点光源跟踪系统
- 格式:docx
- 大小:335.17 KB
- 文档页数:9
光电追踪系统的设计原理和实践光电追踪系统的设计原理和实践光电追踪系统是一种基于光电传感器和追踪算法的系统,可以实时监测和跟踪目标物体的运动轨迹。
它在许多领域有着广泛的应用,如自动驾驶、机器人导航和安防监控等。
本文将介绍光电追踪系统的设计原理和实践。
光电追踪系统的设计原理主要包括硬件和软件两个方面。
在硬件方面,系统使用光电传感器来接收光信号,并将其转换为电信号。
光电传感器通常采用光敏电阻、光电二极管或光电三极管等。
通过合理的电路设计和信号放大,可以提高光电传感器的灵敏度和抗干扰能力。
在软件方面,光电追踪系统需要进行目标的检测、识别和跟踪。
目标检测是指在图像或视频中找到目标物体的位置和大小。
常用的目标检测算法有Haar特征检测、HOG特征检测和深度学习等。
一旦目标被检测到,系统会使用跟踪算法来实时跟踪目标的位置和运动轨迹。
常见的跟踪算法有卡尔曼滤波、粒子滤波和相关滤波等。
这些算法可以根据目标的运动特征和环境条件,实现快速准确的目标跟踪。
在实践中,光电追踪系统的应用非常广泛。
例如,在自动驾驶中,光电追踪系统可以实时跟踪周围车辆和行人的位置和速度,从而实现自动驾驶车辆的安全行驶。
在机器人导航中,光电追踪系统可以帮助机器人识别和跟踪目标位置,实现自主导航和定位。
在安防监控中,光电追踪系统可以实时监测和跟踪可疑人员或物体的移动轨迹,提高安全性和保护效果。
然而,光电追踪系统也面临一些挑战和限制。
首先,光电传感器的灵敏度和分辨率会影响系统的跟踪精度和速度。
其次,环境因素如光照、背景干扰和目标遮挡等,也会对系统的性能产生影响。
此外,系统的实时性和算法的复杂度也是需要考虑的因素。
总结来说,光电追踪系统是一种基于光电传感器和追踪算法的系统,可以实现目标的实时监测和跟踪。
通过合理的设计原理和实践,光电追踪系统在许多领域有着广泛的应用。
然而,系统还面临一些挑战和限制,需要进一步研究和改进。
希望随着技术的发展和创新,光电追踪系统能够在更多的领域发挥其重要作用。
舞台灯光系统中追光灯自动跟踪功能的实现 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】舞台灯光系统中追光灯自动跟踪功能的实现摘要:追光灯作为一种重要的灯光配置,直接影响到舞台的艺术效果。
本文介绍的舞台灯光控制系统实现了舞台上利用追光灯来跟踪演员的移动。
该系统的实现很好地完成灯光随动功能,降低演出成本,节省人力、物力,完善舞台灯光技术中追光灯的功能和自动化控制的程度。
文章介绍了舞台中追光灯控制系统的设计方案的原理、总体结构及特点,并对该系统开发中的一些技术上的实现进行了详细阐述。
关键字:舞台灯光系统追光灯鼠标摄像头TheRealizationofAutomaticTrackingFunctionofTheSpotlightLampinStageLightingSystemAbstract:Thespotlightlamp,asanimportantlightingconfiguration,directlyaffectsthe artisticeffectsofstage.Thecontrollingsystemofstagelightingintroducedin thisarticleachievestotracktheactors’movement bytheuseofthespotlightlam p.Therealizationofthissystemcanfinishtrackingfunctionwell,andcanreduce theperformancecost,andcansavehumanresourcesandmaterialresources.Italso canimprovedthefunctionofthespotlightlampinstagelightingskillsandtheaut omaticdegree.Thisarticleintroducestheprinciple,theoverallstructureandc haracteristicsofthedesigningproposalofthestagelightingcontrollingsyste m.Italsogivesadetailedintroductionabouttherealizationofsomeskillsinthe systemdeveloping.Keyword:SystemofstagelightingThespotlightlampMouseCamera1概述追光灯的运用是舞台艺术中不可或缺的重要手段,达到突出重点、塑造人物形象、烘托环境气氛的目的。
激光跟踪仪原理
激光跟踪仪是一种利用激光技术进行目标跟踪的设备,它在军事、航空航天、船舶、地质勘探等领域都有着重要的应用价值。
激光跟踪仪的原理是基于激光束的发射、接收和信号处理,通过测量目标与仪器之间的距离和方向,实现对目标的精确定位和跟踪。
首先,激光跟踪仪通过激光器发射一束激光束,这个激光束经过光学系统的聚焦和调整后,形成一个细小的光斑,然后照射到目标物体上。
目标物体表面的反射光被接收器接收后,经过光电探测器转换成电信号,再经过信号处理系统进行放大和滤波处理,最终得到目标物体的位置信息。
其次,激光跟踪仪的原理还涉及到光电探测器的工作原理。
光电探测器是将接收到的光信号转换成电信号的装置,它通常由光电二极管、光电倍增管或光电二极管阵列等组成。
当激光束照射到目标物体上并反射回来时,光电探测器会将接收到的光信号转换成电信号,并传输给信号处理系统进行进一步处理。
另外,激光跟踪仪的原理还包括信号处理系统的工作原理。
信号处理系统是将接收到的电信号进行放大、滤波、数字化等处理的
装置,它可以有效地提取出目标物体的位置信息,并进行数据处理和分析。
通过信号处理系统,激光跟踪仪可以实现对目标物体的精确定位和跟踪,为后续的应用提供了可靠的数据支持。
总的来说,激光跟踪仪的原理是基于激光技术和光电技术相结合的成果,它通过激光束的发射、接收和信号处理,实现了对目标物体的精确定位和跟踪。
激光跟踪仪在军事、航空航天、船舶、地质勘探等领域都有着重要的应用前景,它为相关领域的研究和应用提供了重要的技术支持,具有着广阔的发展前景。
追光系统的可行性分析引言追光系统是一种利用光线追踪技术进行室内照明控制的系统。
该系统通过感知室内环境的光照强度,并通过灯具的自动调节来实现室内光线的均匀分布和节能效果。
本文将对追光系统的可行性进行分析,包括技术可行性、经济可行性和社会可行性三个方面。
技术可行性1. 光线追踪技术的发展光线追踪技术是实现追光系统的基础。
随着计算机硬件和算法的不断发展,光线追踪技术已经得到了很大的突破,使得实时的光照模拟成为可能。
现在已经有一些商用软件可以实现精确的光线追踪,可以很好地支持追光系统的设计与实现。
2. 硬件支持追光系统需要使用光线感知设备和可调节灯具来实现照明控制。
现在市场上已经有很多光线传感器和可调节灯具可供选择,这为追光系统的硬件支持提供了保障。
另外,要实现实时的追光效果,系统还需要具备高性能的处理器和充足的内存,但是随着硬件的不断发展,这个问题已经不再是难题。
3. 控制算法追光系统的另一个关键技术是控制算法。
通过感知光照强度和室内环境的特征,根据设定的照明需求调节灯具的亮度和位置,以实现室内光线的均匀分布和节能效果。
现在已经有一些成熟的控制算法可供选择,比如基于模糊逻辑的控制算法和基于遗传算法的控制算法等,它们可以很好地适应不同的室内环境。
经济可行性1. 节能效果追光系统可以根据室内照明需求智能调节灯具的亮度和位置,以最大程度地减少不必要的能源消耗。
据统计,传统的人工调节照明方式相比,追光系统可以节约30%以上的能源。
对于大型商业建筑来说,这样的节能效果将带来可观的经济收益。
2. 投资回报尽管追光系统需要一定的硬件投资,但由于其显著的节能优势和较长的使用寿命,可以使其投资回报周期大大降低。
根据实际案例分析,追光系统的投资回报周期通常在1至3年之间,而系统的使用寿命可以达到5年以上,这使得其经济可行性得到了保障。
社会可行性1. 环保效益追光系统的显著节能效果将带来较低的能源消耗和减少的碳排放,对于环境保护具有重要的意义。
CATALOGUE目录•引言•光电跟踪系统概述•精密跟踪定位控制技术•基于图像处理的自动跟踪定位技术•基于红外成像的自动跟踪定位技术•基于激光雷达的自动跟踪定位技术•总结与展望研究背景与意义光电跟踪系统在军事、航空航天、工业自动化等领域具有广泛的应用价值。
精密跟踪定位技术是光电跟踪系统实现其功能的关键所在。
研究光电跟踪系统的精密跟踪定位控制技术有助于提高系统的性能和精度,具有重要的现实意义和理论价值。
国内外研究现状及发展趋势国内外学者针对光电跟踪系统的精密跟踪定位控制技术进行了大量研究。
目前,该领域的研究热点主要集中在提高系统精度、稳定性和响应速度等方面。
随着人工智能、机器学习等技术的不断发展,光电跟踪系统的精密跟踪定位控制技术将逐渐向智能化、自主化方向发展。
研究内容和方法基于光学原理测量光路长度光电跟踪系统的基本原理系统组成工作过程光电跟踪系统的组成及工作过程跟踪精度响应速度稳定性抗干扰能力光电跟踪系统的性能指标自动控制理论概述自动控制系统的分类自动控制系统的性能要求自动控制系统的基本组成1常用控制器及其控制算法23PID控制器是最常用的控制器之一,其控制算法基于比例、积分、微分三个基本控制环节。
PID控制器及其控制算法模糊控制器是一种基于模糊逻辑理论的控制算法,适用于具有不确定性和复杂性的系统。
模糊控制器及其控制算法神经网络控制器是一种基于神经网络理论的控制算法,具有自学习、自组织和适应性强的特点。
神经网络控制器及其控制算法03混合控制策略精密跟踪定位控制策略01基于模型的控制策略02基于学习的控制策略图像处理技术概述图像处理技术的定义01图像处理技术的应用02图像处理技术的发展趋势03系统需求分析基于图像处理的自动跟踪定位系统设计系统架构设计关键技术分析实验设置为了验证基于图像处理的自动跟踪定位系统的性能和精度,实验采用了实际场景中的视频数据进行测试。
实验中,系统对视频中的目标进行了自动检测和跟踪。
光源自动跟踪系统自控原理课程设计一、前言光源自动跟踪系统是指利用光敏元件感知光线方向和光强,并通过自控原理去控制光源的方向和角度,以保证光源始终朝向目标,从而提高光能利用效率。
在现代节能环保理念的引领下,光源自动跟踪系统的研究与应用备受重视。
本课程设计立足于自控原理,旨在通过深入的理论研究和系统实践,培养学生动手能力和解决实际问题的能力,为学生今后的工程实践打下坚实基础。
二、课程设计目标1. 了解光源自动跟踪系统的基本原理和实现方式;2. 掌握自控原理在光源自动跟踪系统中的应用;3. 进行光源自动跟踪系统的设计与实现;4. 提高学生的动手能力和实际问题解决能力。
三、课程设计内容1. 光源自动跟踪系统的原理及相关知识介绍1.1 光敏元件的工作原理1.2 光源的自动定位与跟踪1.3 控制系统的设计与实现2. 自控原理在光源自动跟踪系统中的应用2.1 PID控制器在光源自动跟踪系统中的应用2.2 虚拟仪器软件的使用3. 光源自动跟踪系统的设计与实现3.1 选择合适的光敏元件3.2 搭建实验评台3.3 调试控制系统4. 实际案例分析4.1 光伏发电系统中的光源自动跟踪技术4.2 植物生长灯中的光源自动跟踪技术四、课程设计步骤1. 第一阶段:理论学习1.1 学生通过课堂教学和自主学习,掌握光源自动跟踪系统的原理及相关知识;1.2 学生学习自控原理在光源自动跟踪系统中的应用,了解PID控制器的基本原理和实现方法;1.3 学生熟悉虚拟仪器软件的基本操作和功能,为实验做好准备。
2. 第二阶段:实验设计2.1 学生在老师的指导下,选择合适的光敏元件,并设计光源自动跟踪系统的整体结构;2.2 学生搭建实验评台,完成光源自动跟踪系统的硬件部分搭建;2.3 学生根据课程要求,编写控制系统的程序,并进行调试。
3. 第三阶段:实验实施3.1 学生进行光源自动跟踪系统的实验实施,并记录实验数据;3.2 学生通过实验数据的分析,对光源自动跟踪系统的性能进行评估;3.3 学生在老师的指导下,完成实验报告的撰写。
激光跟踪仪工作原理
激光跟踪仪是一种用于实时跟踪运动物体的设备。
它的工作原理主要包括以下几个步骤:
1. 发射激光:激光跟踪仪内部装有激光发射器,通过控制电路向外发射一束红激光束。
这束激光经过透镜系统后形成一条细长的光线。
2. 照射物体:将激光光线照射到需要跟踪的物体上。
物体表面被激光照射后会反射部分光线,形成一个光斑。
3. 接收光线:激光跟踪仪内部配有接收器,用于接收物体反射回来的光线。
4. 光信号处理:接收器将接收到的光信号转换为电信号,经过一系列信号处理电路进行放大、滤波等处理,以提高信号质量和稳定性。
5. 光斑分析:对接收到的光信号进行分析,从中提取出物体位置信息。
这一过程可以通过计算光线在像平面上的位置或通过计算光斑在图像上的位置来实现。
6. 数据输出:经过计算分析后,激光跟踪仪将跟踪到的物体位置数据输出给用户。
可以通过数字接口(如USB)或模拟接口(如电压输出)将数据传输给计算机或其他设备。
通过不断地发射、照射、接收和分析光信号,激光跟踪仪可以
实时准确地跟踪物体的位置和运动轨迹。
这种技术在虚拟现实、运动分析、工业自动化等领域有着广泛的应用。
全国大学生电子设计竞赛2010年TI杯模拟电子系统专题邀请赛试题宽带放大器(A题)一、任务设计制作一个5V单电源供电的宽带低噪声放大器,输出为50Ω阻性负载。
二、要求1.基本要求(1)限定采用高速运算放大器OPA820ID作为第一级放大电路,THS3091D 作为末级放大电路,利用DC-DC变换器TPS61087DRC为末级放大电路供电;(2)放大器电压增益≧40dB(100倍),并尽量减小带内波动;(3)在最大增益下,放大器下限截止频率不高于20Hz,上限截止频率不低于5MHz;(4)在输出负载上,放大器最大不失真输出电压峰峰值≥10V。
2.发挥部分(1)在达到40dB电压增益的基础上,提高放大器上限截止频率,使之不低于10MHz;(2)尽可能降低放大器的输出噪声;(3)放大器输入为正弦波时,可测量并数字显示放大器输出电压的峰峰值和有效值,输出电压(峰峰值)测量范围为0.5~10V,测量相对误差小于5%;(4)其他。
三、评分标准设计报告项目分数系统方案 2 理论分析与计算9 电路与程序设计8 测试方案与测试结果8 设计报告结构及规范性 3小计30全国大学生电子设计竞赛2010年TI杯模拟电子系统专题邀请赛试题点光源跟踪系统(B题)一、任务设计并制作一个能够检测并指示点光源位置的光源跟踪系统,系统示意图如图1所示。
光源B使用单只1W白光LED,固定在一支架上。
LED的电流能够在150~350mA的范围内调节。
初始状态下光源中心线与支架间的夹角θ约为60º,光源距地面高约100cm,支架可以用手动方式沿着以A为圆心、半径r约173cm的圆周在不大于±45º的范围内移动,也可以沿直线LM移动。
在光源后3 cm距离内、光源中心线垂直平面上设置一直径不小于60cm暗色纸板。
光源跟踪系统A放置在地面,通过使用光敏器件检测光照强度判断光源的位置,并以激光笔指示光源的位置。
图1 光源跟踪系统示意图二、要求1.基本要求(1)光源跟踪系统中的指向激光笔可以通过现场设置参数的方法尽快指向点光源;(2)将激光笔光点调偏离点光源中心30cm时,激光笔能够尽快指向点光源;(3)在激光笔基本对准光源时,以A为圆心,将光源支架沿着圆周缓慢(10~15秒内)平稳移动20º(约60cm),激光笔能够连续跟踪指向LED点光源;2.发挥部分(1)在激光笔基本对准光源时,将光源支架沿着直线LM平稳缓慢(15秒内)移动60cm,激光笔能够连续跟踪指向光源。
分时多站式激光跟踪仪测量系统课程名称:光机电一体化院系:机械工程学院班级:硕3002班*名:**学号: **********目录1 激光跟踪仪系统 (1)1.1 激光跟踪仪系统的概述 (1)1.2 激光跟踪仪系统的基本原理 (1)1.2.1 系统的组成 (2)1.2.2 激光跟踪仪系统的原理 (3)2 分时多站式激光跟踪仪测量系统 (7)2.1 引言 (7)2.2 基于GPS多边形定位原理 (7)2.3 分时测量的算法 (9)2.3.1 激光跟踪仪基站的自标定 (9)2.3.2 测量点坐标的标定 (10)1 激光跟踪仪系统1.1激光跟踪仪系统的概述激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。
它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。
它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量,测量静止目标,跟踪和测量移动目标或它们的组合。
SMART310是Leica公司在1990年生产的第一台激光跟踪仪,1993年Leica公司又推出了SMART310的第二代产品,其后,Leica公司还推出了LT/LTD系列的激光跟踪仪,以满足不同的工业生产需要。
LTD系列的激光跟踪仪采用了Leica公司专利的绝对测距仪,测量速度快,精度高,配套的软件则在Leica统一的工业测量系统平台Axyz 下进行开发,包括经纬仪测量模块、全站仪测量模块、激光跟踪仪测量模块和数字摄影测量模块等。
激光跟踪系统在我国的应用始于1996年,上飞、沈飞集团在我国第一次引进了SMART310激光跟踪系统;2005年上海盾构公司引进了Leica公司的一套LTD600跟踪测量系统,应用于三维管模的检测。
(a)API的激光跟踪仪(b) Leica的激光跟踪仪(c)Faro的激光跟踪仪图1-1 API等公司生产的激光跟踪仪1.2激光跟踪仪系统的基本原理近年来,激光跟踪测量系统的应用领域在不断扩大,很多公司都相继推出了各自品牌的激光跟踪仪,但所有的激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成的。
光电跟踪系统的原理和应用1. 简介光电跟踪系统是一种利用光电传感器对物体运动轨迹进行实时跟踪和记录的技术。
它广泛应用于工业生产、运动分析、视觉导航等领域。
本文将介绍光电跟踪系统的原理和应用。
2. 原理光电跟踪系统的原理基于光电传感器对光信号的检测和处理。
它包括以下几个主要组成部分:2.1 光源光源是光电跟踪系统的重要组成部分。
通常使用的光源包括激光器、LED等。
光源发出的光线经过适当的控制和调节,照射到被跟踪物体表面。
2.2 光电传感器光电传感器是光电跟踪系统中的核心部件。
它能够将光信号转换为电信号,并经过处理后输出相应的数据。
光电传感器可以根据不同的原理分为光电二极管、光敏电阻、光电开关等。
2.3 数据处理器数据处理器负责接收光电传感器输出的数据,并进行相应的处理和分析。
通过对数据的处理,可以获得被跟踪物体的运动轨迹、速度等相关信息。
3. 应用光电跟踪系统在各个领域都有广泛的应用。
以下是光电跟踪系统的几个常见应用场景:3.1 工业生产光电跟踪系统可以应用于工业生产中的自动化流水线。
它可以实时跟踪和记录产品在生产过程中的位置和运动情况,以及检测产品的质量和准确性。
3.2 运动分析光电跟踪系统可以用于运动分析,例如运动员的姿势分析、物体的运动轨迹分析等。
通过对物体运动轨迹的记录和分析,可以得到详细的运动参数,为运动员的训练和竞技提供参考。
3.3 视觉导航光电跟踪系统可以应用于视觉导航领域,例如自动驾驶车辆的导航系统。
通过对车辆周围环境的光电跟踪,可以实时获取车辆位置和周围物体的位置信息,从而实现车辆自主导航。
3.4 虚拟现实光电跟踪系统在虚拟现实领域中起着重要的作用。
通过对用户的头部和手部位置的跟踪,可以实现用户在虚拟环境中的自由移动和交互,提升虚拟现实的沉浸感和真实感。
4. 优势和挑战光电跟踪系统具有以下几个优势:•高精度:光电传感器可以实现高精度的位置跟踪,能够满足各种应用场景的要求。
•实时性:光电跟踪系统能够实时地获取被跟踪物体的位置和运动信息。
点光源跟踪系统(B题)
摘要:本系统以STM32单片机作为控制处理核心,设计并制作了一个能够检测并指示点光源位置的光源跟踪系统。
该系统的主电路主要由传感器模块、步进电机驱动模块、液晶显示模块和电源模块组成,将光敏三极管、光敏电阻、激光笔与步进电机固定,利用光敏三极管和光敏电阻检测光照强度判断光源位置,控制步进电机转动来调整传感器和激光笔的转动角度,从而跟随点光源的移动而转动,准确跟踪点光源。
本系统还具有人机交换界面,各参数及测试模式可由键盘输入并显示,智能性好,反应速度快,最终完成了题目的所有基本指标及全部发挥部分的要求。
关键词:STM32;光敏三极管;光敏电阻;光源跟踪
一、系统方案
1.1整体方案描述
本系统由点光源和光源跟踪模块两大部分构成,以STM32单片机为控制核心实现了点光源识别、点光源跟踪、模式设定、液晶显示及激光笔精确指示等功能。
光源由功率LED组成,通过改变回路中滑动变阻器的阻值大小,来改变功率LED 电流的大小,使电流能在150mA~350mA的范围内调节。
光源跟踪模块由STM32
单片机、步进电机、传感器电路、激光笔组成。
当点光源移动时,传感器电路的光敏三极管和光敏电阻检测到点光源强度发生改变,通过STM32单片机AD采样处理,控制步进电机的转动,使激光笔始终指向点光源中心,即达到点光源跟踪的目的。
本系统总体结构框图如图1所示。
图1 系统总体结构框图
1.2方案比较与选择
1.1.1光源检测方案选择
方案一:由光敏元件检测中心线处的光源强度,实现光电转换,通过AD采样,检测电压的变化,设计算法实现光源立体坐标的检测。
此方案运用软硬结合的方法可以检测出光强的微小变化,硬件电路和算法都比较简单。
方案二:硅光电池检测中心线处的光源强度,实现光电转换,通过电压比较器检测电压的微小变化,处理过程基本由硬件完成,调试过程复杂。
综合上述比较,考虑到本系统抗干扰能力要求较高,采用光敏元件检测,硬件结构简单,环境适应性较强,故选择方案一。
1.1.2传感器选择
方案一:采用光敏电阻检测点光源强度变化。
光敏电阻是利用光的入射引起半导体电阻的变化来进行工作的,具有灵敏度高,光谱响应范围宽,重量轻,抗过载能力强以及耗散功率大等特点。
方案二:采用光电二极管检测点光源强度变化。
光敏二极管的优点是线性好,响应速度快,对宽范围波长的光具有较高的灵敏度,噪声低,小型轻量以及耐振
动与冲击等;缺点是输出电流小。
方案三:采用光电三极管检测点光源强度变化。
光敏三极管和普通三极管相似,也有电流放大作用,只是它的集电极电流不只是受基极电路和电流控制,同时也受光辐射的控制。
不同材料制成的光敏三极管具有不同的光谱特性,与光敏二极管相比,具有很大的光电流放大作用,即很高的灵敏度。
综合上述比较,考虑到本设计采用五路传感器检测,中路传感器要求灵敏度高且小型轻量,故选择光敏电阻;旁路传感器要求输出电流大,灵敏度高,为了提高系统稳定性,故选择光敏三极管和光敏电阻。
因此,传感器最终采用方案一和方案三相结合的方式。
1.1.3控制电机的选择
方案一:采用直流减速电机控制激光笔。
直流减速电机节省空间、可靠耐用、调速范围大等优点。
但直流电机控制精度差,不能精确控制的所转的角度。
方案二:采用舵机驱动。
舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统,具有良好的速度控制特性,减速效率可达90%以上,但是舵机的误差最小为0.18度。
方案三:采用两相四线步进电机驱动。
两相四线步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,有较好的位置精度和运动的重复性,优秀的启停和反转效应,速度正比于脉冲频率,因而有较高的转速范围。
同时,采用具有细分功能的驱动电路驱动,精度可高达25600步数/转,误差最小为0.00004度。
综合上述比较,考虑本设计要求激光笔精准指向点光源中心,且激光笔与点光源距离达2米,精度要求极高,故选择方案三。
二、理论分析与计算
2.1两相四线步进电机的精度分析与计算
根据题目要求,激光笔光点应能指向LED的中心,LED的直径大约为5mm,按题意激光笔指示器与LED的水平距离约173cm,支架高约100cm,故LED与光点距离约为200cm。
本设计方案采用具有细分功能的驱动电路驱动步进电机转动,细分精度为3200步/转,每步进旋转角度为0.1125°,相当于激光笔在暗黑纸板上运动约3.9mm,完全可满足本题目所要求的控制精度。
两相四线步进电机驱动模块通过三个拨码开关设定细分精度,细分设定功能如表1所示。
表1:步进电机细分设定
2.2 光强信号采集环节设计精度分析与计算
STM32单片机内置有12位的A/D器件,可以采用内部或外部的参考电压。
本系统采用STM32单片机内置A/D器件,选择内部3.3V的参考电压,所以输入的最大模拟信号幅度为3.3V,最小的分辨率约为0.8mV,完全可满足题目要求。
2.3 功率LED电流调节
LED的亮度取决于流过的电流,因此调节LED电流可以改变LED的光强。
本实验中采用大功率LED,该LED可以承受的最大电流为500mA,完全满足LED 电流的调节要求,并且有适当的电流余量。
在电源电压为5V时,点光源电路串接12欧的固定功率电阻和33欧的可调电阻,即可实现光源LED的电流能够在150mA~350mA的范围内调节。
光源LED最大电流I max和最小电流I min计算如下:
⁄≈416.7mA ⑴
I max=5V12Ω
⁄≈111.1mA ⑵
I min=5V(12Ω+33Ω)
三、电路与程序设计
3.1 电路设计
3.1.1 点光源模块
点光源模块选用额定功率为1W的功率LED,采用5V稳压供电,在点光源电路串接12欧的固定功率电阻和33欧的可调电阻,即可实现光源LED的电流能够在150mA~350mA的范围内调节,点光源模块如图2所示。
图2 点光源模块
3.1.2 传感器模块
本设计采用五路传感器检测,结合两路光电三极管和三路光敏电阻,将光照强度转化为电压值,经过截止频率为10Hz的低通滤波器滤除干扰信号,再由单片机AD采集及数据处理,准确判断点光源位置,快速跟踪点光源。
中路传感器采用光敏电阻,置于10cm长黑色细管一端,准确判断光强最大点位置(即点光源位置)。
旁路采用两路光敏三极管和两路光敏电阻相结合的方式辅助判断光强变化情况,从而精确控制步进电机运动,使激光笔精准指向点光源中心。
传感器模型及模块电路如图3、4所示。
图3 传感器模型
图4 传感器模块电路
3.1.3 步进电机驱动模块
本设计方案采用具有细分功能的两相四线步进电机驱动电路驱动步进电机转动,设计细分精度为3200步/转,每步进旋转角度为0.1125°,相当于激光笔在暗黑纸板上运动约3.9mm,完全可满足本题目所要求的控制精度。
步进电机驱动模块具体电路如图5所示。
图5 步进电机驱动模块
3.2 程序设计
系统主程序流程图如下图6所示。
图6 主程序流程图
四、测试方案与测试结果
4.1 测量工具,如表2所示
表2 测量工具
4.2 测试方法及结果
表3 激光笔调离点光源中心后重新指向点光源所需时间及偏离误差
表5 光源支架旋转角度β,激光笔重新移向光源所需时间及偏离误差
表6 光源支架沿着直线LM缓慢移动60cm时,激光笔指向光源所需时间及偏离误差
五、总结
本光源跟踪系统以STM32单片机作为控制处理核心,实现了点光源的位置检测和跟踪指示。
采用五路传感器检测电路检测光强信息,经单片机AD采集处理,准确判断点光源位置,控制步进电机转动的角度及方向,快速跟踪点光源,并通过激光笔来指示点光源位置。
当移动激光笔光点偏离点光源时,传感器能够快速调整方向使光点重新指向点光源;对于不同的LED亮度,移动光源支架,传感器能缓慢跟踪点光源转动;转动光源支架使纸板旋转一定角度,传感器也能检测到光照强度的变化并跟踪点光源转动,最终使激光笔光点基本对准点光源。
整个设计出色的完成了题目的所有基本指标及全部发挥部分的要求。
在此感谢大赛组委会给我们创造了一个锻炼我们、展示我们的机会,同时也感谢学校、老师对我们的支持和帮助!
参考文献
【1】宁武唐晓宇闫晓金《全国大学生电子设计竞赛基本技能指导》北京:电子工业出版社,2009.5
【2】张华林周小方《电子设计竞赛实训教程》北京:北京航空航天大学出版社,2007.7
【3】谢兴红林凡强吴雄英《MSP430单片机基础与实践》北京:北京航空航天大学出版社,2008.1。