⎪⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式.故b n =3n -22n -1,n ∈N *.②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝ ⎛⎭⎪⎫32-14n -2=2⎝ ⎛⎭⎪⎫32-14m -2, 即12m -1=16+14n -2, 化简得:2m =7n -2n +1=7-9n +1.当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n+1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *). (1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得qn -1+q n >qn +1,∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n=q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列,∴S n =⎩⎪⎨⎪⎧n 1+r ,q =1,1+r 1-qn1-q ,q ≠1.(3)证明:当q ≥2时,S n =1+r1-q n1-q,∵S n -a n +1=1+r1-q n1-q-(1+r )q n=1+r 1-q [(1-q n )-q n(1-q )]=1+r 1-q[1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0, 因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得n ≥2时,2S n +1=n n +1a n n -1+n +1n -2a 1n -1,①2S n +2=n +1n +2a n +1n +n -1n +2a 1n,②②-①得,2a n +2=n +1n +2a n +1n -n n +1a n n -1+n 2-n +2a 1n n -1,即2(a n +2-a 1)=n +1n +2a n +1-a 1n-n n +1a n -a 1n -1,两边同除(n +1)得,2a n +2-a 1n +1=n +2a n +1-a 1n-n a n -a 1n -1,即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n n -12×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2 =…… =n n -1×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0,所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11, 令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2). 所以a n =a 1+(n -1)d (n ≥2). 又n =1时,也适合上式, 所以a n =a 1+(n -1)d (n ∈N *). 所以a n +1-a n =d (n ∈N *).所以当r =2时,数列{a n }是等差数列.第3课时数列的综合应用(能力课) [常考题型突破]数列与不等式问题[例1] (2017·南京考前模拟)若各项均为正数的数列{a n }的前n 项和为S n ,且2S n =a n +1 (n ∈N *).(1)求数列{a n }的通项公式;(2)若正项等比数列{b n },满足b 2=2,2b 7+b 8=b 9,求T n =a 1b 1+a 2b 2+…+a n b n ; (3)对于(2)中的T n ,若对任意的n ∈N *,不等式λ(-1)n<12n +1(T n +21)恒成立,求实数λ的取值范围.[解] (1)因为2S n =a n +1, 所以4S n =(a n +1)2,且a n >0, 则4a 1=(a 1+1)2,解得a 1=1, 又4S n +1=(a n +1+1)2,所以4a n +1=4S n +1-4S n =(a n +1+1)2-(a n +1)2, 即(a n +1+a n )(a n +1-a n )-2(a n +1+a n )=0,因为a n >0,所以a n +1+a n ≠0,所以a n +1-a n =2,所以{a n }是公差为2的等差数列,又a 1=1, 所以a n =2n -1.(2) 设数列{b n }的公比为q ,因为2b 7+b 8=b 9,所以2+q =q 2,解得q =-1(舍去)或q =2,由b 2=2,得b 1=1,即b n =2n -1.记A =a 1b 1+a 2b 2+…+a n b n =1×1+3×2+5×22+…+(2n -1)×2n -1,则2A =1×2+3×22+5×23+…+(2n -1)×2n, 两式相减得-A =1+2(2+22+…+2n -1)-(2n -1)×2n,故A =(2n -1)×2n-1-2(2+22+…+2n -1)=(2n -1)×2n -1-2(2n -2)=(2n -3)×2n+3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n+3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)nλ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min .g (n +2)-g (n )=2+62n +1-62n -1=2-92n , 当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ),即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134.当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝ ⎛⎭⎪⎫-3,134. [方法归纳]1判断数列中的一些不等关系问题; 2以数列为载体,考查不等式的恒成立问题; 3考查与数列问题有关的不等式的证明问题. 2.解决数列与不等式问题的两个注意点1利用基本不等式或函数的单调性求解相关最值时,应注意n 取正整数的限制条件. 2利用放缩法证明不等式、求解参数的范围时,尽量先求和、后放缩,注意放缩的尺度,否则会出现范围扩大或缩小而得不到正确的结果.[变式训练]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2). (1)证明:数列{a n +1-a n }为等差数列; (2)令c n =n +1a n na n +1+na n +1n +1a n ,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12, 所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1, 即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8), 所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×n -11+n -12+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =n +1a nna n +1+na n +1n +1a n =2n +12n +3+2n +32n +1=⎝ ⎛⎭⎪⎫1-22n +3+⎝ ⎛⎭⎪⎫1+22n +1=2+2⎝⎛⎭⎪⎫12n +1-12n +3,所以T n =2n +2⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=2n +2⎝ ⎛⎭⎪⎫13-12n +3,又13>13-12n +3=2n +3-332n +3=2n32n +3>0, 所以2n <T n <2n +23.数列中的范围与最值问题[例2] 已知数列{a n },{b n }都是等差数列,它们的前n 项和分别记为S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n }; (2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2. 则S n +3=(n +3)a 1+n +3n +22d 1,T n =nb 1+n n -12d 2.∵对一切n ∈N *,有S n +3=T n , ∴(n +3)a 1+n +3n +22d 1=nb 1+n n -12d 2,即d 12n 2+⎝ ⎛⎭⎪⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝ ⎛⎭⎪⎫b 1-12d 2n .∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.。
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1qn -1.(4)等比数列前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m qn -m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
教学过程一、考纲解读1.高考对于本节的考查方式:(1)选择填空重点考查等差、等比数列的性质;(2)解答题中重点考查通项公式、求和(重视求和的错位相减法、裂项相消法)(3)递推数列也是考察的重点,只局限于最基本的形式2. 数列在历年高考高考试题中占有重要的地位,近几年更是有所加强.一般情况下都是一至两个考查性质的客观题和一个考察能力的解答题。
文科以等差数列的基础知识、基本解法为主,理科注重概念的理解和运用。
分值在22分左右二、复习预习(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.(3)数列求和,求通项.与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.错位相减法、裂项相消法三、知识讲解考点1 数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.考点2 等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.考点3 综合问题(1)求数列通项累加法,累乘法,构造法,数学归纳法(2)数列求和裂项相消法,错位相减法, 数学归纳法(3)与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.放缩法四、例题精析例1 [2014全国大纲] 等比数列{}n a 中,42a =,55a =,则数列{lg }n a 的前8项和等于( ) (A)6 (B)5 (C)4 (D)3【规范解答】选(C ).(求解对照)由已知有在等比数列{}n a 中,42a =,55a =, 则63728154a a a a a a a a ⋅=⋅=⋅=⋅=10所以410lg )lg(lg lg lg 4821821==⋅⋅⋅=+⋅⋅⋅++a a a a a a 。