七年级数学近似数
- 格式:ppt
- 大小:75.50 KB
- 文档页数:8
人教版数学七年级上册1.5.3《近似数》教学设计1一. 教材分析《近似数》是人教版数学七年级上册1.5.3的内容,本节课主要介绍近似数的概念及其求法。
学生在学习本节课之前,已经掌握了有理数的概念和运算法则,因此,本节课是在已有知识基础上的拓展和应用。
通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能应用于实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有一定的了解。
但是,对于近似数这一概念,学生可能比较陌生,因此需要通过实例和操作来帮助学生理解和掌握。
此外,学生可能对于求近似数的方法和应用有一定的困难,需要通过大量的练习和实际问题来培养学生的应用能力。
三. 教学目标1.了解近似数的概念,能正确地求一个数的近似值。
2.能够将近似数的概念和方法应用于实际问题中。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.近似数的概念及其求法。
2.近似数在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过具体的例子来帮助学生理解和掌握近似数的概念和方法。
2.采用问题驱动法,通过提出实际问题来引导学生思考和应用近似数的概念和方法。
3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生进行思考和练习。
2.准备一些实际问题,用于让学生进行应用和拓展。
3.准备多媒体教学设备,用于展示和讲解实例和问题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算法则,为新课的学习做好铺垫。
2.呈现(15分钟)通过实例引入近似数的概念,让学生直观地感受近似数的存在。
然后,讲解近似数的求法,引导学生理解并掌握。
3.操练(10分钟)让学生进行近似数的计算练习,巩固所学知识。
可以设置一些不同难度级别的练习题,让学生根据自己的实际情况选择练习。
4.巩固(10分钟)通过一些实际问题,让学生应用近似数的概念和方法进行解答。
人教版七年级数学上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版七年级数学上册 1.5.3的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的接受能力较强。
但是,对于近似数的概念和求法可能还存在一定的困惑。
因此,在教学过程中,需要通过具体实例和操作活动,帮助学生理解和掌握近似数的概念和求法。
三. 教学目标1.了解近似数的概念,能够正确地求一个数的近似数。
2.能够运用近似数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.情境教学法:通过具体实例和操作活动,引导学生理解和掌握近似数的概念和求法。
2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题的能力。
3.小组合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,包括近似数的定义、求法及应用的实例。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.计时器:用于控制教学过程中的时间。
七. 教学过程1.导入(5分钟)利用课件展示一些与近似数相关的实例,如天气预报中的温度、身高体重等,引导学生思考和探索近似数的概念和求法。
2.呈现(10分钟)利用课件呈现近似数的定义和求法,结合具体实例进行讲解,让学生理解和掌握近似数的概念和求法。
3.操练(10分钟)学生分组进行操作活动,利用所学知识求一些数的近似数,并交流分享各自的解题过程和方法。
4.巩固(10分钟)利用课件呈现一些实际问题,学生独立解决,巩固所学知识,提高解决问题的能力。
2.3.3近似数【教学目标】1.理解近似数及精确度的意义,会用四舍五入取近似数.2.能准确说出精确数位.3.经历动手操作和自主探究的过程,进一步体会近似数的意义及在生活中的应用.【教学重点难点】重点:能按照精确度的要求,用四舍五入取近似数.难点:近似数精确度的确认与表述.【教学过程】一、创设情境师:如图是李明和王颖收集到的树叶并将树叶制成标本,在标本中需要注明每片树叶的长度.李明和王颖分别测量了同一片树叶的长度,他们所用的直尺的最小单位是不同的,分别是厘米和毫米.(1)如图所示,根据李明的测量,这片树叶的长度约为多少?根据王颖的测量呢?(2)谁的测量结果会更精确一些?说说你的理由.二、探究归纳探究点1:准确数与近似数问题1:下列语句中,哪些数据是准确的,哪些数据是近似的?(1)我和妈妈去买水果,买了8个苹果,大约3千克.(2)王民与李飞买了2瓶水,4根黄瓜,6袋香巴拉牛肉干,约20元,然后骑车去大约3.5 km外去郊游,大约玩了4.5小时回家.(3)我国共有56个民族.问题2:近似数的来源:(1)我们得不到与实际完全相符的数,而是通过测量、估算得到的数都是近似数.例如,姚明的身高是2.26米.(2)有时我们为了叙述、书写方便,通过四舍五入得到的数也是近似数.例如,2024年全国高考报名的考生共1353万人.问题3:近似数与准确数有何区别?试举例说明.要点归纳:准确数与近似数(1)准确数——与实际完全符合的数(2)近似数——与实际非常接近的数【针对性训练】判断下列各数,哪些是近似数,哪些是准确数(1)王敏同学的身高是1.72 m.(2)小明家里有4口人.(3)检查一双没洗过的手,发现带有细菌80万个.(4)我国的人口有14亿.探究点2:按要求取近似值问题4:张红量得课桌长为1.025 m,请按下列要求取这个数的近似数:(1)四舍五入到百分位.(2)四舍五入到十分位.(3)四舍五入到个位.……知识要点:近似数是一个与准确数接近的数,其接近程度可以用精确度表示.例1:下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4精确到.(2)0.057 2精确到.(3)2.4 万精确到.(4)2.4×104精确到.例2:用四舍五入法,按括号中的要求对下列各数取近似数.(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01);(5)30 542(精确到百位).当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数.【针对性训练】教材P56练习T4例3:下列由四舍五入得到的近似数,各精确到哪一位?(1)600万. (2)7.03万.(3)5.8亿. (4)3.30×105.方法总结:若是汉字单位为“万”“千”“百”类或科学记数法表示的近似数,精确度依然是由其最后一位数所在的数位确定,但必须先把该数写成单位为“个”的数,再确定其精确度.【深度挖掘】问题5:近似数1.80与近似数1.8两数有何不同?表示近似数时,能简单地把1.80后面的0去掉吗?教师引导学生共同观察、思考、探究、归纳:精确度不同,1.80精确到百分位,1.8精确到十分位.【能力提升】李明测得一根钢管的长度约为1.8 m.(1)试举例说明该近似数可能是由哪些数四舍五入得来的?(2)按照李明测得的结果,你能求出钢管的准确长度x应在什么范围吗?解:(1)近似数1.8可能是由1.75,1.751,1.76,1.81,1.843,1.849…四舍五入得来的.(2)钢管的准确长度x在大于或等于1.75 m且小于1.85 m的范围.三、检测反馈1.选择题(1)下列由四舍五入法得到的近似数,精确到哪一位?2.48万36万2.73亿1.732万(2)近似数2.864×104精确到()A.千分位B.百位C.千位D.十位(3)精确到到十分位得到17.8的数是()A.17.86B.17.82C.17.74D.17.882.判断(1)3.008是精确到百分位的数.()(2)近似数3.80和近似数3.8的精确度相同.()(3)近似数0.090 360精确到百分位.()3.综合:用四舍五入法,按括号中的要求对下列各数取近似数.(1)0.632 8(精确到0.001).(2)7.912 2(精确到个位).(3)47 155(精确到百位).(4)2.746(精确到十分位).(5)3.40×105(精确到万位).四、本课小结①正确理解和掌握近似数、准确数、精确度和有效数字等概念;②要学会给出一个近似数,能准确地确定它精确到哪一位,或它有哪几个有效数字;准确、迅速、熟练地按照要求求出一个数的近似数;③对例题中提到的注意事项应引起重视.五、布置作业1.P57T62.P61T5六、板书设计七、教学反思对于近似数,学生在日常活动中也已经接触到,不过没有出现这样的概念.而本课的学习相对系统一些,同时掌握求近似数的方法.教材的编排由于受到各方面条件的限制,有些教学内容难以展现出一个富有生活气息的情境,我想方设法为抽象的教材内容选择、补充生活背景,使数学贴近学生生活,变得易于感受.通过提供富有生活气息的的统计表,让学生初步感受这些信息,引入准确数,接着让学生根据自己的生活经验.从学生用“接近”一词来表述理由可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么.在此基础上引入“近似数”和“≈”,顺理成章,学生非常容易接受.数学是一门科学,具有科学的体系;所以,我们在课堂教学时,要在学生的最近发展区进行教学,注意培养学生的逻辑性和系统性.数学又是一门艺术,具有艺术的魅力.我们在课堂教学中如果能巧妙地创设情境,让学生在自主的探索过程不但可以达到预期的效果,而且可以得到意外的惊喜.让学生得到知识的经验,情感的体验,在激发学生学习兴趣的同时,也培养了学生的竞争意识.。
华师大版数学七年级上册2.14《近似数》教学设计一. 教材分析《近似数》是华师大版数学七年级上册第2章的内容,主要介绍了近似数的概念、四舍五入法以及近似数的求法。
这一节内容是学生学习实数和精确度概念的基础,对于培养学生的数感、提高解题能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的实数和运算基础,但对于近似数的概念和求法可能较为陌生。
因此,在教学过程中,需要从学生的实际出发,通过生动的实例和实际操作,让学生理解和掌握近似数的概念和求法。
三. 教学目标1.理解近似数的概念,掌握四舍五入法求近似数的方法。
2.能够运用近似数的概念和求法解决实际问题。
3.培养学生的数感,提高学生的解题能力。
四. 教学重难点1.近似数的概念和求法。
2.如何运用近似数解决实际问题。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生动的实例和实际操作,让学生理解和掌握近似数的概念和求法,同时引导学生运用所学知识解决实际问题,培养学生的数感。
六. 教学准备1.教材和教学参考书。
2.课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“天气预报中提到的气温是多少度?”引导学生思考和讨论,引出近似数的概念。
2.呈现(10分钟)讲解近似数的概念和四舍五入法求近似数的方法,通过具体的实例进行讲解,让学生理解和掌握。
3.操练(10分钟)让学生分组进行实际操作,运用四舍五入法求近似数,教师巡回指导,及时纠正错误。
4.巩固(10分钟)让学生解答一些有关近似数的练习题,巩固所学知识,提高解题能力。
5.拓展(10分钟)引导学生运用近似数解决实际问题,如购物时如何估算商品的价格,让学生体会数学在生活中的应用。
6.小结(5分钟)对本节课的内容进行总结,强调近似数的概念和求法,以及运用近似数解决实际问题的重要性。
7.家庭作业(5分钟)布置一些有关近似数的练习题,让学生课后巩固所学知识。
人教版七年级数学上册:1.5.3 《近似数》说课稿一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,进一步对数的认知。
本节课主要介绍了近似数的概念、求法以及应用。
通过学习近似数,学生能更好地理解和掌握数的运算,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有一定的了解。
但学生在求近似数方面可能存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及掌握求近似数的方法。
三. 说教学目标1.知识与技能:理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。
2.过程与方法:通过观察、分析、实践等活动,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.重点:近似数的概念、求法以及应用。
2.难点:掌握求近似数的方法,能运用近似数解决实际问题。
五. 说教学方法与手段1.采用情境教学法,以生活中的实际问题引入近似数的概念,激发学生的学习兴趣。
2.利用多媒体课件,直观展示近似数的求法,帮助学生更好地理解。
3.采用小组合作学习,让学生在讨论中掌握求近似数的方法,培养学生的合作意识。
4.运用练习题,巩固所学知识,提高学生的解题能力。
六. 说教学过程1.导入:以生活中的实际问题引入近似数的概念,让学生感受近似数在生活中的应用。
2.新课讲解:介绍近似数的概念,讲解求近似数的方法,并通过例题展示求解过程。
3.学生练习:让学生独立完成练习题,巩固所学知识。
4.小组讨论:学生分组讨论,探讨近似数在实际问题中的应用,分享解题心得。
5.课堂小结:总结本节课所学内容,强调近似数的概念和求法。
6.布置作业:布置适量作业,让学生进一步巩固近似数的相关知识。
七. 说板书设计板书设计如下:1.近似数的概念2.求近似数的方法3.近似数在实际问题中的应用八. 说教学评价1.学生对近似数的概念、求法的掌握程度。
《近似数》知识点解读知识讲解:准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为×106m等.相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。
举几个例子:3一共有1个有效数字,有一个有效数字,有4个有效数字,×103有两个有效数字(不要被103迷惑,只需要看的有效数字就可以了,10n 看作是一个单位)。
精确度:即数字末尾数字的单位。
比如说:精确到十分位(又叫做小数点后面一位),80万精确到万位。
9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。
请判断下列题的对错,并解释.1.近似数的精确度与近似数25一样. ()2.近似数4千万与近似数4000万的精确度一样. ()3.近似数660万,它精确到万位.有三个有效数字. ()4.用四舍五入法得近似数和是相等的. ()5.近似数的二次与近似数370的精确度一样. ()满意回答1.错。
前者精确到十分位(小数点后面一位),后者精确到个位数。
2.错。
4千万精确到千万位,4000万精确到万位。
3.对。
4.错。
值虽然相等,但是取之范围和精确度不同.5.错。
^2精确到十位,370精确到个位.典型例题:例1判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为是π的近似值,所以是近似数;(4)80000万是近似数;(5)1999是准确数,%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例2下列由四舍五入得到的近似数,各精确到哪一位各有哪几个有效数字(1)38200;(2);(3);(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象有三位小数就精确到千分位;像就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)精确到千分位(即精确到有两个有效数字4、0.(3)精确到十万分位(即精确到,有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如的有效数字是2、0、0、5、0、0、0七个.而的有效数字是2、0、0、5四个.因为精确到,而精确到,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例3下列由四舍五入得到的近似数,各精确到哪一位各有几个有效数字(1)70万;(2)万;(3)亿;(4)×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)万.精确到百位,有3个有效数字9、0、3;(3)亿.精确到千万位,有2个有效数字1、8;(4)×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如万=90300,因为“3”在百位上,所以万精确到百位.例4 用四舍五入法,按括号里的要求对下列各数取近似值.(1)(精确到; (2)(保留两个有效数字);(3)(精确到个位); (4)(保留三个有效数字).分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)要精确到即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为.(2)保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为.(3)、(4)同上.解:(1)≈;(2)≈;(3)≈3;(4)≈.说明:与的最后一个0都不能随便去掉.是表示精确到,而表示精确到.对,最后一个0也是表示精确度的,表示精确到千分位,而只精确到百分位.例5用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).(1)26074(精确到千位); (2)7049(保留2个有效数字);(3)000(精确到亿位) ;(4)(保留3个有效数字).分析:根据题目的要求:(1)26074≈26000;(2)7049≈7000;(3)000≈000;(4)≈705.(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.解:(1)26074=×104≈×104,精确到千位,有2个有效数字2、6.(2)7049=×103≈×103,精确到百位,有两个有效数字7、0.(3)000=×1010≈×1010,精确到亿位,有三个有效数字2、6、1.(4)≈705,精确到个位,有三个有效数字7、0、5.说明:求整数的近似数时,应注意以下两点:(1)近似数的位数一般都与已知数的位数相同;(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度.反馈练习:1. 由四舍五入得到的近似数的有效数字是()A. 1个B. 2个C. 3个D. 4个2. 用四舍五入法取近似值,精确到百分位的近似值是_________,精确到千分位近似值是________.3. 用四舍五入法取近似值,精确到的近似数是_________,保留三个有效数字的近似数是___________.4. 用四舍五入法取近似值,精确到十位的近似数是______________;保留两个有效数字的近似数是____________.5. 用四舍五入法得到的近似值精确到_____位,万精确到___位.答案:1. C 2. ,. 3. ,.4. 400,×102.5. 千分,百.。
七年级数学近似数知识点数学中有一个重要的概念——近似数。
顾名思义,近似数就是与实际值相近的数。
近似数不是精确的数,但是在一定程度上可以代表实际值,因此在日常生活中被广泛应用。
一、近似数的定义近似数是指与实际值相近的数。
它是一个数学概念,通常是通过把一个实际值四舍五入到适当的数量级,以便得到一个被认为“足够近似”的数值。
例如,当我们用1元钱购买一瓶水,水的实际价格可能是0.99元,但是出于方便,我们将其近似地表示为1元。
这就是近似数的应用。
二、近似数的精度近似数的精度是指它与实际值之间的差距,也称为“误差”。
误差越小,近似数的精度就越高。
例如,当我们用3.14来近似表示圆周率时,它与实际值(3.14159...)之间的误差很小,因此近似数的精度就很高。
三、近似数的运算在数学运算中,近似数也有其独特的运算法则。
以下是一些常用的近似数运算法则:1. 加减法法则:将精度较低的近似数统一到相同的数量级再进行运算。
例如,将1.23和0.05相加时,可以先将0.05近似为0.1,然后将两个数都表示为小数点后一位的精度,即1.2和0.1,最后再进行加法运算:1.2+0.1=1.3。
2. 乘法法则:精度较低的近似数不宜进行乘法运算,应尽量转化为分数再进行乘法运算。
例如,将1.5和1.2相乘时,可以将它们转化为3/2和6/5的分数形式,然后进行乘法运算:3/2×6/5=18/10=1.8。
3. 除法法则:将被除数和除数近似到相同的数量级后再进行除法运算。
例如,将1.5除以0.7时,可以将0.7近似为1,然后将两个数都表示为小数点后一位的精度,即1.5÷1.0=1.5。
四、近似数的应用近似数在日常生活中被广泛应用,以下是一些常见的应用场景:1. 计算:例如商场打折、收银计算、货币兑换、保险计算等。
2. 量化:例如温度、体重、身高、面积、体积、时间等。
3. 统计:例如抽样调查、数据分析、自然灾害预测、股票预测等。
七年级数学近似数题一、近似数的概念1. 定义一个数与准确数相近(比准确数略多或者略少些),这个数称之为近似数。
例如,我们测量一个物体的长度,测量结果为3.14cm,而这个物体的实际长度可能是一个更精确的值,但3.14cm就是它长度的近似数。
2. 近似数产生的原因测量工具的限制:比如用普通直尺测量长度,只能精确到毫米,再小的数值就需要估算,得到的就是近似数。
实际问题的需求:在统计人口数量时,我们可能会说某城市人口约为100万,这是一个近似数,因为不需要精确到个位,而且人口数量是动态变化的,近似数更符合实际表述需求。
二、近似数的表示方法1. 四舍五入法概念:在取近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉。
如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进“1”。
例题:将3.1415926精确到0.01。
解析:精确到0.01也就是精确到百分位。
此时看千分位数字,千分位数字是1,1比4小,所以把千分位及后面的数都舍去,得到3.14。
2. 科学记数法表示近似数概念:把一个数表示成公式(其中公式,公式为整数)的形式。
当用科学记数法表示近似数时,公式的值是近似数,公式的值根据原数的大小确定。
例题:用科学记数法表示近似数23400(精确到千位)。
解析:23400精确到千位是23000。
用科学记数法表示为公式。
这里公式,是将23000表示成公式,公式。
三、近似数的精确度1. 近似数精确到哪一位的判断对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
例如近似数0.0308,左边第一个不是0的数字是3,从3到8共有三个有效数字,这个近似数精确到万分位。
例题:近似数1.20万精确到哪一位?解析:1.20万公式,这里的0在百位上,所以1.20万精确到百位。
2. 不同近似数精确度的比较例题:比较近似数3.14和3.140的精确度。
解析:3.14精确到百分位,它表示的是在公式范围内的数近似得到的;3.140精确到千分位,它表示的是在公式范围内的数近似得到的。
七年级数学教案近似数与有效数字9篇近似数与有效数字 1一学习目标:1了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用2能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数二重点与难点:按要求用四舍五入法取一个数的近似数三设计思路:本节课通过生活情境让学生搜集生活中的数据,感受数的意义,使得学生进一步认识了近似数,学会了如何去取一个数的近似值,以及指出一个近似数的有效数字,通过讨论交流使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字.四教学过程(一)情境创设(1)从早晨起床到上学,你从你的生活环境中获得哪些数的信息?(2)生活中,有些数据是准确的,有些是近似的,你能举例说明吗?(设计说明:让学生自己搜集生活中与数有关的信息,从中进一步感受数的意义)(二)近似数实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。
在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。
(设计说明:通过交流生活中近似数的例子,使学生认识到生活中存在近似数,感受近似数在生活中的作用,体会数学与生活的关系)取一个数的近似值有多种方法,四舍五入是最常用的一种方法。
用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.例如,圆周率=3.1415926…取π≈3,就是精确到个位(或精确到1)取π≈3.1,就是精确到十分位(或精确到0.1)取π≈3.14,就是精确到百分位位(或精确到0.01)取π≈3.142,就是精确到千分位位(或精确到0.001)(三)有效数字对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
例如:上面圆周率π的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,4,2.(四)例题教学例1 小亮用天平称得罐头的质量为2.026kg,,按下列要求取近似数,并指出每个近似数的有效数字:(1)精确到0.01kg;(2)精确到0.1kg;(3)精确到1kg.(设计说明:简单应用上面所学知识,先四舍五入取近似值,再确定近似数的有效数字,应注意提醒学生不能随便将小数点后的0去掉.)例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示.(1)地球上七大洲的面积约为149480000(保留2个有效数字)(2)某人一天饮水1890ml(精确到1000ml)(3)小明身高1.595m(保留3个有效数字)(4)人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)请与同学交流讨论.(设计说明:通过讨论使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字)(五)课堂练习1 基础训练书p78 1,22 创新探究( 1)胜利农场养鸡35467只,一个个体户养鸡13530只(四舍五入到十位),光明农场养鸡64800只(四舍五入到百位),要比较他们养鸡的多少,胜利农场养鸡数应四舍五入到哪一位数时,误差会少些。
部编版七年级数学上册《近似数》说课稿一、教材分析本节课所使用的教材为部编版七年级数学上册,对应的教材内容是《近似数》。
《近似数》是数学教材中的一个重要知识点,是数的一种表示方法。
通过近似数,学生可以更好地理解数的大小关系和数的精确性与近似性。
二、教学目标1.知识与能力:–理解近似数的概念和表示方法;–能够在实际生活中灵活应用近似数;–掌握近似数的四舍五入计算方法;–养成精确性思维和近似性思维的能力。
2.过程与方法:–通过图片、示例和操作演示等方式激发学生的学习兴趣;–采用问题引导和讨论的方式培养学生的思维能力;–借助小组合作和个人探究的方式提高学生的学习效果。
3.情感态度价值观:–培养学生严谨认真的学习态度;–培养学生对数学的兴趣和喜爱;–通过数学实际应用,培养学生的创新思维和解决问题的能力。
三、教学重点和难点教学重点: - 理解近似数的概念和表示方法; - 通过具体实例运用近似数的计算方法。
教学难点: - 培养学生正确理解和应用近似数的能力; - 引导学生灵活运用四舍五入计算近似数。
四、教学准备•教学课件及投影仪;•手持计算器;•黑板、粉笔。
五、教学过程步骤一:导入与热身1.引导学生回顾数的四则运算的内容,并提出以下问题:–老师:你们在数学中经常使用的数有哪些表示方法?–学生:整数、小数、分数。
–老师:还有其他表示方法吗?–学生:近似数!2.提示学生回忆日常生活中使用近似数的场景。
–老师:在买菜时,商贩称出的数字是精确的吗?为什么?–学生:不是,因为用手秤、电子秤等都有误差。
3.引入本课的主题,数学中的近似数。
–老师:那么我们该如何用近似数来表示这些误差呢?–学生:可以采用近似数来表示。
步骤二:概念讲解与示例演示1.呈现《近似数》的教材内容,并解释近似数的概念。
–老师:通过近似数,我们可以用一个约等于的数来表示一个数的大小。
比如,将3.14用近似数表示可以写成3.1或3.2。
这样,我们就可以用更简单的方法描述数的大小。