2016届高考数学理新课标A版一轮总复习开卷速查 必修部分67 离散型随机变量及其分布列
- 格式:doc
- 大小:278.00 KB
- 文档页数:5
自主园地 备考套餐加固训练 练透考点1.随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( ) A.23 B.34 C.45 D.56解析:由题意得a 1·2+a 2·3+a 3·4+a 4·5=1,a ⎝ ⎛⎭⎪⎫1-12+12-13+…+14-15=4a 5=1,a =54, P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=a 1·2+a 2·3=2a 3=56. 答案:D2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125 解析:由题意知取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220. 答案:C3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,而X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:X 服从超几何分布P (X =k )=C k 7C 10-k 8C 1015,故k =4. 答案:C4.随机变量ξ的分布列如下:若a 、b 、c 解析:∵a 、b 、c 成等差数列,∴2b =a +c ,又a +b +c =1.∴b =13.∴P (|ξ|=1)=a +c =23.答案:235.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x 、y ”代替),其表如下:解析:由于0.20+0.10+(0.1x +0.05)+0.10+(0.1+0.01y )+0.20=1,得10x +y =25,于是两个数据分别为2,5.答案:2,5。
开卷速查(七)二次函数与幂函数A级基础巩固练1.函数y=x-x 13的图像大致为()ABCD解析:函数y=x-x 13为奇函数.排除C、D;当x>0时,由x-x 13>0,即x3>x可得x2>1,即x>1,结合选项,选A.答案:A 2.幂函数y =x m 2-4m(m ∈Z )的图像如图所示,则m 的值为( )A .0B .1C .2D .3解析:∵y =x m 2-4m(m ∈Z )的图像与坐标轴没有交点, ∴m 2-4m <0,即0<m <4.又∵函数的图像关于y 轴对称,且m ∈Z , ∴m 2-4m 为偶数,因此m =2. 答案:C3.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,那么它的图像可能是( )ABCD解析:∵a >b >c ,且a +b +c =0,∴a >0,c <0.∴图像开口向上与y 轴交于负半轴. 答案:D4.已知f (x )=x12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b ) 解析:因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1a .答案:C5.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( )A .f (-3)<c <f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫52<c <f (-3)C .f ⎝ ⎛⎭⎪⎫52<f (-3)<cD .c <f ⎝ ⎛⎭⎪⎫52<f (-3)解析:由已知可得二次函数图像关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝ ⎛⎭⎪⎫52>f (2)=f (0)=c .答案:D6.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:∵f(x)是奇函数,∴当x<0时,f(x)=-x2+2x,作出f(x)的大致图像如图中实线所示,结合图像可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,即-2<a<1.答案:C7.已知幂函数f(x)=(m2-5m+7)x m-2为奇函数,则m=__________.解析:由f(x)=(m2-5m+7)x m-2为幂函数得:m2-5m+7=1,解得m=2或m=3,又因为该函数为奇函数,所以m=3.答案:38.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=__________.解析:由f(x)的定义域为R,值域为(-∞,4],可知b≠0,∴f(x)为二次函数,f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(x)为偶函数,∴其对称轴为x=0,∴-(2a+ab)=0,解得a=0或b=-2.若a=0,则f(x)=bx2,与值域是(-∞,4]矛盾,∴a≠0,b =-2,又f(x)的最大值为4,∴2a2=4,∴f(x)=-2x2+4.答案:-2x 2+49.二次函数f (x )的二次项系数为正,且对任意x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是__________.解析:由f (2+x )=f (2-x ),知x =2为对称轴,由于二次项系数为正的二次函数中距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,即|2x 2+1|<|x 2-2x +1|,∴2x 2+1<x 2-2x +1,∴-2<x <0.答案:(-2,0)10.已知函数f (x )=ax 2+(b -8)x -a -ab (a ≠0),当x ∈(-3,2)时,f (x )>0;当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0.(1)求f (x )在[0,1]内的值域;(2)若不等式ax 2+bx +c ≤0在[1,4]上恒成立,求c 的取值范围. 解析:由题意,得x =-3和x =2是函数f (x )的零点,且a <0,则⎩⎨⎧0=a ×(-3)2+(b -8)×(-3)-a -ab ,0=a ×22+(b -8)×2-a -ab .解得⎩⎨⎧a =-3,b =5.∴f (x )=-3x 2-3x +18.(1)由图像知,函数在[0,1]内单调递减, ∴当x =0时,y =18; 当x =1时,y =12.∴f (x )在[0,1]内的值域为[12,18]. (2)令g (x )=-3x 2+5x +c .∵g (x )在⎝ ⎛⎭⎪⎫56,+∞上单调递减,要使g (x )≤0在[1,4]上恒成立,则需要g (1)≤0.即-3+5+c ≤0,解得c ≤-2.∴当c ≤-2时,不等式ax 2+bx +c ≤0在[1,4]上恒成立.B 级 能力提升练11.已知x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,则实数a 的取值范围是( )A .(0,2)B .(2,+∞)C .(0,+∞)D .(0,4)解析:二次函数图像开口向上,对称轴为x =a2,又x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,即f (x )最小值>0.①当a 2≤-1,即a ≤-2时,f (-1)=1+a +a 2>0,解得a >-23,与a ≤-2矛盾;②当a 2≥1,即a ≥2时,f (1)=1-a +a2>0, 解得a <2,与a ≥2矛盾;③当-1<a 2<1,即-2<a <2时,Δ=(-a )2-4·a2<0,解得0<a <2.综上得实数a 的取值范围是(0,2). 答案:A12.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),则实数a 的取值范围是________.解析:当x 0∈[-1,2]时,由f (x )=x 2-2x 得f (x 0)∈[-1,3],又对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),∴当x 1∈[-1,2]时,g (x 1)∈[-1,3].当a >0时,⎩⎨⎧-a +2≥-1,2a +2≤3,解得a ≤12.综上所述,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12. 答案:⎝ ⎛⎦⎥⎤0,12 13.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解析:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎨⎧ f (3)=5,f (2)=2,⇒⎩⎨⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎨⎧a =1,b =0.当a <0时,f (x )在[2,3]上为减函数,故⎩⎨⎧f (3)=2,f (2)=5,⇒⎩⎨⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎨⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4. ∴m ≤2或m ≥6.故m 的取值范围为(-∞,2]∪[6,+∞).14.[2015·“江淮十校”联考]设二次函数f (x )=x 2-ax +b ,集合A ={x |f (x )=x }.(1)若A ={1,2},求函数f (x )的解析式;(2)若F (x )=f (x )+2-a -a 2且f (1)=0,且|F (x )|在[0,1]上单调递增,求实数a 的取值范围.解析:(1)由f (x )=x ,得x 2-(a +1)x +b =0.∵A ={x |f (x )=x }={1,2},∴1,2是关于x 的一元二次方程x 2-(a +1)x +b =0的两个实数根.∴⎩⎨⎧a +1=3,b =2.⇒⎩⎨⎧a =2,b =2.∴f (x )=x 2-2x +2.(2)∵f (1)=0,∴1-a +b =0,b =a -1. ∴F (x )=f (x )+2-a -a 2=x 2-ax +(1-a 2).①当Δ≤0,即(-a )2-4(1-a 2)≤0,-255≤a ≤255时,应满足⎩⎨⎧a2≤0,-255≤a ≤255⇒-255≤a ≤0.②当Δ>0,即a <-255或a >255时,设方程F (x )=0的两个实数根分别为x 1,x 2(x 1<x 2).若a2≥1,则x 1≤0,即⎩⎪⎨⎪⎧ a 2≥1,F (0)=1-a 2≤0⇒a ≥2;若a2≤0,则x 2≤0,即⎩⎪⎨⎪⎧a 2≤0,F (0)=1-a 2≥0.⇒-1≤a <-255.综上,实数a的取值范围是-1≤a≤0或a≥2.。
第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理基础盘查一分类加法计数原理(一)循纲忆知1.理解分类加法计数原理.2.会用分类加法计数原理分析和解决一些简单的实际问题.(二)小题查验1.判断正误(1)在分类加法计数原理中,两类不同方案中的方法可以相同()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事()答案:(1)×(2)√2.(人教A版教材习题改编)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.答案:93.在所有的两位数中,个位数字大于十位数字的两位数共有________个.答案:36基础盘查二分步乘法计数原理(一)循纲忆知1.理解分步乘法计数原理.2.会用分步乘法计数原理分析和解决一些简单的实际问题.(二)小题查验1.判断正误(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的()(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事()答案:(1)√(2)×2.(人教A版教材例题改编)若给程序模块命名,需要用3个字符,其中首字符要求用字母A~G,或U~Z,后两个要求用数字1~9.则最多可以给________个程序命名.答案:1 0530,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数a+b i,其中3.从集合{}虚数有________.答案:36考点一分类加法计数原理|(基础送分型考点——自主练透)[必备知识]完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有N=m+n种不同方法.[提醒]分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.[题组练透]1.(2015·辽宁五校联考)甲、乙、丙三位志愿者安排在周一至周五参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方案共有()A.20种B.30种C.40种D.60种解析:选A可将安排方案分为三类:①甲排在周一,共有A24种排法;②甲排在周二,共有A23种排法;③甲排在周三,共有A22种排法,故不同的安排方案共有A24+A23+A22=20种.故选A.2.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O 和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.(2015·济南模拟)若椭圆x2m+y2n=1的焦点在y轴上,且m∈{}1,2,3,4,5,n∈{}1,2,3,4,5,6,7,则这样的椭圆的个数为________.解析:当m=1时,n=2,3,4,5,6,7共6种当m=2时,n=3,4,5,6,7共5种;当m=3时,n=4,5,6,7共4种;当m=4时,n=5,6,7共3种;当m=5时,n=6、7共2种,故共有6+5+4+3+2=20种.答案:20[类题通法]利用分类加法计数原理解题时的注意事项(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法计数原理|(重点保分型考点——师生共研)[必备知识]完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.[提醒]分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[典题例析]有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729种.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120种.(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216种.[类题通法]一类元素允许重复选取的计数问题,可以采用分步乘法计数原理来解决,关键是明确要完成的一件事是什么.也就是说,用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据.[演练冲关](2014·大纲卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解析:选C从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.考点三两个原理的应用|(常考常新型考点——多角探明)[多角探明]角度一:涂色问题涂色问题大致有两种解答方案:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数.1.如图,用6种不同的颜色把图中A,B,C,D4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种(用数字作答).解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480种涂色方法.答案:4802.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.解析:区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案:260角度二:几何问题主要与立体几何、解析几何相结合考查.3.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24 D.36解析:选D分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36个.角度三:集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有{}a1,a2,a3,…,a n的子集有2n个,真子集有2n-1个.4.(2015·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B 中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A.50种B.49种C.48种D.47种解析:选B从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[类题通法]在解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.一、选择题1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13 D.10解析:选C 分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.2.从集合{}1,2,3,4,…,10中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A .32个B .34个C .36个D .38个解析:选A 先把数字分成5组:{}1,10,{}2,9,{}3,8,{}4,7,{}5,6,由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32个这样的子集.3.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( )A .56B .54C .53D .52解析:选D 在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,即满足条件的对数值共有56-4=52个.4.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个解析:选B 依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15个.5.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有( )A .6种B .12种C .18种D .20种解析:选D 分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C 23=6种情形;恰好打5局(一个前4局中赢2局,输2局,第5局赢),共有2C 24=12种情形.所有可能出现的情形共有2+6+12=20种.6.(2015·商洛一模)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花( )A .3 360元B .6 720元C .4 320元D .8 640元解析:选D 从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选一个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4 320(种)选法,故至少需花4 320×2=8 640(元).二、填空题7.(2015·河北保定调研)已知集合M ={}1,2,3,4,集合A ,B 为集合M 的非空子集,若对∀x ∈A ,y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有________个.解析:A ={}1时,B 有23-1种情况;A ={}2时,B 有22-1种情况;A ={}3时,B 有1种情况;A ={}1,2时,B 有22-1种情况;A ={}1,3,{}2,3,{}1,2,3时,B 均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:178.如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.解析:按区域分四步:第一步,A 区域有5种颜色可选;第二步,B 区域有4种颜色可选;第三步,C 区域有3种颜色可选;第四步,D 区域也有3种颜色可选.由分步乘法计数原理,可得共有5×4×3×3=180种不同的涂色方法.答案:1809.(2015·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:10810.在2014年南京青奥会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.∴安排这8人的方式有24×120=2 880种.答案:2 880三、解答题11.为参加2014年云南昭通地震救灾,某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解:在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C17种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A27种抽调方法;一类是从3个车队中各抽调1辆,有C37种抽调方法.故共有C17+A27+C37=84种抽调方法.12.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.第二节排列与组合基础盘查一 排列与排列数(一)循纲忆知(1)理解排列概念.(2)能用计数原理推导排列数公式.(3)能用排列解决简单的实际问题.(二)小题查验1.判断正误(1)所有元素完全相同的两个排列为相同排列( )(2)A m n =n (n -1)(n -2)×…×(n -m )( )(3)A m n =n !(n -m )!( ) (4)A m n =nA m -1n -1( )答案:(1)× (2)× (3)√ (4)√2.(人教A 版教材例题改编)用0到9这10个数字,可以组成________个没有重复数字的三位数.组成没有重复数字的四位偶数有________个.答案:648 2 2963.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1),∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或23(舍去),∴x =5. 答案:54.室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8个同学请出座位并且编号为1,2,3,4,5,6,7,8.经过观察这8个同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,有________种排法.(用数字作答)解析:把编号相邻的3组同学每两个同学捆成一捆,这3捆之间有A 33=6种排序方法,并且形成4个空当,再将7号与8号插进空当中有A 24=12种插法,而捆好的3捆中每相邻的两个同学都有A 22=2种排法.所以不同的排法种数为23×6×12=576.答案:576基础盘查二 组合与组合数(一)循纲忆知1.理解组合概念.2.能用计数原理推导组合数公式.3.能用组合解决简单的实际问题.(二)小题查验1.判断正误(1)两个组合相同的充要条件是其中的元素完全相同( )(2)若组合式C x n =C m n ,则x =m 成立( )(3)C m n +1=C m n +C m -1n ( ) (4)C 22+C 23+C 24+C 25+…+C 2n =C 3n +1( )答案:(1)√ (2)× (3)√ (4)√2.(北师大版教材习题改编)平面内有12个点,任何3点不在同一直线上,以每3点为顶点画一个三角形,一共可以画________个三角形.答案:2203.已知1C m 5-1C m 6=710C m 7,则C m 8=________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z ,m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28. 答案:284.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法C 14C 212=264种.第二类,不含有红色卡片,不同的取法C 312-3C 34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208=472种.答案:472考点一 排列问题|(基础送分型考点——自主练透)[必备知识]1.排列与排列数从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(m,n∈N*,并且m≤n)A n n=n!=n×(n-1)×(n-2)×…×3×2×1.规定:0!=1.[提醒]排列与排列数是不同概念,易混淆,排列数是问题中所有不同排列的个数.[题组练透]1.(2014·四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:选B当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=9×24=216种.2.(2015·四川绵阳一模)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有() A.280种B.240种C.180种D.96种解析:选B根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有A46=360种不同的情况,其中包含甲从事翻译工作,有A35=60种,乙从事翻译工作,有A35=60种,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有360-60-60=240种.3.(2015·合肥质检)某办公室共有6人,乘旅行车外出旅行,旅行车上的6个座位如图所示,其中甲、乙2人的关系较为密切,要求在同一排且相邻,则不同的安排方法有________种.解析:当甲、乙在第二排且相邻时有4A44=4×4×3×2×1=96种排法,当甲、乙在第三排且相邻时有A22A44=2×4×3×2×1=48种排法,所以不同的安排方法总数为144种.[类题通法]解决排列问题的主要方法(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.考点二组合问题|(重点保分型考点——师生共研)[必备知识]1.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.2.组合数公式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(m,n∈N*,并且m≤n)3.组合数的性质(1)C m n=C n-mn(2)C m n+1=C m n+C m-1n[提醒]易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.[典题例析](2014·广东高考)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.130B.120C.90 D.60解析:选A易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C35+C35C13+C35C23=80种情况.综上知,满足条件的元素个数共有10+40+80=130(种),故答案为A.[类题通法]两类组合问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[演练冲关](2015·温州十校联考)已知直线xa+yb=1(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有()A.52条B.60条C.66条D.78条解析:选B由于满足x2+y2=100的整数点(x,y)有12个,它们分别为(±10,0),(±6,±8),(±8,±6),(0,±10),故直线xa+yb=1与圆的交点必须经过这些点,但a,b为非零常数,故在以这些点为公共点的直线中有这样几类:一类公共点为2个点,去除垂直坐标轴和经过原点的直线,共有C212-10-4=52条;一类为公共点为1个点(即圆的切线),同样去除垂直坐标轴的直线,共有8条.综上,所求的直线共有60条,故选B.考点三分组分配问题|(常考常新型考点——多角探明)[多角探明]分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,应注意只要有一些组中元素的个数相等,就存在均分现象.常见的命题角度有:(1)整体均分问题;(2)部分均分问题; (3)不等分问题.角度一:整体均分问题1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法. 答案:90角度二:部分均匀问题2.(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲,乙,丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.解析:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组对应3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.答案:36角度三:不等分问题3.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法, 故共有60×6=360种不同的分法. 答案:360[类题通法]解决分组分配问题的策略1.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.2.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m!,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.3.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.一、选择题1.(2015·兰州,张掖联考)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是() A.150B.300C.600 D.900解析:选C若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.2.(2015·北京海淀区期末)如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有() A.50种B.51种C.140种D.141种解析:选D因为第一天和第七天吃的水果数相同,所以中间“多一个”或“少一个”的天数必须相同,都是0,1,2,3,共4种情况,所以共有C06+C16C15+C26C24+C36C33=141种,故选D.3.(2015·昆明调研)航空母舰“辽宁舰”将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为()A.72 B.324C.648 D.1 296解析:选D核潜艇排列数为A22,6艘舰艇任意排列的排列数为A66,同侧均是同种舰艇的排列数为A33A33×2,则舰艇分配方案的方法数为A22(A66-A33A33×2)=1 296.4.(2014·辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144 B.120C.72 D.24解析:选D剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.5.8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为。
517课题:离散型随机变量及其分布列考纲要求:①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;②理解超几何分布及其推导过程,并能进行简单的应用. 教材复习1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5.离散型随机变量的分布列:设离散型随机变量ξ可能取的值为1x 、2x 、…、i x 、… ξ为随机变量ξ的概率分布,简称ξ的分布列6.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()P A ≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:()1i p ≥0,1,2,i =…;()212p p ++…1=对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅7.两点分布:若随机变量服从两点分布,即其分布列:其中P =(1)P X =称为成功概率(表中01p <<).8.几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =, ()(1)k p A q q p ==-,那么 112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q pξ---====(0,1,2,k =…,p q -=1)518称这样的随机变量ξ服从几何分布,记作(,)g k p 1k q p -=,其中0,1,2,k =…,p q -=19.超几何分布:一般地,设有N 件产品,其中有M (M ≤N )件次品,从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么()P X k == (其中k 为非负整数).如果一个随机变量的分布列由上式确定,那么称X 服从参数10.求离散型随机变量分布列的步骤:1要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;()2分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;()3列表对应,给出分布列,并用分布列的性质验证.11.几种常见的分布列的求法:()1取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有化归法、数形结合法、对应法等,对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.()2射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.()3对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 典例分析:考点一 由古典概型求离散型随机变量的分布列问题1.(2013天津)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1,2,3,4;白色卡片3张, 编号分别为2,3,4. 从盒子中任取4张卡片 (假设取到任何一张 卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率. (Ⅱ) 在取 出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.519考点二 由统计数据求离散型随机变量的分布列问题2.(2010广东)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(]490,495,(]495,500,…,(]510,515,由此得到样本的频率分布直方图,如图所示. ()1根据频率分布直方图,求重量超过505 克的产品数量.()2在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产 品数量, 求Y 的分布列.()3从流水线上任取5件产品, 求恰有2件产品合格的重量 超过505克的概率.考点二 两点分布问题3.一个盒子中装有5个白色玻璃球和6红色玻璃球,从中摸出两球.当两球全为红色520玻璃球时,记0X =;当两球不全为红色玻璃球时,记为1X =.试求X 的分布列.考点三 超几何分布问题4.(2012浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.()1求X 的分布列;()2求X 的数学期望EX .走向高考:1.(2012江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. ()1求概率(0)P ξ=; ()2求ξ的分布列,并求其数学期望()E ξ.2.(2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.()1当1b=ca时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,=,2,3=记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;()2略3.(2011江西)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设次人对A和B两种饮料没有鉴别能力.()1求B的分布列;()2求此员工月工资的期望.5214.(2011广东)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,x y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1已知甲厂生产的产品共98件,求乙厂生产的产品数量;()2当产品中的微量元素,x y满足x≥175且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;()3从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).5225.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一.二.三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.()1求一次摸奖恰好摸到1个红球的概率;()2求摸奖者在一次摸奖中获奖金额X的分布列与期望()E X.523。
开卷速查(六十七) 离散型随机变量及其分布列A 级 基础巩固练1.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505克的产品数量; (2)在上述抽取的40件产品中任取2件,设Y 为质量超过505克的产品数量,求Y 的分布列.解析:(1)根据频率分布直方图可知,质量超过505克的产品数量为40×(0.05×5+0.01×5)=40×0.3=12.(2)Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P(Y =0)=C 012C 228C 240=63130,P(Y =1)=C 112C 128C 240=2865,P(Y =2)=C 212C 028C 240=11130.所以Y 的分布列为2.每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (3)随机选取3件产品,求这3件产品都不能通过检测的概率. 解析:(1)设随机选取一件产品,能够通过检测的事件为A ,事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”,∴P(A)=610+410×23=1315.(2)由题可知X 的可能取值为0,1,2,3.P(X =0)=C 34C 06C 310=130,P(X =1)=C 24C 16C 310=310,P(X =2)=C 14C 26C 310=12,P(X =3)=C 04C 36C 310=16.∴X 的分布列如下:(3)设“随机选取3件产品都不能通过检测”的事件为B ,事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测”,所以,P(B)=130·⎝ ⎛⎭⎪⎫133=1810.B 级 能力提升练3.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选1个选项,答对得5分,不答或答错得0分”.某考生已确定有8道题的答案是正确的,其余题中:有2道题都可判断2个选项是错误的,有1道题可以判断1个选项是错误的,还有1道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率; (2)所得分数X 的分布列.解析:(1)设“选对可判断2个选项是错误的2道题之一”为事件A ,“选对可判断1个选项是错误的1道题”为事件B ,“选对不理解题意的1道题”为事件C.则P(A)=12,P(B)=13,P(C)=14, 所以得60分的概率P =12×12×13×14=148.(2)依题意得,所得分数X 可能的取值为40,45,50,55,60. P(X =40)=12×12×23×34=18;P(X =45)=C 12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(X =50)=12×12×23×34+C 12×12×12×13×34+C 12×12×12×23×14+12×12×13×14=1748;P(X =55)=C 12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(X =60)=12×12×13×14=148. 所以所得分数X 的分布列为:4.2014年1065周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是35.(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列.解析:(1)记“至少有1名北京大学志愿者被分到运送矿泉水岗位”为事件A ,则事件A 的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”,设有北京大学志愿者x 名,1≤x<6,那么P(A)=1-C 26-x C 26=35,解得x =2,即来自北京大学的志愿者有2名,来自清华大学的志愿者有4名.记“打扫卫生岗位恰好有北京大学、清华大学志愿者各1名”为事件B ,则P(B)=C 12C 14C 26=815,所以打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率是815.(2)在维持秩序岗位服务的北京大学志愿者的人数ξ服从超几何分布,其中N =6,M =2,n =2,于是P(ξ=k)=C k 2C 2-k 4C 26,k =0,1,2,∴P(ξ=0)=C 02C 24C 26=25,P(ξ=1)=C 12C 14C 26=815,P(ξ=2)=C 22C 04C 26=115.所以ξ的分布列为。
开卷速查(五十八) 随机抽样A 级 基础巩固练1.(1)某学校为了了解2013年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.问题与方法配对正确的是( ) A .(1)Ⅲ,(2)Ⅰ B .(1)Ⅰ,(2)Ⅱ C .(1)Ⅱ,(2)ⅢD .(1)Ⅲ,(2)Ⅱ解析:通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.答案:A2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+1-l 20≤k ≤37-l 20.由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个.答案:B3.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:依题意有33+5+7×n =18,由此解得n =90,即样本容量为90.答案:B4.要从已编号(1~50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .1,2,3,4,5C .2,4,8,16,22D .3,13,23,33,43解析:系统抽样方法抽取到的导弹编号应该是k ,k +d ,k +2d ,k +3d ,k +4d ,其中d =505=10,k 是1~10中用简单随机抽样方法得到的数.答案:D5.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16解析:高级、中级、初级职称的人数所占的比例分别为15150=10%,45150=30%,90150=60%,则所抽取的高级、中级、初级职称的人数分别为10%×30=3,30%×30=9,60%×30=18.答案:B6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15解析:由已知条件可知,应该把总体分成32组,每组96032=30人,根据系统抽样的方法可知,i =9,k =30,在第1组到第32组依次抽取到的是9,9+30,9+2×30,…,9+31×30,由于9+15×30=459,而9+24×30=729,故而有24-15+1=10人,故选C .答案:C7.一支游泳队有男运动员32人,女运动员24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为14的样本,则抽取男运动员的人数为______.解析:设抽取男运动员人数为x ,则x 14=3232+24,x =8.答案:88.已知某商场新进3 000袋奶粉,为检查某维生素是否达标,现采用系统抽样的方法从中抽取150袋检查,若第1组抽出的号码是11,则第61组抽出的号码为__________.解析:∵3 000150=20.∴需把3 000袋奶粉按0,1,2,3,…,2 999编号,然后分成150组,每组20个号码.∴第61组抽出的号码为11+(61-1)×20=1 211. 答案:1 2119.某市有A 、B 、C 三所学校,共有高三文科学生1 500人,且A 、B 、C 三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为n 的样本,进行成绩分析,若从B 校学生中抽取40人,则n =__________.解析:设A 、B 、C 三所学校学生人数分别为x ,y ,z ,由题知x ,y ,z 成等差数列,所以x +z =2y ,又x +y +z =1 500,所以y =500,用分层抽样方法抽取B 校学生人数为n1 500×500=40,得n =120.答案:12010.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解析:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师n 36×6=n6,抽取技术员n 36×12=n 3,抽取技工n 36×18=n2.所以n 应是6的倍数,36的约数,即n =6,12,18,36.当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n =6.B 级 能力提升练11.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是__________.解析:由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:7612.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则40200=x100,解得x=20.答案:372013.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?解析:(1)按老年、中年、青年分层,用分层抽样法抽取,抽取比例为402 000=1 50.故老年人,中年人,青年人各抽取4人,12人,24人.(2)按管理、技术开发、营销、生产分层,用分层抽样法抽取,抽取比例为252 000=180,故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.(3)用系统抽样,对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.14.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解析:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,在大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为 2745×5=35×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁的有2名(记为Y 1,Y 2),大于40岁的有3名(记为A 1,A 2,A 3).5名观众中任取2名,共有10种不同取法:Y 1Y 2,Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,A 1A 2,A 1A 3,A 2A 3.设A 表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A 中的基本事件有6种:Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3, 故所求概率为P(A)=610=35.。
开卷速查(六十七)离散型随机变量及其分布列
A级基础巩固练
1.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求质量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设Y为质量超过505克的产品数量,求Y的分布列.
解析:(1)根据频率分布直方图可知,质量超过505克的产品数量为40×(0.05×5+0.01×5)=40×0.3=12.
(2)Y的可能取值为0,1,2,且Y服从参数为N=40,M=12,n=2的超几何分布,故
P(Y=0)=C012C228
C240=
63
130,
P(Y=1)=C112C128
C240=
28
65,
P(Y=2)=C212C028
C240=
11
130.
所以Y的分布列为
2.每一件一等品都能通过检测,每一件二等品通过检测的概率为2
3.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (3)随机选取3件产品,求这3件产品都不能通过检测的概率. 解析:(1)设随机选取一件产品,能够通过检测的事件为A ,事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”,
∴P(A)=610+410×23=1315.
(2)由题可知X 的可能取值为0,1,2,3.
P(X =0)=C 34C 06C 310=130,P(X =1)=C 24C 16
C 310=310,
P(X =2)=C 14C 26
C 310=12,P(X =3)=C 04C 36C 310
=16.
∴X 的分布列如下:
(3)设“随机选取的事件为B ,事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测”,
所以,P(B)=130·⎝ ⎛⎭
⎪⎫133=1810. B 级 能力提升练
3.一次考试共有12道选择题,每道选择题都有4个选项,其中
有且只有一个是正确的.评分标准规定:“每题只选1个选项,答对得5分,不答或答错得0分”.某考生已确定有8道题的答案是正确的,其余题中:有2道题都可判断2个选项是错误的,有1道题可以判断1个选项是错误的,还有1道题因不理解题意只好乱猜.请求出该考生:
(1)得60分的概率; (2)所得分数X 的分布列.
解析:(1)设“选对可判断2个选项是错误的2道题之一”为事件A ,“选对可判断1个选项是错误的1道题”为事件B ,“选对不理解题意的1道题”为事件C.
则P(A)=12,P(B)=13,P(C)=1
4, 所以得60分的概率P =12×12×13×14=1
48.
(2)依题意得,所得分数X 可能的取值为40,45,50,55,60. P(X =40)=12×12×23×34=1
8;
P(X =45)=C 1
2×12×12×23×34+12×12×13×34+12×12×23×14=1748
;
P(X =50)=12×12×23×34+C 12×12×12×13×34+C 1
2×12×12×23×14+12×12×13×14=1748;
P(X =55)=C 12
×12×12×13×14+12×12×23×14+12×12×13×34=7
48; P(X =60)=12×12×13×14=1
48. 所以所得分数X 的分布列为:
4.2014年1065周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是3
5.
(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;
(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列.
解析:(1)记“至少有1名北京大学志愿者被分到运送矿泉水岗位”为事件A ,则事件A 的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”,设有北京大学志愿者x 名,1≤x<6,那么P(A)=1
-C 26-x
C 26
=35,解得x =2,即来自北京大学的志愿者有2名,来自清华大
学的志愿者有4名.
记“打扫卫生岗位恰好有北京大学、清华大学志愿者各1名”为
事件B ,则P(B)=C 12C 14
C 26
=815,
所以打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率是815.
(2)在维持秩序岗位服务的北京大学志愿者的人数ξ服从超几何分布,其中N =6,M =2,n =2,于是
P(ξ=k)=C k 2C 2-k 4
C 26
,k =0,1,2,
∴P(ξ=0)=C 02C 24C 26=2
5,
P(ξ=1)=C 12C 14C 26=8
15,
P(ξ=2)=C 22C 04C 26
=1
15.
所以ξ的分布列为。