第八章 第六节 空间直线
- 格式:ppt
- 大小:2.74 MB
- 文档页数:19
第六节 空间直线及其方程教学目的:介绍空间曲线中最常用的直线,与平面同为本章的重点 教学重点:1.直线方程2.直线与平面的综合题教学难点:1.直线的几种表达式2.直线与平面的综合题教学内容:一、空间直线的一般方程空间直线可以看成是两个平面的交线。
故其一般方程为:⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 二、空间直线的对称式方程与参数方程平行于一条已知直线的非零向量叫做这条直线的方向向量。
已知直线上的一点),,(0000z y x M 和它的一方向向量},,{p n m =s ,设直线上任一点为),,(z y x M ,那么M M 0与s 平行,由平行的坐标表示式有:pz z n y y m x x 000-=-=- 此即空间直线的对称式方程(或称为点向式方程)。
(写时参照书上注释)如设t pz z n y y m x x =-=-=-000 就可将对称式方程变成参数方程(t 为参数)⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 三种形式可以互换,按具体要求写相应的方程。
例1:用对称式方程及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x .解:在直线上任取一点),,(000z y x ,取10=x ⎩⎨⎧=--=++⇒063020000z y z y ,解得2,000-==z y ,即直线上点坐标)2,0,1(-.因所求直线与两平面的法向量都垂直,取}3,1,4{--=⨯=21n n s ,对称式方程为:321041-+=--=-z y x 参数方程: ⎪⎩⎪⎨⎧--=-=+=tz t y tx 3241.例2: 一直线过点)4,3,2(-A ,且和y 轴垂直相交,求其方程.解:因为直线和y 轴垂直相交,所以交点为)0,3,0(-B ,于是→==}4,0,2{BA s ,所求直线方程:440322-=+=-z y x 三、两直线的夹角: 两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角。
第六节 直线、平面平行与垂直的综合问题考点一 立体几何中的探索性问题[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点, 所以MC ∥OP .又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD . [题组训练]1.如图,三棱锥P ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P ABC 的高,又P A =1,所以三棱锥P ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅲ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥QABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 平行且等于13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥QABP 的体积为V QABP =13×S △ABP ×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F BCE 的体积V F BCE =V B CEF =13×S △CEF ×BC ,S △CEF =14S △ACD =14×12×2×2=12,∴V F BCE =13×12×22=23.2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = 72+72-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 平行且等于A 1D 1平行且等于AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E ,所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M BC 1E =V A BC 1E =V C 1ABE =13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE . (2)当AM AB =14时,MF ∥平面D 1AE ,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM =33a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 平行且等于AN , 所以四边形ANFM 是平行四边形, 所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD , 所以V G ECD =V E GCD =V B GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°,又CA =CB =CF =1,所以CD =3,CG =12,又BC ⊥平面ACFD ,所以V B GCD =13×12CG ×CD ×BC =13×12×12×3×1=312.所以三棱锥G ECD 的体积为312.。
462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。