专题:整式的化简求值.ppt
- 格式:ppt
- 大小:1.11 MB
- 文档页数:7
整式的化简求值1.先化简,再求值:3(4a 2+2a )﹣(2a 2+3a ﹣5),其中a =﹣2.2.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.3.先化简后求值:,其中x =﹣2,y =﹣32.4.先化简,再求值:2(x 2﹣xy )﹣3(x 2﹣2xy ),其中x =1,y =﹣1.5.先化简,再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1.6.先化简,再求值:﹣3(x 2y ﹣xy 2)﹣(﹣3x 2y +2xy 2)+xy ,其中x =2,y =﹣21.7.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.8.先化简,再求值:5x 2﹣2(3y 2+6xy )+(2y 2﹣5x 2),其中x =,y =21-.9.先化简再求值:21xy ﹣2(xy +41y 2)+(xy ﹣21y 2),其中x =﹣3,y =.10.先化简,再求值:(﹣x 2+3xy ﹣2y )﹣2(﹣21x 2+4xy ﹣23y 2),其中x =3,y =﹣211.先化简,再求值:2(ab ﹣3a 2)+[5a 2﹣(3ab ﹣a 2)],其中a =,b =1.12.先化简,再求值:3(a 2+ab )﹣2(a 2+2ab ),其中a =﹣2,b =3.13.先化简,再求值:3(x 2﹣2xy )﹣[3x 2﹣2y +2(xy +y )],其中x =﹣4,y =2.14.先化简,再求值:6(x 2y +32xy 2﹣x )﹣23(4x 2y +2xy 2+8x ),其中x =,y =1.15.先化简,再求值:2(x ﹣31y 2)﹣(﹣23x +31y 2)﹣x ,其中x =﹣1,y =23.16.先化简再求值:,其中x =﹣2,y =32.17.化简求值:3(x 2y ﹣31xy 2)﹣(xy 2﹣x 2y )﹣2x 2y ,其中,x =21,y =﹣2.18.化简求值:5(3x 2y ﹣xy 2)﹣(xy 2+3x 2y ),其中x =1,y =﹣2119.化简下式,求值:4a 2b ﹣2(a 2b ﹣3ab 2)+(﹣4ab 2﹣2a 2b ).其中a =﹣3.b =﹣2.20.先化简,再求值:4x 2﹣2xy +y 2﹣2(x 2﹣xy +5y 2),其中x =3,y =﹣1.21.先化简,再求值:,其中x =﹣1,y =2.22.先化简下式,再求值:5(3ba 2﹣b 2a )﹣(ab 2+3a 2b ),其中a =,b =.23.先化简,再求值3(x 2y ﹣xy 2)﹣2(﹣23xy 2﹣2+x 2y )﹣3其中x =﹣,y =﹣2.24.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ),其中a =﹣1,b =2.25.先化简,再求值:3x 2+(2xy ﹣3y 2)﹣2(x 2+xy ﹣y 2),其中x =﹣1,y =2.26.先化简,再求值:2x 2﹣(4x 2﹣3xy +y 2)+2(x 2﹣3xy +2y 2),其中x =31,y =﹣2.27.先化简,再求值:2(3x 2y +xy 2)﹣3(2x 2y ﹣xy )﹣2xy 2+1,其中x =31,y =1.28.先化简,再求值:2(4x 2﹣3xy ﹣6y 2)﹣3(2x 2﹣3xy ﹣4y 2),其中x =﹣2,y =1.29.先化简,再求值﹣3(2x 2y ﹣xy 2)﹣(xy 2+x 2y ),其中x =2,y =﹣21.30.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中(x +2)2+|y-1=031.先化简再求值:3x 2y ﹣[2x 2y ﹣3(2xy ﹣x 2y )﹣xy ],其中x =21,y =2.32.先化简,再求值:(7x 2﹣6xy ﹣1)﹣2(﹣3x 3﹣4xy )﹣5,其中x =﹣2,y =﹣21.33.化简求值:2(x 2y ﹣xy 2﹣1)﹣3(2x 2y ﹣3xy 2﹣3),其中x =﹣21,y =1.34.先化简,再求值:2(x 2+3xy )﹣(x 2﹣xy ),其中x =2,y =3.35.先化简,再求值:(3a 2b ﹣ab 2)﹣2(ab 2+3a 2b ),其中a =﹣21,b =2.36.先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ).其中a =﹣1,b =﹣2.37.先化简,再求值:2(2xy 2﹣x 2y )﹣(x 2y +6xy 2)+3x 2y ,其中x =2,y =﹣1.38.已知:A =﹣4x 2+2x ﹣8,B =121 x ,求41A ﹣B 的值,其中x =21;39.先化简,再求值:3(xy ﹣35x 3)﹣2(1﹣3x 3)﹣2xy ,其中,x =y =﹣2.40.先化简,再求值:,其中x =5,y =﹣3.41.先化简,再求值:x 2+(2xy ﹣y 2)﹣2(x 2+xy ﹣2y 2),其中x =﹣1,y =2.42.先化简,再求值:(2x 2y ﹣4xy 2)﹣2(﹣xy 2+x 2y );其中x =﹣1,y =2.43.先化简,再求值:3(x ﹣)﹣(6x ﹣2y 2),其中x =2,y =﹣32.44.先化简,再求值:6y 3+4(x 3﹣2xy )﹣2(3y 3﹣xy ),其中x =﹣2,y =3.45.先化简,再求值:2(x 3﹣2y )﹣(x ﹣2y )﹣(x ﹣3y +2x 3),其中x =﹣3,y =﹣2.46.已知代数式A =x 2+3xy +x ﹣12,B =2x 2﹣xy +4y ﹣1(1)当x =y =﹣2时,求2A ﹣B 的值;(2)若2A ﹣B 的值与y 的取值无关,求x 的值.47.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4y 2,当x =﹣2,y =1时,求2A ﹣B 的值.48.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4xy 2,当x =﹣2,y =1时,求2A ﹣B 的值.49.已知A =x 2﹣3xy +y 2,B =2x 2﹣2y 2(1)求2A ﹣B ;(2)当x =3,y =﹣1时,求2A ﹣B 的值.50.已知:A =2x 2+3xy ﹣5x +1,B =x 2-xy +2.求A -2B .。
专题04 整式化简求值一、整式的概念1.单项式和多项式(1)单项式的概念:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,−1,a…(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数;(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数;【注】①单个字母的系数是1,如a的系数是1;②只含字母因数的代数式的系数是1或−1,如−ab 的系数是−1,a3b的系数是1.(4)多项式的概念:由几个单项式相加组成的代数式叫做多项式;(5)多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;(6)多项式的次数:次数最高的项的次数就是这个多项式的次数;(7)常数项:代数式中不含字母的项叫做常数项,如6x2−2x−7中的常数项是−7.2.同类项多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项.3.合并同类项(1)定义:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(2)理论依据:逆用乘法分配律.(3)法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.【注】①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式.(4)合并同类项的步骤:第一步:观察多项式中各项,准确找出同类项,项数比较多时,不同的同类项可以给出不同的标记;第二步:利用乘法的分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;第三步:写出合并后的结果.4.去括号法则去括号规律要准确理解,去括号应对括号的每一项的符号都予以考虑,做到要变都变;要不变,则谁也不变;法则顺口溜:去括号,看符号,是“+”号,不变号;是“-”号,全变号.另外,括号内原有几项去掉括号后仍有几项.【注】 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.二、整式的计算1.整式的加减法整式的加减实质上就是合并同类项,若有括号,要先用“去括号法则”去掉括号,然后合并同类项.【注】(1)两个整式相减时,减数一定要先用括号括起来;(2)整式加减的最后结果中:①不能含有同类项;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.2.幂的运算(1)同底数幂的乘法同底数幂运算法则:同底数幂相乘,底数不变,指数相加,即()m n m n a a a m n +⋅=、为正整数(m 、n 均为正整数).推导公式:同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m n p a a a a m n p ++⋅⋅=、、为正整数.底数互换关系 22()()n n a b b a -=- ,2121()()n n b a a b ++-=--【注】同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.(2)幂的乘方的运算性质运算性质: 幂的乘方,底数不变,指数相乘,即()m n mn a a =(m 、n 均为正整数).【注】幂的乘方的底数是指幂的底数,而不是指乘方的底数.指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.(3)积的乘方的运算性质运算性质:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘,即:()n n n ab a b =(n 为正整数).补充:()p m n mp np a b a b = (m 、n 、p 是正整数).【注】运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.3.整式的乘除(1) 单项式乘单项式法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式 里的字母,则连同它的指数作为积的一个因式.【注】计算时要运用乘法交换律,乘法结合律(2)单项式乘多项式法则:单项式与多项式相乘,因单项式乘多项式的每一项,再把所得的积相加【注】运用乘法分配律转化成单项式乘单项式(3)多项式乘多项式法则:多项式与多项式相乘,先用多项式的每一项乘里一个多项式的每一项,再把所得的积相加. 4.乘法公式(1)完全平方公式:(a +b )2=a 2+2ab +b 2, (a −b )2=a 2−2ab +b 2解读:()2222+=+⨯⨯+首尾首首尾尾,公式中的a 、b 可以是单独的数字,字母,单项式或多项式(2)平方差公式:(a +b )(a −b )=a 2−b 2核心考点 整式的化简求值 1.整式化简求值在广东省中考中,在解答题部分,大多以先化简再求值的题型出现,要求熟悉乘法公式的特点,看清项数及公式形式中的a 、b ,准确进行计算;2.要准确认识平方差和完全平方公式,可以结合面积法证明这两个公式,这种证明方法在初中数学中体现了数形结合的思想;3.在化简求值时要注意:当字母是负数时,代入后应加上括号;当字母是分数时,遇到乘方也要加括号.【经典示例】先化简,再求值:2()()2a b a b a +-+,其中1a =,b =答题模板第一步,计算:利用整式乘法和除法法则或乘法公式进行展开.第二步,化简:利用整式的加减法法则合并同类项化简.第三步,求值:把字母的值代入化简结果计算.第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性.【满分答案】原式=2222223a b a a b -+=-,当1a =,b ==22311⨯-=.【解题技巧】在进行整式化简时,根据整式的乘除法法则进行展开计算,符合平方差和完全平方公式的可以利用公式运算,然后再根据整式的加减法法则进行合并同类项,将原式化简,最后再代入求值.模拟训练1.计算:(3)(1)(2)a a a a +-+-.【答案】2a 2﹣3【解析】原式=22332a a a a a -+-+-=2a 2﹣3.2.先化简,再求值.()()223234(1)(2)x x x x x +---+-,其中x = 【答案】x 2﹣5,﹣2.【解析】原式=4x 2﹣9﹣4x 2+4x +x 2﹣4x +4=x 2﹣5,当x ==2﹣5=3﹣5=﹣2.3.先化简,再求值:()()()()2212112a a a a a --+---,其中1a .【答案】4.【解析】原式=4a 2﹣4a +1﹣2a 2+2﹣a 2+2a =a 2﹣2a +3,当1a 时,原式﹣﹣2+3=4.1.(2018•大庆)已知:x 2–y 2=12,x +y =3,求2x 2–2xy 的值.【答案】28【解析】∵x 2–y 2=12,∴(x +y )(x –y )=12,∵x +y =3①,∴x –y =4②,①+②得,2x =7,∴2x 2–2xy =2x (x –y )=7×4=28.2.(2018•济宁)化简:(y +2)(y –2)–(y –1)(y +5).【答案】–4y +1【解析】原式=y 2–4–y 2–5y +y +5=–4y +1.3.(2017•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x (x +2y )–(x +1)2+2x=x 2+2xy –x 2+2x +1+2x …第一步=2xy +4x +1 …第二步(1)小颖的化简过程从第_______ 步开始出现错误;(2)对此整式进行化简.【答案】(1)一;(2)2xy –1.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为:一;(2)x (x +2y )–(x +1)2+2x =x 2+2xy –x 2–2x –1+2x =2xy –1.4.(2017•江苏无锡)计算:(a +b )(a ﹣b )﹣a (a ﹣b )【答案】ab ﹣b 2【解析】原式=a 2﹣b 2﹣a 2+ab =ab ﹣b 2.5.(2017•浙江嘉兴)化简:(2)(2)33m m m m +--⨯. 【答案】-4.【解析】原式=m 2-4-m 2=-4.6.(2017•河南)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =,1y =.【答案】原式=9xy ,当1x =,1y =时,原式=9.【解析】原式=2222244559x xy y x y x xy xy +++--+=.当1x =,1y =时,原式=9xy =1)9+=.。